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Objectives
CI-2

Lectures

Tutorials

Homeworks

Exercises
Running project

Forms of teaching:

The participants are taught to

• understand fundamental techniques  of language implementation,

• use generating tools and standard solutions ,

• understand compiler construction as a systematic combination of
algorithms, theories  and software engineering  methods for the solution of a
precisely specified task ,

• apply compiler techniques for languages other than programming languages .
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Lectures in English

Some agreements about giving lectures in English:

• I’ll speak English unless someone asks me to explain something in German.

• Stop me or slow me down whenever you get lost.

• I don‘t speak as well as a native speaker; but I’ll do my best ...

• You may ask questions and give answers in English or in German.

• I’ll prepare the slides in English. A German version is available.

• You‘ll have to learn to speak about the material in at least one of the two languages.

• You may vote which language to be used in the tutorials.

• You may chose German or English for the oral exam.

CI-3
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Syllabus

Week Chapter Topic

1 Introduction Compiler tasks
2 Compiler structure

3 Lexical analysis Scanning, token representation

4 Syntactic analysis Recursive decent parsing
5 LR Parsing
6 Parser generators
7 Grammar design

8 Semantic analysis Attribute grammars
9 Attribute grammar specifications

10 Name analysis
11 Type analysis

12 Transformation Intermediate language, target trees
13 Target texts

14 Synthesis Overview

15 Summary

CI-4



Prerequisites

from Lecture Topic here needed for

Foundations of Programming Languages:

4 levels of language properties Compiler tasks, compiler structure

Context-free grammars Syntactic analysis

Scope rules Name analysis

Data types Type analysis

Lifetime, runtime stack Storage model, code generation

Modeling:
Finite automata Lexical analysis

Context-free grammars Syntactic analysis

CI-5
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Course material in the Web
CI-7
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Commented slide in the course material
CI-7a
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What does a compiler compile?

A compiler  transforms correct sentences of its source language  into sentences of its
target language  such that their meaning is unchanged.

Examples :

Source language: Target language:

Programming language Machine language
C++ Sparc code

Programming language Abstract machine
Java Java Bytecode

Programming language Programming language (source-to-source)
C++ C

Application language Application language
LaTeX HTML
Data base language (SQL) Data base system calls

CI-8
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What is compiled here?
CI-9

 class Average

     { private:

         int sum, count;

       public:

         Average (void)

           { sum = 0; count = 0; }

         void Enter (int val)

{ sum = sum + val; count++; }

         float GetAverage (void)

           { return sum / count; }

     };

--------------

_Enter__7Averagei:

             pushl %ebp

             movl %esp,%ebp

             movl 8(%ebp),%edx

             movl 12(%ebp),%eax

             addl %eax,(%edx)

             incl 4(%edx)

     L6:

             movl %ebp,%esp

             popl %ebp

             ret

class Average
{ private
    int sum, count;
  public
    Average ()
      { sum = 0; count = 0; }
    void Enter (int val)
      { sum = sum + val; count++; }
    float GetAverage ()
      { return sum / count; }
};
---------------
1: Enter: (int) --> void
   Access: []
   Attribute ‚Code‘ (Length 49)
      Code: 21 Bytes Stackdepth: 3 Locals: 2
      0:    aload_0
      1:    aload_0
      2:    getfield cp4
      5:    iload_1
      6:    iadd
      7:    putfield cp4
      10:   aload_0
      11:   dup
      12:   getfield cp3
      15:   iconst_1
      16:   iadd

©
 2

00
1 

be
i P

ro
f. 

D
r.

 U
w

e 
K

as
te

ns

What is compiled here?
CI-10

 program Average;

       var sum, count: integer;

           aver: integer;

       procedure Enter (val: integer);

           begin sum := sum + val;

                 count := count + 1;

           end;

     begin

       sum := 0; count := 0;

       Enter (5); Enter (7);

       aver := sum div count;

     end.

-----------

void ENTER_5 (char *slnk , int VAL_4)

     {

     {/* data definitions: */

        /* executable code: */

        {

           SUM_1 = (SUM_1)+(VAL_4);

           COUNT_2 = (COUNT_2)+(1);

           ;

        }

     }}/* ENTER_5 */

\documentstyle[12pt]{article}
\begin{document}
\section{Introduction}
This is a very short document.
It just shows
\begin{itemize}
\item an item, and
\item another item.
\end{itemize}
\end{document}

-------------

%%Page: 1 1
1 0 bop 164 315 a Fc(1)81
b(In)n(tro)r(duction)
164 425 y Fb(This)16
b(is)g(a)h(v)o(ery)e(short)
i(do)q(cumen)o(t.)j(It)c(just)g
(sho)o(ws)237 527 y Fa(\017)24 b
Fb(an)17 b(item,)
c(and)237 628 y Fa(\017)24 b
Fb(another)17 b(item.)
961 2607 y(1)p
eop
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Languages for specification and modeling

SDL (CCITT) UML
Specification and Description Language: Unified Modeling Language:

CI-11
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Domain Specific Languages (DSL)

A language designed for a specific application domain.
Application Generator : Implementation of a DSL by a program generator

Examples:

• Simulation of mechatronic feedback systems

• Robot control

• Collecting data from instruments

• Testing car instruments

• Report generator for bibliographies:

CI-12

string name =   InString "Which author?";
int since =     InInt "Since which year?";
int cnt = 0;

"\nPapers of ", name, " since ", since, ":\n";

[ SELECT name <= Author && since <= Year;
  cnt = cnt + 1;
  Year, "\t", Title, "\n";
]
"\n", name, " published ", cnt, "papers.\n";

U. Kastens: Construction of
Application Generators
Using Eli,
Workshop on Compiler
Techniques for Application
Domain Languages ...,
Linköping, April 1996
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Programming languages as source or target languages

Programming languages as source languages:

• Program analysis
call graphs, control-flow graph, data dependencies, e. g. for the year 2000 problem

• Recognition of structures and patterns
e. g. for Reengineering

Program languages as target languages:

• Specifications (SDL, OMT, UML)

• graphic modeling of structures

• DSL, Application generator

=> Compiler task: Source-to-source compilation

CI-13
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Semester project as running example
CI-14

Design a domain specific language .

Implement an application generator  for it.

Apply all techniques of the course  that are useful for the task.

A Structure Generator

We are going to develop a tool that implements record structures . In
particular, the structure generator takes a set of record descriptions . Each
specifies a set of named and typed fields . For each record a Java class
declaration is to be generated. It contains a constructor method and access
methods for the specified record fields.

The tool will be used in an environment where field description are created by
other tools, which for example analyze texts for the occurrence of certain
phrases. Hence, the descriptions of fields may occur in arbitrary order, and
the same field may be described more than once. The structure generator
accumulates the field descriptions such that for each record a single class
declaration is generated which has all fields of that record.
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Meaning preserving transformation

A compiler  transforms correct sentences of its source language  into sentences of its
target language  such that their meaning is unchanged .

A meaning  is defined only for correct  programs. Compiler task: Error handling

The compiler analyses static properties of the program at compile time,
e. g. definitions of Variables, types of expressions. Decides: Is the program compilable?

Dynamic  properties of the program are checked at runtime,
e. g. indexing of arrays. Decides: Is the program executable?

But in Java: Compilation of bytecode at runtime, just in time compilation (JIT)

Source language

Target language

Compilation

Execution

Meaning
described for
abstract machine

Language
definition

Machine
description

same results

CI-15
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Example: Tokens and structure

CI-16

Character sequence

int count = 0; double sum = 0.0; while (count<maxVect) { sum = sum+vect[count]; count++;}

int count = 0; double sum = 0.0; while (count<maxVect) { sum = sum+vect[count]; count++;}

Tokens

Expressions

StatementsDeclarations

Structure
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Example: Names, types, generated code

0 iconst_0
1 istore_1
2 dconst_0
3 dstore_2
4 goto 19
7 dload_2
8 getstatic #5 <vect[]>
11 iload_1

12 faload
13 f2d
14 dadd
15 dstore_2
16 iinc 1 1
19 iload_1
20 getstatic #4 <maxVect>
23 if_icmplt 7

generated Bytecode

CI-17

int count = 0; double sum = 0.0; while (count<maxVect) { sum = sum+vect[count]; count++;}

Tokens

Names and types

int double int int
boolean

. . .k1: (count, local variable, int)
k2: (sum, local variable, double)

k3: (maxVect, member variable, int)
k4: (vect, member variable, double array)
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Language definition - Compiler task

• Notation of tokens lexical analysis
keywords, identifiers, literals
formal definition: regular expressions

• Syntactic structure syntactic analysis
formal definition: context-free grammar

• Static semantics semantic analysis, transformation
binding names to program objects, typing rules
usually defined by informal texts

• Dynamic semantics transformation, code generation
semantics, effect of the execution of constructs
usually defined by informal texts
in terms of an abstract machine

• Definition of the target language (machine) transformation, code generation
assembly

CI-18
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Compiler tasks

Structuring

Translation

Encoding

Syntactic analysis

Transformation

Assembly

Semantic analysis

Code generation

Scanning

Conversion

Parsing

Tree construction

Name analysis

Type analysis

Data mapping

Action mapping

Execution-order

Register allocation
Instruction selection

Instruction encoding
Internal Addressing
External Addressing

Lexical analysis

CI-19
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Compiler structure and interfaces

Lexical analysis

Syntactic analysis

Semantic analysis

Transformation

Optimization

Code generation

Peephole optimization

Assembly

Source program

Token sequence

Abstract program tree

Intermediate language

Abstract

Target program

Analysis (frontend)

Synthesis (backend)

machine program

CI-20
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Software qualities of the compiler
CI-21

• Correctness Translate correct programs correctly.
Reject wrong programs and give error messages

• Efficiency Storage and time used by the compiler

• Code efficiency Storage and time used by the generated code
Compiler task: Optimization

• User support Compiler task: Error handling
(recognition, message, recovery)

• Robustness Give a reasonable reaction on every input
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Strategies for compiler construction
CI-22

• Obey exactly to the language definition

• Use generating tools

• Use standard components

• Apply standard methods

• Validate the compiler against a test suite

• Verify components of the compiler
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Generators

Typical compiler tasks solved by generators:

Specification Generator Implemented
algorithm

Environment

Interfaces

Pattern:

Specifications Cooperating
generators Compiler

integrated system Eli:

CI-23

Regular expressions Scanner generator Finite automaton

Context-free grammar Parser generator Stack automaton

Attribute grammar Attribute evaluator Tree walking algorithm
generator

Code patterns Code selection Pattern matching
generator



©
 2

00
1 

be
i P

ro
f. 

D
r.

 U
w

e 
K

as
te

ns
Environment of compilers

Libraries
Preprocessor

Compiler

Linker

Compilation units

Source programs

Code files

Executable program

Interpreter

Analysis part

abstract machine

Source program

Input Output

Debugger

Executable program

Interactive commands

Input
Output

Source program

Core dump

CI-24
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Compilation and interpretation of Java programs

Compiler

Source modules

Bytecode prozessor
in softwareClass

loader
Just-In-Time
Compiler

(JIT)

Class files
in Java Bytecode
(intermediate language)

load needed
class files
dynamically -
local or via Internet

Machine code

Interpreter
Java Virtual Machine
JVM

Input Output

Java

CI-25
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Lexical Analysis

Input: Program represented by a sequence of characters

Tasks: Compiler modul:

Input reader

Recognize and classify tokens Scanner (central phase, finite state machine)

Skip irrelevant characters

Encode tokens:
Identifier modul

Store token information Literal modules
Conversion String storage

Output: Program represented by a sequence of encoded tokens

Ci-26
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Representation of tokens
CI-27

Uniform encoding of tokens by triples:

Syntax code attribute source position

terminal code of value or reference to locate error messages
the concrete syntax into data module of later compiler phases

Examples : double sum = 5.6e-5;
while (count < maxVect)
{ sum = sum + vect[count];

DoubleToken 12, 1
Ident 138 12, 8
Assign 12, 12
FloatNumber 16 12, 14
Semicolon 12, 20
WhileToken 13, 1
OpenParen 13, 7
Ident 139 13, 8
LessOpr 13, 14
Ident 137 13, 16
CloseParen 13, 23
OpenBracket 14, 1
Ident 138 14, 3
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Specification of token notations

regular
grammar

regular
expression

syntax
diagram

finite state
machine

acceptor:

Example: identifiers
Ident = Letter (Letter | Digit)*

Letter

Digit

Letter

Ident:

Letter

Digit

Letter1 2

Ident ::= Letter X
X ::= Letter X
X ::= Digit X
X ::=

CI-28
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Regular expressions mapped to syntax diagrams

Transformation rules:

regular expression A syntax diagram for A

empty

a

B C

a

B C

B | C

B*

B+

B

C

B

B

empty

single character

sequence

alternative

repetition, may be empty

repetition, non-empty

CI-29
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Construction of deterministic finite state machines

Syntax diagram deterministic finite state machine

nodes, arcs transitions, states

set of nodes mq state q

sets of nodes mq and mr transitions q ---> r with character a
connected with the same character a

Construction:

1. enumerate nodes ; exit of the diagram gets the number 0

2. initial set of nodes m1 contains all nodes initial state 1
that are reachable from the begin of the diagram

3. construct new sets of nodes (states) and transitions:  For a character a and a set mq
containing node k create set mrwith all nodes n, according to the following schema:

4. repeat step 3 until no new sets of nodes can be created

5. a state q is a final state  iff 0 is in mq.

a
k∈mq n∈mr

a

k‘∈mq n‘∈mr
for create

CI-30
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Example: Floating point numbers in Pascal
CI-31

z . z E z

+

-

1 2 3 4

5

6

7
0

Syntax diagram

1 2 3 4 5 6 7z

z

z

z
z

z

z

.

E

E
+

-

{1} {1, 2, 4} {3} {3, 4, 0} {5, 6, 7} {7} {7, 0}
z z . E z z E + - z z z

deterministic finite state machine
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Composition of token automata

Construct one finite state machine for each token. Compose them forming a single one:

• Identify the initial states of the single automata
and identical structures evolving from there (transitions with the same character and states).

• Keep the final states of single automata distinct, they classify the tokens.

• Add automata for comments and irrelevant characters  (white space)

CI-32

1

2 3 4 5

6

7

8 9

10 11

12

1314

1516

17

18

0

19

20

a

c

* *

)

(

*
l, E

l, E, d

l, E, d

_

b

. d d

.

d

E
+, -

d

d

d=

=

:

=

/

/

s

eof

character classes:
a all but *
c  all but * or )
d digits
l all letters but E
s + - * < > ; , ) [ ] ^
b blank tab newline

Example: tokens of Lax
[Waite, Goos:

Compiler Construction]

d

d E
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Rule of the longest match

An automaton may contain transitions from final states:

When does the automaton stop?

Rule of the longest match:

•  The automaton continues as long as there is a transition with the next character.

•  After having stopped it sets back to the most recently passed final state.

•  If no final state has been passed an error message is issued.

Consequence: Some kinds of tokens have to be separated explicitly.

Check the concrete grammar for tokens that may occur adjacent!

CI-33
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Scanner: Aspects of implementation

• Runtime is proportional to the number of characters in the program

• Operations per character must be fast - otherwise the Scanner dominates compilation time

• Table driven automata are too slow:
Loop interprets table, 2-dimensional array access, branches

• Directly programmed automata is faster; transform transitions into control flow:

• Fast loops for sequences of irrelevant blanks.

• Implementation of character classes:
bit pattern or indexing - avoid slow operations with sets of characters.

• Do not copy characters from input buffer - maintain a pointer into the buffer, instead.

sequence

repeat loop

branch

CI-34
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Identifier module and literal modules

• Uniform interface for all scanner support modules:
Input parameters: pointer to token text and its length;
Output parameters: syntax code, attribute

• Identifier module encodes identifier occurrences bijective (1:1), and
recognizes keywords
Implementation: hash vector, extensible table, collision lists

• Literal modules for floating point numbers, integral numbers, strings

Variants for representation in memory:
token text; value converted into compiler data; value converted into target data

Caution:
Avoid overflow on conversion!
Cross compiler: compiler representation may differ from target representation

• Character string memory:
stores strings without limits on their lengths,
used by the identifier module and the literal modules

CI-35
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Scanner generators

generate the central function of lexical analysis

GLA University of Colorado, Boulder; component of the Eli system
Lex Unix standard tool
Flex Successor of Lex
Rex GMD Karlsruhe

Token specification: regular expressions

GLA library of precoined specifications;
recognizers for some tokens may be programmed

Lex, Flex, Rex transitions may be made conditional

Interface:

GLA as described in this chapter; cooperates with other Eli components
Lex, Flex, Rex actions may be associated with tokens (statement sequences)

interface to parser generator Yacc

Implementation:

GLA directly programmed automaton in C
Lex, Flex, Rex table-driven automaton in C
Rex table-driven automaton in C or in Modula-2
Flex, Rex faster, smaller implementations than generated by Lex

CI-36
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Syntactic analysis

Input: token sequence

Tasks:
Parsing : construct derivation according to concrete syntax ,
Tree construction according to abstract syntax ,
Error handling (detection, message, recovery)

Result: abstract program tree

Compiler module parser:
deterministic stack automaton, augmented by actions for tree construction
top-down parsers: leftmost derivation; tree construction top-down or bottom-up
bottom-up parsers: rightmost derivation backwards; tree construction bottom-up

Abstract program tree (condensed derivation tree):
represented  by a data structure in memory  for the translation phase to operate on,

linear sequence of nodes on a file  (costly in runtime),
sequence of calls  of functions of the translation phase.

CI-37
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Concrete and abstract syntax

concrete syntax abstract syntax

context-free grammar context-free grammar

defines the structure of source programs defines abstract program trees

unambigous usually ambiguous

specifies derivation and parser translation phase is based on it

parser actions specify the    ---> tree construction

some chain productions only for syntactic purposekeep only semantically relevant ones
Expr ::= Fact      have no action no node created

symbols of syntactic chain productions comprised in symbol classes Exp={Expr,Fact}

same action at structural equivalent productions:
Expr ::= Expr AddOpr Fact &BinEx
Fact ::= Fact MulOpr Opd    &BinEx

terminal symbols keep only semantically relevant ones
as tree nodes

given the concrete syntax and the symbol classes
the actions and the abstract syntax can be generated

CI-38
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Expr

Fact

Opd

a

Fact MulOpr

*Opd ( )Expr

Expr Fact

Opd

b

AddOpr

+Fact

Opd c

p2

p3

p4

p6

p9 p5

p1

p2

p4

p6

p7 p4

p6

Example: concrete expression grammar

name production action

p1: Expr ::= Expr AddOpr Fact BinEx
p2: Expr ::= Fact
p3: Fact ::= Fact MulOpr Opd BinEx
p4: Fact ::= Opd
p5: Opd ::= '(' Expr ')'
p6: Opd ::= Ident IdEx
p7: AddOpr ::= '+' PlusOpr
p8: AddOpr ::= '-' MinusOpr
p9: MulOpr ::= '*' TimesOpr
p10: MulOpr ::= '/' DivOpr

   derivation tree for a * (b + c)

CI-39
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Example: abstract expression grammar

name production

BinEx: Exp    ::= Exp BinOpr Exp
IdEx: Exp    ::= Ident
PlusOpr: BinOpr ::= '+'
MinusOpr: BinOpr ::= '-'
TimesOpr: BinOpr ::= '*'
DivOpr: BinOpr ::= '/'

symbol classes : Exp = { Expr, Fact, Opd }, BinOpr = { AddOpr, MulOpr }

Actions  of the concrete syntax: productions  of the abstract syntax to create tree nodes for
no action  at a concrete chain production: no tree node  is created

CI-40

Exp

a

Exp BinOpr

*

Exp

Exp Exp

b

BinOpr

+ c

BinEx

IdEx TimesOpr BinEx

IdEx PlusOpr IdEx

abstract program tree for a * (b + c)
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Recursive descent parser

top-down  (construction of the derivation  tree), predictive  method

Sytematic transformation of a context-free grammar into a set of functions:

non-terminal symbol X function X
alternative productions for X branches in the function body
decision set of production pi decision for branch pi
non-terminal occurrence X ::= ... Y ... function call Y()
terminal occurrence X ::= ... t ... accept a token t an read the next token

Example:
p1: Stmt ::= Variable ':=' Expr p2: Stmt ::= 'while' Expr 'do' Stmt

Function:

CI-41

case decision set for p1 :
Variable();
accept(assignSym);
Expr();
break;

case decision set for p2 :
accept(whileSym);
Expr();
accept(doSym);
Stmt();
break;

void Stmt ()
{ switch (CurrSymbol)

{

default: Fehlerbehandlung();
} }
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Grammar conditions for recursive descent

A context-free grammar is strong LL(1) , if for any pair of productions that have the same
symbol on their left-hand sides, the decision sets are disjoint :

productions: A ::= u A ::= v
decision sets: First (u Follow(A)) ∩ First (v Follow(A)) = ∅

First set  and follow set:
First (u) := { t ∈ T | v ∈V* exists and a derivation u ⇒* t v } and ε ∈First (u) if u ⇒* ε exists

Follow (A) := { t ∈ T | u,v ∈V* exist, A ∈N and a derivation S ⇒* u A v such that t ∈ First (v) }

CI-42

p1: Prog ::= Block # begin
p2: Block ::= begin Decls Stmts end begin
p3: Decls ::= Decl ; Decls new
p4: Decls ::= Ident begin
p5: Decls ::= new Ident new
p6: Stmts ::= Stmts ; Stmt begin Ident
p7: Stmts ::= Stmt begin Ident
p8: Stmt ::= Block begin
p9: Stmt ::= Ident := Ident Ident

Prog begin
Block begin # ; end
Decls ε new Ident begin
Decl new ;
Stmts begin Ident ; end
Stmt begin Ident ; end

Example:
production decision set

non-terminal X
First(X) Follow(X)
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Grammar transformations for LL(1)

Consequences of strong LL(1) condition: A strong LL(1) grammar can not have
• alternative productions that begin with the same symbols

• productions that are directly or indirectly left-recursive.

Simple grammar transformations that keep the defined language invariant:

• left-factorization:

• elimination of direct recursion :

EBNF constructs can avoid violation of strong LL(1) condition:

for example repetition of u: A ::= v ( u )* w
additional condition: First(u) ∩ First(w Follow(A)) = ∅
branch in the function body: v while (CurrToken in First(u)) { u }     w
correspondingly for EBNF constructs u+, [u]

CI-43

non-LL(1) productions transformed

A ::= v u A ::= v X
A ::= v w X ::= u

X ::= w

u, v, w ∈ V*
X ∈ N does not occur in the

original grammar

A ::= A u A ::= v X
A ::= v X ::= u X

X ::=
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Comparison: top-down vs. bottom-up

Information a stack automata has when it decides to apply production  A ::= x :

top-down, predictive bottom-up
leftmost derivation rightmost derivation backwards

A bottom-up parser has seen more of the input when it decides to apply a production.

Consequence: bottom-up  parsers and their grammar classes are more powerful .

CI-44

A

x
u v

contents of
the stack

input

k
lookahead

accepted

A

x
u

input
k

lookahead
accepted

direction of
tree construction
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LR(1) automata

LR(k) grammars introduced 1965 by Donald Knuth; non-practical until subclasses were defined.

LR parsers construct the derivation tree bottom-up, a right-derivation backwards.

LR(k) grammar condition  can not be checked directly, but
a context-free grammar is LR(k), iff the (canonical) LR(k) automaton is deterministic .

We consider only 1 token lookahead: LR(1).

The stacks  of LR(k) (and LL(k)) automata contain states .
The construction of LR and LL states is based on the notion of items  (also called situations):

An item  represents the progress of analysis with respect to one production:

[  A  ::=  u .  v     R  ] z. B.   [ B ::= ( . D ; S )  {#}]
. position of analysis R  expected right context,  i. e. a set of terminals which

may follow after the application of the complete production.
(for general k: R contains terminal sequences not longer than k)

Reduce item:

[  A  ::=  u v .   R  ] z. B.   [ B ::= (  D ; S ) .   {#}]

characterizes a reduction using this production if the next input token is in R.

Each state  of an automaton represents LL: one item LR: a set of items

CI-45
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LR(1) states and operations

A state of an LR automaton represents a set of items
Each item represents a way in which analysis may
proceed from that state.

A shift transition  is made under
a token read  from input or
a non-terminal  symbol

obtained from a preceding reduction.
The state is pushed.

A reduction  is made according to a reduce item.
n states are popped for a production of length n.

Operations: shift read and push the next state on the stack
reduce reduce with a certain production, pop n states from the stack
error error recognized, report it, recover
stop input accepted

CI-46

B ::= ( . D ; S ) {#}

D ::= . D ; a {;}

D ::= . a {;}

2

B ::= ( D . ; S ) {#}
D ::= D . ; a {;}

D
4

D ::= a . {;}

a

red. p33
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Example for a LR(1) automaton
CI-47

B ::= . ( D ; S ) {#}

B ::= ( . D ; S ) {#}
D ::= . D ; a {;}
D ::= . a {;}

B ::= ( D . ; S ) {#}
D ::= D . ; a {;}

B ::= ( D ; . S ) {#}
D ::= D ; . a {;}
S ::= . b ; S {)}
S ::= . b {)}

B ::= ( D ; S . ) {#}

B ::= ( D ; S ) . {#}

D ::= a . {;}

D ::= D ; a . {;}

S ::= b . ; S {)}
S ::= b . {)}

S ::= b ; . S {)}
S ::= . b ; S {)}
S ::= . b {)}

S ::= b ; S . {)}

(

D

;

S

)

a

a

b

b

;

S

1

2
3

4

5

6

7

8

9

10

11

red. p1, stop

red. p3

red. p2

red. p5

red. p4

Grammar:
p1 B ::= ( D ; S )
p2 D ::= D ; a
p3 D ::= a
p4 S ::= b ; S
p5 S ::= b
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B ::= ( . D ; S ) {#}
D ::= . D ; a {;}
D ::= . a {;}

B ::= ( D . ; S ) {#}
D ::= D . ; a {;} D ::= a . {;}

D a

2

34

Construction of LR(1) automata

Create the start state; create transitions and states as long as new ones can be created.

Transitive closure  is to be applied to each state:
If [ A ::= u  .  B  v   R ]    is in state q,
with the analysis position before a non-terminal B,
then for each production B ::= w

[ B ::=  .  w    First (v R) ]
has to be added to state q.

Start state :
Closure of [ S ::=  . u   {#} ]
S ::= u   is the unique start production ,
# is an artificial end symbol  (eof)

Successor states :
For each symbol x  (terminal or non-terminal), which
occurs in some items after the analysis position ,
a transition  is created to a successor state . That
contains a corresponding item with the analysis position
advanced behind the x  occurrence.

CI-48

B ::= ( . D ; S ) {#}

B ::= ( . D ; S ) {#}
D ::= . D ; a {;}
D ::= . a {;}

2

before:

after:

B ::= . ( D ; S ) {#}1
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Operations of the LR(1) automaton
shift x (terminal or non-terminal):

from current state q
under x into thesuccessor state q‘ ,
push q‘

reduce p:
apply production p  B ::= u ,
pop as many  states,
as there are symbols in u, from the
new current state make a shift with B

error:
the current state has no transition
under the next input token,
issue a message and recover

stop:
recuce start production,
see # in the input

CI-49

Example:

stack input reduction

1 ( a ; a ; b ; b ) #
1 2 a ; a ; b ; b ) #
1 2 3 ; a ; b ; b ) # p3
1 2 ; a ; b ; b ) #
1 2 4 ; a ; b ; b ) #
1 2 4 5 a ; b ; b ) #
1 2 4 5 6 ; b ; b ) # p2
1 2 ; b ; b ) #
1 2 4 ; b ; b ) #
1 2 4 5 b ; b ) #
1 2 4 5 7 ; b ) #
1 2 4 5 7 8 b ) #
1 2 4 5 7 8 7 ) # p5
1 2 4 5 7 8 ) #
1 2 4 5 7 8 9 ) # p4
1 2 4 5 ) #
1 2 4 5 10 ) #
1 2 3 5 10 11 # p1
1 #
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LR conflicts

An LR(1) automaton that has conflicts is not deterministic . Its grammar is not LR(1) ;
correspondingly defined for any other LR class.

2 kinds of conflicts:

reduce-reduce conflict:
A state contains two reduce items, the
right context sets  of which are not disjoint :

shift-reduce conflict :
 A state contains
a shift item  with the analysis position in front of a  t  and
a reduce item with t in its right context set .

CI-50

...
A ::= u .   R1
B ::= v .   R2
...

R1, R2
not
disjoint

...
A ::= u .t v   R1
B ::= w .      R2
...

t ∈ R2
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Shift-reduce conflict for „dangling else“ ambiguity
CI-51

S ::= . Stmt {#}
Stmt ::= . if ... then Stmt {#}
Stmt ::= . if ... then Stmt else Stmt {#}
Stmt ::= . a {#}

Stmt ::= if ... then . Stmt {#}
Stmt ::= if ... then . Stmt else Stmt {#}
Stmt ::= . if ... then Stmt {# else}
Stmt ::= . if ... then Stmt else Stmt {# else}
Stmt ::= . a {# else}

Stmt ::= if ... then Stmt . {# else}
Stmt ::= if ... then Stmt . else Stmt {# else}

Stmt ::= if ... then . Stmt {# else}
Stmt ::= if ... then . Stmt else Stmt {# else}
Stmt ::= . if ... then Stmt {# else}
Stmt ::= . if ... then Stmt else Stmt {# else}
Stmt ::= . a {# else}

if
then...

if
then...

Stmt

1

3

5

6

Stmt

a

Stmt

a

if

a

else

shift-reduce conflict
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context-free

unambiguous

LR(k)

LR(1)

LALR(1)

SLR(1)

LR(0)

LL(k)

strong LL(1) = LL(1)

Grammar hierarchy:
(strict inclusions)

Simplified LR grammar classes

LR(1):
too many states for practical use
Reason : right-contexts distinguish many states
Strategy:  simplify right-contexts sets,

fewer states, grammar classes are less powerful

LR(0):
all items without right-context
Consequence: reduce items only in

singleton sets

SLR(1):
LR(0) states ; in reduce items
use larger right-context sets for decision:

[ A ::= u .  Follow (A) ]

LALR(1):
identify LR(1) states if their items differ only
in their right-context sets, unite the sets for those items;
yields the states of the LR(0) automaton
augmented by the "exact“ LR(1) right-context.
State-of-the-art parser generators accept LALR(1)

CI-52
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Implementation of LR automata

Table-driven:

Compress tables :

• merge rows or columns  that differ only in irrelevant entries; method: graph coloring

• extract a separate error matrix  (bit matrix); increases the chances for merging

• normalize the values of rows or columns ; yields smaller domain; supports merging

• eliminate LR(0) reduce states ; new operation in predecessor state: shift-reduce
eliminates about 30% of the states in practical cases

About 10-20% of the original table sizes  can be achieved!

Directly programmed  LR-automata are possible - but usually too large.

CI-53

sq: shift into
state q

rp: reduce
production p

e: error
~: never reached

terminals nonterminals

states

sq

rp

e ~

sq

~
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Error handling: general criteria
CI-54

• recognize error as early as possible
LL and LR can do that

• report the symptom in terms of the source text

• continue parsing short after the error position

• avoid avalanche errors

• build a tree that has a correct structure

• do not backtrack, do not undo actions

• no runtime penalty for correct programs
©

 2
00

1 
be

i P
ro

f. 
D

r.
 U

w
e 

K
as

te
ns

Error position

Error recovery : Means that are taken by the parser after recognition of a syntactic error
in order to continue parsing

Correct prefix : The token sequence w ∈T* is a correct prefix in the language L(G),
if there is an u ∈T* such that w u ∈L(G); i. e. w can be extended to a sentence in L(G).

Error position : t is the (first) error position in the input w t x  , where t ∈T and w, x ∈T*,
if w is a correct prefix  in L(G) and w t is not a correct prefix .

LL and LR parsers recognize an error at the error position;
they can not accept t in the current state.

CI-55

int compute (int i) { a = i * / c; return i;}

w t

Example:
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Error recovery

Continuation point :
The token d at or behind the error position t such that
parsing of the input continues at d .

Error repair
with respect to a consistent derivation - regardless the intension of the programmer!

Let the input be w t x with the error position at t and let w t x = w y d z,
then the recovery (conceptually) deletes y  and inserts v ,
such that w v d is a correct prefix  in L(G), with d ∈T and w, y, v, z ∈T*.

CI-56

a = i * / c;...

a = i * c;...
a = i * / c;...
a = i *e/ c;...

a = i * / c;...

a = i * e ;...

w y d z w y zd w y zd

delete / insert  error id. e delete / c

Examples:

and insert  error id. e
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Recovery method: simulated continuation

Problem : Determine a continuation point close to the error position and reach it.

Idea: Use parse stack to determine a set of tokens as potential continuation points.

Steps of the method:

1. Save the contents of the parse stack  when an error is recognized. Skip the error token.

2. Compute a set D ⊆ T of tokens that may be used as continuation point  (anchor set )
Let a modified parser run to completion:
Instead of reading a token from input it is inserted into D; (modification given below)

3. Find a continuation point d : Skip input tokens until a token of D is found.

4. Reach the continuation point d :
Restore the saved parser stack as the current stack.
Perform dedicated transitions until d is acceptable.
Instead of reading tokens (conceptually) insert tokens. Thus a correct prefix is constructed.

5. Continue normal parsing .

Augment parser construction for steps 2 and 4 :
For each parser state select a transition and its token,
such that the parser empties its stack and terminates as fast as possible.
This selection can be generated automatically .
The quality of the recovery can be improved by influence on the computation of D.

CI-57
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Parser generators
PGS Univ. Karlsruhe; in Eli LALR(1), table-driven
Cola Univ. Paderborn; in Eli LALR(1), optional: table-driven or directly programmed
Lalr Univ. / GMD Karlsruhe LALR(1), table-driven
Yacc Unix tool LALR(1), table-driven
Bison Gnu LALR(1), table-driven
Llgen Amsterdam Compiler Kit LL(1), recursive descent
Deer Univ. Colorado, Bouder LL(1), recursive descent

Form of grammar specification:
EBNF: Cola, PGS, Lalr; BNF: Yacc, Bison

Error recovery:
simulated continuation, automatically generated: Cola, PGS, Lalr
error productions, hand-specified: Yacc, Bison

Actions:
statements in the implementation language
at the end of productions: Yacc, Bison
anywhere in productions: Cola, PGS, Lalr

Conflict resolution:
modification of states (reduce if ...) Cola, PGS, Lalr
order of productions: Yacc, Bison
rules for precedence and associativity: Yacc, Bison

Implementation languages:
C: Cola, Yacc, Bison C, Pascal, Modula-2, Ada :  PGS, Lalr

CI-58
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Design of concrete grammars
CI-59

Objectives

The concrete grammars for parsing

• is parsable - fulfills the grammar condition  of the chosen
parser generator;

• specifies the intended language  - or a small super set of it;

• is provable related to the documented grammar ;

• can be mapped to  a suitable abstract grammar .
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Grammar design for an existing language

CI-60

• Take the grammar of the language specification literally .

• Only conservative modifications  for parsability or for mapping to abstract syntax.

• Describe any modification .
(see ANSI C Specification in the Eli system description
http://www.uni-paderborn.de/fachbereich/AG/agkastens/eli/examples/eli_cE.html)

• Java  language specification (1996):
Specification grammar is not LALR(1).
5 problems are described and how to solve them.

• Ada  language specification (1983):
Specification grammar is LALR(1)
- requirement of the language competition

• ANSI C, C++:
several ambiguities and LALR(1) conflicts, e.g.
„dangling else “,
„typedef problem “:

A (*B);
is a declaration of variable B, if A is a type name,
otherwise it is a call of function A
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Grammar design together with language design
CI-61

Read grammars  before writing a new grammar.

Apply grammar patterns systematically  (cf. GdP-2.5, GdP-2.8)

• repetitions

• optional constructs

• precedence, associativity of operators

Syntactic structure should reflect semantic structure :

E. g. a range in the sense of scope rules should be represented by a single
subtree of the derivation tree (of the abstract tree).

Violated in Pascal:

functionDeclaration ::= functionHeading block
functionHeading ::= ‘function‘ identifier formalParameters ‘:‘ resultType ‘;‘

formalParameters together with block form a range,
but identifier does not belong to it
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Syntactic restrictions versus semantic conditions
CI-62

Express a restriction syntactically  only if
it can be completely covered with reasonable complexity :

• Restriction can not be decided syntactically :
e.g. type check in expressions:

BoolExpression ::= IntExpression ‘<‘ IntExpression

• Restriction can not always be decided syntactically :
e. g. disallow array type to be used as function result

Type ::= ArrayType | NonArrayType | Identifier
ResultType ::= NonArrayType

If a type identifier may specify an array type,
a semantic condition is needed, anyhow

• Syntactic restriction is unreasonable complex :
e. g. distinction of compile-time expressions from ordinary
expressions requires duplication of the expression syntax.
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Reasons of LALR(1) conflicts

context-free

unambiguous

LR(k)

LR(1)

LALR(1)

CI-63

ambiguous most cases

unbounded lookahead  needed

fixed length lookahead > 1  needed

merge of LR(1) states rare cases
introduces conflicts

Grammar condition does not hold:

LALR(1) parser generator can not distinguish these cases.
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Eliminate ambiguities

CI-64

unite syntactic constructs - distinguish them semantically

Examples:

• Java: ClassOrInterfaceType ::= ClassType | InterfaceType
InterfaceType ::= TypeName
ClassType ::= TypeName

replace first production by
ClassOrInterfaceType ::= TypeName
semantic analysis distinguishes between class type and interface type

• Pascal: factor ::= variable | ... | functionDesignator
variable ::= entireVariable | ...
entireVariable ::= variableIdentifier
variableIdentifier ::= identifier (**)
functionDesignator ::= functionIdentifier (*)

| functionIdentifer ’(’ actualParameters ’)’
functionIdentifier ::= identifier

eliminate marked (*) alternative
semantic analysis checks whether (**) is a function identifier
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Unbounded lookahead
CI-65

The decision for a reduction is determined by a distinguishing token that may
be arbitrarily far to the right:

Example, forward declarations as could have been defined in Pascal:

functionDeclaration ::=
‘function‘ forwardIdent formalParameters ‘:‘ resultType ‘;‘ ‘forward‘

| ‘function‘ functionIdent formalParameters ‘:‘ resultType ‘;‘ block

The distinction between forwardIdent and functionIdent would require to see the
forward or the begin token.

Replace forwardIdent and functionIdent by the same nonterminal;
distinguish semantically.
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LR(1) but not LALR(1)
CI-66

Identification of LR(1) states causes non-disjoint right-context sets.

Artificial example:

Grammar:
Z ::= S
S ::= A a
S ::= B c
S ::= b A c
S ::= b B a
A ::= d.
B ::= d.

Z ::= . S {#}
S ::= . A a {#}
S ::= . B c {#}
S ::= . b A c {#}
S ::= . b B a {#}
A ::= . d {a}
B ::= . d {c}

S ::= b . A c {#}
S ::= b . B a {#}
A ::= . d {c}
B ::= . d {a}

A ::= d . {a}
B ::= d . {c}

A ::= d . {c}
B ::= d . {a}

A ::= d . {a, c}
B ::= d . {a, c}

b

d

d

LR(1) states

LALR(1) state

identified
states

Avoid the distinction between A and B - at least in one of the contexts.

4. Semantic analysis and transformation

Input: abstract program tree

Tasks: Compiler module:

name analysis environment module

properties of program entities definition module

type analysis, operator identification signature module

transformation tree generator

Output: target tree, intermediate code, target program in case of source-to-source

Standard implementations and generators for compiler modules

Operations of the compiler modules are called at nodes of the abstract program tree

Model: dependent computations in trees

Specification: attribute grammars

generated: tree walking algorithm that calls operations
in specified contexts and in an admissable order

CI-67
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4.1 Attribute grammars

Attribute grammar (AG) specifies dependent computations in the abstract program tree
declarative : explicit dependencies only; a suitable order of execution is computed

Computations solve the tasks of semantic analysis and transformation

Generator  produces a plan for tree walks
that execute calls of the computations,
such that the specified dependencies are obeyed,
computed values are propagated through the tree

Result: attribute evaluator ; applicable for any tree specified by the AG

CI-68

RULE Decls ::= Decls Decl  COMPUTE
Decls[1].size =

Add (Decls[2].size, Decl.size);
END;
RULE Decls ::= Decl  COMPUTE

Decls.size = Decl.size;
END;
RULE Decl ::= Type Name  COMPUTE

Decl.size = ...;
END;

Decls
size 16

Decls
size 12

Decls
size 4

Decl
size 4

Decl
size 8

Decl
size 4

Example: attribute grammar tree with dependent attributes
evaluated
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Basic concepts of attribute grammars

An AG specifies computations in tree:
expressed by computations associated to productions of the abstract syntax

RULE p: Y ::= u  COMPUTE f(...); g(...);  END;

computations f(...) and g(...) are executed in every tree context of type p

An AG specifies dependencies between computations:
expressed by attributes associated to grammar symbols

RULE p: X ::= u Y v COMPUTE X.b = f(Y.a);
Y.a = g(...);

END; post-condition pre-condition
f(Y.a)  uses the result of g(...) ; hence Y.a=g(...)  will be executed before f(Y.a)

dependent computations in adjacent contexts:

RULE r: X ::= v Y w COMPUTE X.b = f(Y.a); END;
RULE p: Y ::= u COMPUTE Y.a = g(...); END;

attributes may specify dependencies without propagating any value:

X.GotType = ResetTypeOf(...);
Y.Type = GetTypeOf(...) <- X.GotType;

ResetTypeOf will be called before GetTypeOf

CI-69
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Definition of attribute grammars

An attribute grammar  is defined by

a context-free grammar G , (abstract syntax, tree grammar)

for each symbol X  of G a set of attributes A(X) , written X.a if a ∈ A(X)

for each production (rule) p  of G a set of computations  of one of the forms

X.a = f ( ... Y.b ... ) or g (... Y.b ... ) where X and Y occur in p

Consistency and completeness  of an AG:

Each A(X) is partitioned into two disjoint subsets: AI(X) and AS(X)

AI(X): inherited attributes  are computed in rules p where X is on the right -hand side of p

AS(X): synthesized attributes are computed in rules p where X is on the left -hand side of p

Each rule p: X ::= ... Y ... has exactly one computation
for all attributes of AS(X), and
for all attributes of AI(Y), for all symbol occurrences on the right-hand side of p

CI-69a
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AG Example: Compute expression values

The AG specifies: The value of an expression is computed and printed:

CI-69b

ATTR value: int;

RULE: Root ::=  Expr  COMPUTE

printf ("value is %d\n",

Expr.value);

END;

TERM Number: int;

RULE: Expr ::= Number COMPUTE

Expr.value = Number;

END;

RULE: Expr ::= Expr Opr Expr

COMPUTE

Expr[1].value = Opr.value;

Opr.left  = Expr[2].value;

Opr.right = Expr[3].value;

END;

SYMBOL Opr: left, right: int;

RULE: Opr ::=  '+'  COMPUTE

  Opr.value  =

ADD (Opr.left, Opr.right);

END;

RULE: Opr ::=  '*'  COMPUTE

  Opr.value =

MUL (Opr.left, Opr.right);

END;
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AG Binary numbers

Attributes: L.v, B.v value
L.lg number of digits in the sequence L
L.s, B.s scaling of B or the least significant digit of L

RULE p1: D ::= L '.' L COMPUTE
D.v = ADD (L[1].v, L[2].v);
L[1].s = 0;
L[2].s = NEG (L[2].lg);

END;
RULE p2: L ::= L B COMPUTE

L[1].v = ADD (L[2].v, B.v);
B.s = L[1].s;
L[2].s = ADD (L[1].s, 1);
L[1].lg = ADD (L[2].lg, 1);

END;
RULE p3: L ::= B COMPUTE

L.v = B.v;
B.s = L.s;
L.lg = 1;

END;
RULE p4: B ::= '0' COMPUTE

B.v = 0;
END;
RULE p5: B ::= '1' COMPUTE

B.v = Power2 (B.s);
END;

CI-70
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An attributed tree for AG Binary numbers
CI-71
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Dependency analysis for AGs

2 disjoint sets of attributes for each symbol X:

AI (X) : inherited  (dt. erworben), computed in upper contexts  of X

AS (X): synthesized  (dt. abgeleitet), computed in lower contexts  of X.

Necessary precondition for the existence of such a partition:
No node in any tree has direct or indirect dependencies that contradict the evaluation order of
the sequence of sets: AI (X, 1), AS (X, 1), ..., AI (X, k), AS (X, k)

upper context of X
p:  Y ::= u X v dependencies

between
attributes

context switch
on  tree walk

lower context of X
q : X ::= w

AI (X,1)               AI (X,2)

AS (X,1)             AS (X,2)

y

u v

w

CI-72

Objective: Partition  of
attribute sets, such that

AI (X, i)  is computed
before the i-th visit  of X

AS (X, i)  is computed
during the i-th visit  of X
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Dependency graphs for AG Binary numbers
CI-73
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Construction of attribute evaluators

For a given attribute grammar an attribute evaluator is constructed:

• It is applicable to any tree  that obeys the abstract syntax specified in the rules of the AG.

• It performs a tree walk  and
executes computations  when visiting a context for which they are specified.

• The execution order obeys the attribute dependencies .

Pass-oriented strategies  for the tree walk: AG class

k times depth-first left-to-right LAG (k)
k times depth-first alternatingly left-to-right / right-to left AAG (k)
once bottom-up SAG

The attribute dependencies of the AG are checked
whether the desired pass-oriented strategy is applicable; see LAG(k) algorithm.

non-pass-oriented strategies:
visit-sequences : OAG
an individual plan for each rule of the abstract syntax

Generator fits the plans to the dependencies.

CI-74
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Visit-sequences

A visit-sequence (dt. Besuchssequenz) vsp for each production  of the tree grammar:

p: Xo ::= X1 ... Xi ... Xn

A visit-sequence is a sequence of operations :

↓ i, j  j-th visit of the i-th subtree

↑ j  j-th return to the ancestor  node

evalc  execution of a computation  c associated to p

Example in the tree: visit-sequences

Implementation:

one procedure for each section of a visit-sequence upto ↑
a call with a switch over applicable productions for ↓

  B C

D          E

A

p: A::= BC

q: C::= DE

vsp:  ... ↓C,1 ...↓B,1 ...↓C,2 ...↑1

vsq:  ... ↓D,1 ... ↑1 ... ↓E,1 ... ↑2

CI-75

 AI (X,1)              AI (X,2)

AS (X,1)             AS (X,2)

attribute partitions
guaranty
correct interleaving:
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Visit-sequences for the AG Binary numbers

vsp1: D ::= L '.' L

↓L[1],1 ;  L[1].s=0; ↓L[1],2 ; ↓L[2],1 ;  L[2].s=NEG(L[2].lg);

↓L[2],2 ;  D.v=ADD(L[1].v, L[2].v); ↑1

vsp2: L ::= L B

↓L[2],1 ; L[1].lg=ADD(L[2].lg,1); ↑1

L[2].s=ADD(L[1].s,1); ↓L[2],2 ;  B.s=L[1].s; ↓B,1; L[1].v=ADD(L[2].v, B.v); ↑2

vsp3: L ::= B

L.lg=1; ↑1;  B.s=L.s; ↓B,1;  L.v=B.v; ↑2

vsp4: B ::= '0'

B.v=0; ↑1

vsp5: B ::= '1'

B.v=Power2(B.s); ↑1

Implementation :
Procedure  vs<i><p> for each section  of a vsp to a ↑i
a call with a switch over alternative rules for ↓X,i

CI-76
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Tree walk for AG Binary numbers
CI-76a
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LAG (k) condition and algorithm

An AG is a LAG(k), if: For each symbol X there is an attribute partition A (X,1), ..., A (X, k),
such that the attributes in A (X, i) can be computed in the i-th depth-first left-to-right pass.

Necessary and sufficient condition over dependency graphs - expressed graphically:

Algorithm:  computes A (1), ..., A (k), if the AG is LAG(k), for  i = 1, 2, ...
A (i) := all attributes that are not yet assigned
remove attributes from A(i) as long as the following rules are applicable:

• remove X.b, if there is a context where it depends on an attribute of A (i) according to the
pattern given above,

• remove Z.c, if it depends on a removed attribute

Finally : all attributes are assigned to a passes i = 1, ..., k the AG is LAG(k)
all attributes are removed from A(i) the AG is not LAG(k) for any k

X Y
b a

A(X,j) A(Y,i)
j > i

X
a b

A(X,i) A(X,j)
i < j

∈ ∈ ∈ ∈

A dependency
from right to left

A dependency
at one symbol
on the right-hand
side

CI-77

Generators for attribute grammars

LIGA University of Paderborn OAG

FNC-2 INRIA ANCAG (Oberklasse von OAG)

Synthesizer Generator Cornell University OAG, inkrementell

CoCo Universität Linz LAG(1)

Properties of the generator LIGA

• integrated in the Eli system , cooperates with other Eli tools

• high level specification language  Lido

• modular and reusable AG components

• object-oriented constructs usable for abstraction of computational patterns

• computations are calls of functions  implemented outside the AG

• side-effect computations  can be controlled by dependencies

• notations for remote attribute access

• visit-sequence  controlled attribute evaluators, implemented in C

• attribute storage optimization

CI-78
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State attributes without values
CI-78a

RULE: Root ::= Expr COMPUTE
  Expr.print = "yes";
  printf ("\n") <- Expr.printed;
END;

RULE: Expr ::= Number COMPUTE
  Expr.printed =
    printf ("%d ", Number) <- Expr.print;
END;

RULE: Opr  ::= '+' COMPUTE
  Opr.printed = printf ("+ ") <- Opr.print;
END;

RULE: Opr  ::= '*' COMPUTE
  Opr.printed = printf ("* ") <- Opr.print;
END;

RULE: Expr  ::= Expr Opr Expr COMPUTE
  Expr[2].print = Expr[1].print;
  Expr[3].print = Expr[2].printed;
  Opr.print = Expr[3].printed;
  Expr[1].printed = Opr.printed;
END;

The attributes print
and printed  do not
have a value

They just describe pre-
and post-conditions of
computations:

Expr.print:
postfix output has
been done up to
not including this
node

Expr.printed:
postfix output has
been done up to
including this node
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Dependency pattern CHAIN
CI-78b

CHAIN print: VOID;

RULE: Root ::= Expr COMPUTE
  CHAINSTART HEAD.print = "yes";
  printf ("\n ") <- TAIL.print;
END;

RULE: Expr ::= Number COMPUTE
  Expr.print =
    printf ("%d ", Number) <- Expr.print;
END;

RULE: Opr ::= '+' COMPUTE
  Opr.post = printf ("+") <- Opr.pre;
END;

RULE: Expr ::= Expr Opr Expr COMPUTE
  Opr.pre = Expr[3].print;
  Expr[1].print = Opr.post;
END;

A CHAIN specifies a
left-to-right depth-first
dependency through a
subtree.

Trivial computations  of
the form X.a = Y.b in the
CHAIN order can be
omitted . They are added
as needed.
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Dependency pattern INCLUDING

CI-78c

ATTR depth: int;

RULE: Root ::= Block COMPUTE
  Block.depth = 0;
END;

RULE: Statement ::= Block COMPUTE
  Block.depth =

ADD (INCLUDING Block.depth, 1);
END;

TERM Ident: int;

RULE: Definition ::= ‘define' Ident COMPUTE
  printf ("%s defined on depth %d\n ",
           StringTable (Ident),
           INCLUDING Block.depth);
END;

An attribute  at the root of
a subtree is used from
within the subtree .

Propagation  through the
contexts in between is
omitted .

INCLUDING Block.depth
accesses the depth attribut of the next upper node of
type Block .
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Dependency pattern CONSTITUENTS
CI-78d

RULE: Block ::= '{' Sequence '}' COMPUTE
  Block.DefDone =
    CONSTITUENTS Definition.DefDone;
END;

RULE: Definition ::= 'Define' Ident COMPUTE
  Definition.DefDone =
    printf ("%s defined in line %d\n",
            StringTable(Ident), LINE);
END;

RULE: Usage ::= 'use' Ident COMPUTE
   printf ("%s used in line %d\n ",
           StringTable(Ident), LINE),
   <- INCLUDING BLOCK.DefDone;
END;

A computation accesses
attributes from the
subtree below its context.

Propagation  through the
contexts in between is
omitted .

The shown combination
with INCLUDING is a
common dependency
pattern.

CONSTITUENTS Definition.DefDone  accesses the
DefDone  attributes of all Definition nodes in the
subtree below this context

4.2 Definition module

Central data structure, stores properties of program entities
 e. g. type of a variable, element type of an array type

A program entity is identified by the key  of its entry in the data structure.

Operations:

NewKey ( ) yields a new key

ResetP (k, v) sets the property P to have the value v for key k

SetP (k, v, d) as ResetP; but the property is set to d if it has been set before

GetP (k, d) yields the value of the Property P for the key k;
yields the default-Wert d, if P has not been set

Operations are called as dependent computations in the tree

Implementation: a property list for every key, for example

Generation of the definition module : From specifications of the form

Property name : property type;
ElementNumber: int;

functions ResetElementNumber, SetElementNumber, GetElementNumber are generated.

CI-79

4.3 Type analysis

Task: Compute and check types of program entities and constructs at compile time

CI-80

• defined entities (e. g. variables)
have a type property , stored in the definition module

• program constructs (e. g. expressions)
have a type attribute, associated to their symbol resp. tree node
special task: resolution of overloaded operators (functions, methods)

• types themselves are program entities
represented by keys;
named  using type definitions; unnamed  in complex type notations

• types have properties
e. g. the element type of an array type

• type checking for program entities and for program constructs
a type must / may not have certain properties in certain contexts
compare expected and given type; type relations : equal, compatible;
compute type coercion



Declarations and type notations
CI-81

Declaration
Type

TypeNotation
Type

DefIdent
Key

DefIdent
Key

TypeNotation
Type

TypeNotation
Type

ResetTypeOf ( , )
ResetIndexType ( , )

ResetElemTyp e ( , )

NewKey ()

ResetTypeOf ( , )

a, b: array [1..10] of real;

create type entry and

set its properties

Variables:
set their type property

operations in the tree for the construct:

Types of expressions required by context

Stmt

Variable
Type

Expr
Type ReqType

UseIdent
Key Type

Variable
Type

Variable
Type

Expr
Type ReqType

Compatibl e ( , )

GetTypeOf ( ) GetElemType ( )

GetIndexType ( )

x := a[i];

operations in the tree for:

compute
type attributes

check typecompute
type attributes

CI-82

Overloading resolution for operators
Overloading : same operator symbol  (source operator) is used for several target operators
having different signatures  and different meanings , e. g. specified by a table like:

symbol signature meaning
+ int ✕ int -> int addition of integral numbers
+ real ✕ real -> real floating point addition
+ set ✕ set -> set union of sets
= t ✕ t -> boolean comparison for values of type t

Coercion: implicitly applicable type conversion:  e. g.  int -> real, char -> string, ...

CI-83

BinOpr
LType SrcOpr TgtOpr RType

Coercible ( , )

IdentifyOpr ( , , )

Expr
Type ReqType

Expr
Type ReqType

Expr
Type ReqType

Context of overloaded binary operators:

given: source operator and operand types
find: target operator
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Type analysis for object-oriented languages

Class hierarchy is a type hierarchy:

implicit type coercion: class -> super class
explicit type cast: class -> subclass

Variable of class type may contain
an object (reference) of its subclass

Check signature of overriding methods:

calls must be type safe; Java requires the same signature;
following weaker requirements are sufficient (contra variant parameters, language Sather):

Analyse dynamic methode binding; try to decide it statically:

static analysis tries to further restrict the run-time type:

GeometricShape f;...; f = new Circle(...);...; a = f.area();

CI-84

X x; A a; P p;
a = x.m (p);

class X { C m (Q q) {  use of q;... return c; } }

class Y { B m (R r) {  use of r;... return b; } }

C c; B b;
Variable:call of dynamically

bound method:

super class

subclass

Circle k = new Circle (...);

GeometricShape f = k;

k = (Circle) f;
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Type analysis for functional languages (1)

Static typing and type checking without types in declarations

Type inference : Types of program entities are inferred from the context where they are used

CI-85

cnt: 'a,
fct: 'b->'c,
choice: ('a * ('b->'c)) -> 'd

'c = bool
'b = 'a
'd = 'a
'a = int

Example in ML:

describe the types of entities using type variables:

form equations that describe the uses of typed entities

solve the system of equations:

fun choice (cnt, fct) =
if fct cnt then cnt else cnt - 1;

choice: (int * (int->bool)) -> int
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Type analysis for functional languages (2)

Parametrically polymorphic types: types having type parameters

Example in ML:

fun map (l, f) =
if null l
then nil
else (f (hd l)) :: map (tl l, f)

polymorphic signature:

map: ('a list * ('a -> 'b)) -> 'b list

Type inference  yields most general type  of the function,
such that all uses of entities in operations are correct;

i. e. as many unbound type parameters as possible

calls with different concrete types, consistently substituted for the type parameter:

map([1,2,3], fn i => i*i) 'a = int, 'b = int
map([1,2,3], even) 'a = int, 'b = bool
map([1,2,3], fn i =(i,i)) 'a = int, 'b = ('a*'a)

CI-86
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4.4 Name analysis

Identifiers identify program entities in the program text (statically ).

The definition  of an identifier b introduces a program entity  and binds  it to the identifier .
The binding is valid in a certain range of the program text: the scope of the definition .

Name analysis task : Associate the key of a program entity to each occurrence of an
identifier  (consistent renaming) according to scope rules  of the language.

Hiding rules  for languages with nested structures:

• Algol rule : The definition of an identifier b is valid in the whole smallest enclosing range ;
but not in inner ranges that have a definition of b, too.
(e. g. Algol 60, Pascal, Java, ... with additional rules)

• C rule : The definition of an identifier b is valid in the smallest enclosing range from the
position of the definition to the end; but not in inner ranges that have another definition of b
from the position of that definition. (e. g. C, C++, Java, ... with additional rules)

Ranges  are syntactic constructs like blocks, functions, modules, classes, packets
- as defined for the particular language.

Implementation  of name analysis:
Operations of the environment module are called in suitable tree contexts.

CI-87
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Environment module

Implements the abstract data type Environment :
hierarchically nested sets of Binding s (identifier, environment, key)

Functions :

NewEnv () creates a new Environment e, to be used as root of a hierarchy

NewScope (e 1) creates a new Environment e2 that is nested in e1.
Each binding of e1 is also a binding of e2 if it is not hidden there.

BindIdn (e, id) introduces a binding (id, e, k) if e has no binding for id;
then k is a new key representing a new entity;
in any case the result is the binding triple (id, e, k)

BindingInEnv (e, id) yields a binding triple (id, e1, k) of e or a surrounding
environment of e; yields NoBinding if no such binding exists.

BindingInScope (e, id) yields a binding triple (id, e, k) of e, if contained directly in e,
NoBinding otherwise.

CI-88



Data structure of the environment module
CI-89

c k7

b k6 ~

a k8                  a k4                    a k1 ~

b k5 ~                b k2

c k9 ~                                            c k3 ~

a

b

 c

Environment tree

Root

current
Environment

Lists of local Bindings

~
~

~

hash vector indexed by
identifier codes

a stack for each  identifier

 ki: key of the defined entity
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Environment operations in tree contexts

Operations in tree contexts and the order they are called model scope rules.

Root  context:
Root.Env = NewEnv ();

Range context that may contain definitions:
Range.Env = NewScope (INCLUDING (Range.Env, Root.Env);

accesses the next enclosing Range or Root

defining occurrence of an identifier IdDefScope :
IdDefScope.Bind = BindIdn (INCLUDING Range.Env, IdDefScope.Symb);

applied occurrence of an identifier IdUseEnv :
IdUseEnv.Bind = BindingInEnv (INCLUDING Range.Env, IdUseEnv.Symb);

Preconditions for specific scope rules:
Algol rule: all BindIdn()  of all surrounding ranges before any BindingInEnv()
C rule: BindIdn()  and BindingInEnv()  in textual order

The resulting bindings are used for checks and transformations , e. g.

• no applied occurrence without a valid defining occurrence,

• at most one definition for an identifier in a range,

• no applied occurrence before its defining occurrence (Pascal).

CI-90
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Semantic error handling
CI-91

Design rules:

Error reports related to the source code:

• any explicit or implicit requirement of the language definitions
needs to be checked by an operation in the tree

• check has to be associated to the smallest relevant context
yields precise source position for the report;
propagate information to that context if necessary

• meaningfull error report

• different reports for different violations, do not connect texts by or

All operations specified for the tree are executed, even if errors occur:

• introduce error values, e. g. NoKey, NoType, NoOpr

• operations that yield results have to yield a reasonable one in case of error,

• operations have to accept error values as parameters,

• avoid messages for avalanche errors by suitable extension of relations,
e. g. every type is compatible with NoType
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5. Transformation

Create target tree  to represent the program in the intermediate language.

Intermediate language  spcified externally or designed for the abstract source machine.

Design rules :

• simplify the structure
only those constructs and properties that are needed for the synthesis phase;
omit declarations and type denotations - they are kept in the definition module

• unify constructs
e. g. standard representation of loops, or translation into jumps and labels

• distinguished target operators for overloaded operators

• explicit target operators for implicit source operations
e. g. type coercion, contents operation for variable access, run-time checks

Transfer target tree and definition module to synthesis phase
as data structure, file, or sequence of function calls

For source-to-source translation  the target tree represents the target program .
The target text is produced from the tree by recursive application of text patterns .

CI-92



Example: Target tree construction
CI-93

Assign

Select

Index

Addr Cont

Addr

Cont

Addr

a ->

i ->

s ->

v ->
Definition module:

a -> ...
i -> ...
s -> ...
v -> ...

Variable
Code

Variable
Code

Variable
Code

Stmt
Code

UseIdent
Key

Expr
Code

Expr
Code

UseIdent
Bind

UseIdent
Bind

Selector
Bind

MkAssign ( , )

MkSelect ( , )

MkIndex ( , )

MkAddr ( )

MkCont (MkAddr ( ))

MkCont (MkAddr ( ))

a i

s

v

abstract program tree  a[i].s := v;

Target tree:

with target tree attributes

Attribute grammar for target tree construction (CI-93)

RULE: Stmt ::= Variable ':=' Expr COMPUTE

Stmt.Code = MkAssign (Variable.Code, Expr.Code);

END;

RULE: Variable ::= Variable '.' Selector COMPUTE

Variable[1].Code = MkSelect (Variable[2].Code, Selector.Bind);

END;

RULE: Variable ::= Variable '[' Expr ']' COMPUTE

Variable[1].Code = MkIndex (Variable[2].Code, Expr.Code);

END;

RULE: Variable ::= UseIdent COMPUTE

Variable.Code = MkAddr (UseIdent.Bind);

END;

RULE: Expr ::= UseIdent COMPUTE

Expr.Code = MkCont (MkAddr (UseIdent.Bind));

END;

CI-94
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Generator for creation of structured target texts
Tool PTG: Pattern-based Text Generator
Creation of structured texts in arbitrary languages. Used as computations in the abstract tree,
and also in arbitrary C programs. Principle shown by examples:

1. Specify output pattern  with insertion points:

ProgramFrame: $
"void main () {\n"
$
"}\n"

     Exit: "exit (" $ int ");\n"

     IOInclude: "#include <stdio.h>"

2. PTG generates a function for each pattern; calls produce target structure:

     PTGNode a, b, c;
a = PTGIOInclude ();
b = PTGExit (5);
c = PTGProgramFrame (a, b);

correspondingly with attribute in the tree

3. Output of the target structure:

     PTGOut (c); or PTGOutFile ("Output.c", c);

CI-95
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PTG Patterns for creation of HTML-Texts

concatenation of texts:
Seq: $ $

large heading:
Heading: "<H1>" $1 string "</H1>\n"

small heading:
Subheading: "<H3>" $1 string "</H3>\n"

paragraph:
Paragraph: "<P>\n" $1

Lists and list elements:
List: "<UL>\n" $ "</UL>\n"
Listelement: "<LI>" $ "</LI>\n"

Hyperlink:
Hyperlink: "<A HREF=\"" $1 string "\">" $2 string "</A>"

Text example:

<H1>My favorite travel links</H1>
<H3>Table of Contents</H3>
<UL>
<LI> <A HREF="#position_Maps">Maps</A>
<LI> <A HREF="#position_Train">Train</A>
</UL>

CI-96
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6. Synthesis: An Overview

CI-97

Lexical analysis

Syntactic analysis

Semantic analysis

Transformation

Optimization (DFA)

Code generation

Peephole optimization

Assembly

Source program

Token sequence

Abstract program tree

Intermediate language

Abstract

Target program

Analysis (frontend)

Synthesis (backend)

machine program

program analysis

code & storage mapping

code selection

register allocation

automatic parallelization

optimizing transformation
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Optimization

Objective: Reduce run-time and/or code size of the program, without changing its effect.
Eliminate redundant computations, simplify computations.

Input:  Program in intermediate language
Task: Analysis (find redundancies), apply transformations
Output:  Improved program in intermediate language

Program analysis:
static properties of program structure and execution
safe, pessimistic assumptions where input and dynamic execution paths are not known

Context of analysis:
Expression local optimization
Basic block local optimization
Control flow graph (procedure) global   intra-procedural optimization
Control flow graph, call graph global   inter-procedural optimization

CI-98
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Optimizing Transformations

Name of transformation: Example for its application:

• Algebraic simplification of expressions 2*3.14 x+0   x*2 x**2

• Constant propagation (dt. Konstantenweitergabe) x = 2; ... y = x * 5;

• Common subexpressions (Gemeinsame Teilausdrücke) x=a*(b+c);...y=(b+c)/2;

• Dead variables (Überflüssige Zuweisungen) x = a + b; ... x = 5;

• Copy propagation (Überflüssige Kopieranweisungen) x = y; ... ; z = x;

• Dead code (nicht erreichbarer Code) b = true;...if (b) x = 5; else y = 7;

• Code motion (Code-Verschiebung) if (c) x = (a+b)*2; else x = (a+b)/2;

• Function inlining (Einsetzen von Aufrufen) int Sqr (int i) { return i * i; }

• Loop invariant code while (b) {.. . x = 5; ...}

• Induction variables in loops
i = 1; while (b) { k = i*3; f(k); i = i+1;}

Analysis checks preconditions for safe application of each transformation;
more applications, if preconditions are analysed in larger contexts.

Interdependences:
Application of a transformation may enable or inhibit another application of a transformation.

Order of transformations is relevant.

CI-99
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Analysis in Compilers
CI-100

Lexical analysis

Syntactic analysis

Semantic analysis

Transformation

Optimization (DFA)

Code generation

Peephole optimization

Assembly

Source program

Token sequence

Abstract program tree

Intermediate language

Abstract

Target program

Analysis (frontend)

Synthesis (backend)

machine program

syntactic structure

program entities
properties
relations

control-flow graph

use-def relations

data dependency graph

dominator tree, loops

call graph

data-flow information
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Example for a Control-flow Graph

Intermediate code with basic blocks: Control-flow graph:
[Muchnick, p. 172]

CI-101

1 receive m
2 f0 <- 0
3 f1 <- 1
4 if m <= 1 goto L3

5 i <- 2

6 L1: if i <= m goto L2

7 return f2

B1

B3

B4

B5

8 L2: f2 <- f0 + f1
9 f0 <- f1

10 f1 <- f2
11 i <- i + 1
12 goto L1

13 L3: return m

B6

B2

entry

B1

B2 B3

B4

B6B5

exit
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Data-Flow Analysis

Data-flow analysis (DFA) provides information about how the execution of a program may
manipulate its data.

Many different problems can be formulated as data-flow problems, for example:

• Which assignments to variable v  may influence a use of v  at a certain program position?

• Is a variable v  used on any path from a program position p to the exit node?

• The values of which expressions are available at program position p?

Data-flow problems are stated in terms of

• paths through the control-flow graph and

• properties of basic blocks.

Data-flow analysis provides information for global optimization.

Data-flow analysis does not know

• input values provided at run-time,

• branches taken at run-time.

Its results are to be interpreted pessimistic.

CI-102
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Specification of a DFA Problem

Specification of reaching definitions:

• Description:
A definiton d of a variable v  reaches the begin of a block B
if there is a path from d to B on which v  is not assigned again.

• It is a forward problem.

• The meet operator is union.

• The analysis information in the sets are
assignments at certain program positions.

• Gen (B):
contains all definitions d: v = e;  in B,
such that v  is not defined after d in B.

• Kill (B):
if v is assigned in B, then Kill(B)
contains all definitions d: v = e;
in blocks different from B,
such that B has a definition of v.

CI-103

In   (B)  =                      Out (h)

Out (B) = Gen (B)        (In (B) - Kill (B))∪
    Θ

h ∈pred(B)

pred (B) (In - Kill) ∪ Gen = Out

B

.

.

.

.

.

.

2 equations for each basic block:
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Call Graphs for object-oriented programs
CI-104

The call graph is reduced to a set of reachable methods using the
class hierarchy and the static type of the receiver expression in the call:

If a method F-p is reachable and
if it contains a dynamically bound call v.m(...) and
T is the static type of v,

then every method m that is inherited by T or by a subtype of T
is also reachable, and arcs go from F-p to them.

class A
method m
method p

class C
method m

class B
method m

class D
...

class E
method m

class F
method p

class G
method m

...

A-m A-p

B-m C-m

E-m
F-p

G-m

Call graph for F-p containing v.m(...)
static type: F v;

eliminated
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Code Generation

Input: Program in intermediate language

Tasks:
Storage mapping properties of program objects (size, address) in the definition module
Code selection generate instruction sequence, optimizing selection
Register allocation use of registers for intermediate results and for variables

Output: abstract machine program, stored in a data structure

Design of code generation:

• analyze properties of the target processor

• plan storage mapping

• design at least one instruction sequence for each operation of the intermediate language

Implementation of code generation:

• Storage mapping:
a traversal through the program and the definition module computes
sizes and addresses of storage objects

• Code selection: use a generator for pattern matching in trees

• Register allocation:
methods for expression trees, basic blocks, and for CFGs

CI-105
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Storage Mapping

Objective:
for each storable program object compute storage class, relative address, size

Implementation:
use properties in the definition module, travers defined program objects

Design the use of storage areas:

code storage progam code

global data to be linked for all compilation units

run-time stack activation records for function calls

heap storage for dynamically allocated objects, garbage collection

registers for addressing of storage areas (e. g. stack pointer)
function results, arguments
local variables, intermediate results (register allocation )

Design the type mapping ... C-29

CI-106
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Run-Time Stack

Run-time stack contains one activation record for each active function call.
Activation record provides storage local data of a function call. (see C-31)

Nested functions (nested classes and objects): static predecessor chain
links the accessible activation records, closure of a function

Requirement: The closure of a function is still on the run-time stack when the function is called.

Languages without recursive functions (FORTRAN) do not use a run-time stack.

Optimization: activation records of non-recursive functions may be allocated statically.

Parallel processes, threads, coroutines need a separate run-time stack each.

CI-107

q
int i;

r

b=i+1;

if(..) q();
r();

q();

h float a;

int b;

nested
h

q

q

q

r

q:

i:
r:

i:
r:

i:
r:

b=i+1;

a:

b:

static
links

push, pop

functions
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Code Sequences for Control Statements

A code sequence defines how a control statement is transformed into jumps and labels.

Several variants of code sequences may be defined for one statement.

Example:

while (Condition) Body M1: Code (Condition, false, M2)
Code (Body)
goto M1

M2:

variant:

goto M2
M1: Code (Body)
M2: Code (Condition, true, M1)

Meaning of the Code constructs:

Code (S): generate code for statements S

Code (C, true, M) generate code for condition C such that
it branches to M if C is true,
otherwise control continues without branching

CI-108
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Example for Code Selection

CI-109

cont

addradd

addradd
R2,12

R6,12
addr
R6,12

add
R1

cont

const
6

load R6,8
addr
R6,8

(R2,18)

R2,18

6

load (R6,8), R1
add R6,R1,R2
store (R2,18),...

cost: 3 instructions

   R5
cont

load

addradd
R4,12

addradd
R2,12

R6,12
addr
R6,12

add R1
cont

add R3
const load6

load
R6,8addr

R6,8

load (R6,8), R1
add R6,R1,R2
load 6,R3
add R2,R3,R4
load (R4,12),R5
store R5, ...
cost: 6 instructions

tree for assignment ... = a[i].s;
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Register Allocation

Use of registers:

intermediate results of expression evaluation

reused results of expression evaluation (CSE)

contents of frequently used variables

parameters of functions, function result (cf. register windowing)

stack pointer, frame pointer, heap pointer, ...

Number of registers is limited - for each register class: address, integer, floting point

register allocation aims at ruduction of

• number of memory accesses
• spill code, i. e. instructions that store and reload the contents of registers

specific allocation methods for different context ranges:

• expression trees (Sethi, Ullman)
• basic blocks (Belady)
• control flow graphs (graph coloring)

useful technique: defer register allocation until a later phase,
use an unbound set of symbolic registers instead

CI-110
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Example for Graph Coloring
CI-111

a :=
c :=
f :=

B1

a
b :=

B2
a
b :=
c

B3

d :=
a
b

B4
d
e :=

 :=
B5

b
d

B6

CFG with definitions and uses of variables

d2                    d1                       d3
f                        a                         d

c                       b                          e
d3                    d2                        d1

interference graph
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Code Parallelization

Target processor executes several instructions in parallel.
Compiler arranges instruction sequence for shortest execution time: instruction scheduling

Principles of parallelism in processors:

CI-112

Parallel functional units (FU)
super scalar, VLIW:

FU1 FU2 FU3

parallelized
instruction
sequence

Data parallel processor

all FUs execute the same instruction
on individual data (SIMD)

vector processor

FU0 FU31...

do c[i]  := a[i] + b [i];
for i := 0 to 31

is one instruction!

Analyze and transform loops

S3 S2 S1

sequential code scheduled for pipelining

Pipeline processor
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Software Pipelining

Technique for parallelization of loops.

A single loop body does not exhibit enough parallelism => sparse schedule.

Idea of software pipelining:
transformed loop body executes several loop iterations in parallel,
iterations are shifted in time => compact schedule

Prologue, epilogue: initiation and finalization code

Technique:

1. DDG for loop body
with dependencies into
later iterations

2. Find a schedule such that
iterations can begin with
a short initiation interval II

3. Construct new loop,
prologue, and epilogue

CI-113

with software pipeliningwithout

II: Initiation Interval

prologue

epilogue

loopII

II

II

transformed
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Loop Parallelization
CI-114

Compilation steps:

• nested loops operating on arrays,
sequentiell execution of iteration space

• analyze data dependencies
data-flow: definition and use of array elements

• transform loops
keep data dependencies intact

• parallelize inner loop(s)
map onto field or vector of processors

• map arrays onto processors
such that many acceses are local,
transform index spaces

DECLARE B[0..N,0..N+1]

FOR I := 1 ..N
FOR J := 1 .. I

B[I,J] :=
B[I-1,J]+B[I-1,J-1]

END FOR
END FOR

N1

1

N

i

j

1-N

1 N

-1

i
j
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