
©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Compiler I

(dt. Übersetzer I)

Prof. Dr. Uwe Kastens

Winter 2001/2002

CI-1

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Objectives
CI-2

Lectures

Tutorials

Homeworks

Exercises
Running project

Forms of teaching:

The participants are taught to

• understand fundamental techniques of language implementation,

• use generating tools and standard solutions ,

• understand compiler construction as a systematic combination of
algorithms, theories and software engineering methods for the solution of a
precisely specified task ,

• apply compiler techniques for languages other than programming languages .

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Lectures in English

Some agreements about giving lectures in English:

• I’ll speak English unless someone asks me to explain something in German.

• Stop me or slow me down whenever you get lost.

• I don‘t speak as well as a native speaker; but I’ll do my best ...

• You may ask questions and give answers in English or in German.

• I’ll prepare the slides in English. A German version is available.

• You‘ll have to learn to speak about the material in at least one of the two languages.

• You may vote which language to be used in the tutorials.

• You may chose German or English for the oral exam.

CI-3

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Syllabus

Week Chapter Topic

1 Introduction Compiler tasks
2 Compiler structure

3 Lexical analysis Scanning, token representation

4 Syntactic analysis Recursive decent parsing
5 LR Parsing
6 Parser generators
7 Grammar design

8 Semantic analysis Attribute grammars
9 Attribute grammar specifications

10 Name analysis
11 Type analysis

12 Transformation Intermediate language, target trees
13 Target texts

14 Synthesis Overview

15 Summary

CI-4

Prerequisites

from Lecture Topic here needed for

Foundations of Programming Languages:

4 levels of language properties Compiler tasks, compiler structure

Context-free grammars Syntactic analysis

Scope rules Name analysis

Data types Type analysis

Lifetime, runtime stack Storage model, code generation

Modeling:
Finite automata Lexical analysis

Context-free grammars Syntactic analysis

CI-5

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

References

Material for this course Compiler I : http://www.uni-paderborn.de/cs/ag-kastens/compi
in German Übersetzer I (1999/2000): http://www.uni-paderborn.de/cs/ag-kastens/uebi
in English Compiler II : http://www.uni-paderborn.de/cs/ag-kastens/uebii

Modellierung : http://www.uni-paderborn.de/cs/ag-kastens/model
Grundlagen der Programmiersprachen : http://www.uni-paderborn.de/cs/ag-kastens/gdp

U. Kastens: Übersetzerbau , Handbuch der Informatik 3.3, Oldenbourg, 1990
(not available on the market anymore, available in the library of the University)

W. M. Waite, L. R. Carter: An Introduction to Compiler Construction,
Harper Collins, New York, 1993

W. M. Waite, G. Goos: Compiler Construction , Springer-Verlag, 1983

R. Wilhelm, D. Maurer: Übersetzerbau - Theorie, Konstruktion, Generierung ,
Springer-Verlag, 1992

A. Aho, R. Sethi, J. D. Ullman: Compilers - Principles, Techniques and Tools ,
Addison-Wesley, 1986

A. W. Appel: Modern Compiler Implementation in C , Cambridge University Press, 1997
(available for Java and for ML, too)

CI-6
©

 2
00

1
be

i P
ro

f.
D

r.
 U

w
e

K
as

te
ns

Course material in the Web
CI-7

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Commented slide in the course material
CI-7a

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
What does a compiler compile?

A compiler transforms correct sentences of its source language into sentences of its
target language such that their meaning is unchanged.

Examples :

Source language: Target language:

Programming language Machine language
C++ Sparc code

Programming language Abstract machine
Java Java Bytecode

Programming language Programming language (source-to-source)
C++ C

Application language Application language
LaTeX HTML
Data base language (SQL) Data base system calls

CI-8

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

What is compiled here?
CI-9

 class Average

 { private:

 int sum, count;

 public:

 Average (void)

 { sum = 0; count = 0; }

 void Enter (int val)

{ sum = sum + val; count++; }

 float GetAverage (void)

 { return sum / count; }

 };

_Enter__7Averagei:

 pushl %ebp

 movl %esp,%ebp

 movl 8(%ebp),%edx

 movl 12(%ebp),%eax

 addl %eax,(%edx)

 incl 4(%edx)

 L6:

 movl %ebp,%esp

 popl %ebp

 ret

class Average
{ private
 int sum, count;
 public
 Average ()
 { sum = 0; count = 0; }
 void Enter (int val)
 { sum = sum + val; count++; }
 float GetAverage ()
 { return sum / count; }
};

1: Enter: (int) --> void
 Access: []
 Attribute ‚Code‘ (Length 49)
 Code: 21 Bytes Stackdepth: 3 Locals: 2
 0: aload_0
 1: aload_0
 2: getfield cp4
 5: iload_1
 6: iadd
 7: putfield cp4
 10: aload_0
 11: dup
 12: getfield cp3
 15: iconst_1
 16: iadd

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

What is compiled here?
CI-10

 program Average;

 var sum, count: integer;

 aver: integer;

 procedure Enter (val: integer);

 begin sum := sum + val;

 count := count + 1;

 end;

 begin

 sum := 0; count := 0;

 Enter (5); Enter (7);

 aver := sum div count;

 end.

void ENTER_5 (char *slnk , int VAL_4)

 {

 {/* data definitions: */

 /* executable code: */

 {

 SUM_1 = (SUM_1)+(VAL_4);

 COUNT_2 = (COUNT_2)+(1);

 ;

 }

 }}/* ENTER_5 */

\documentstyle[12pt]{article}
\begin{document}
\section{Introduction}
This is a very short document.
It just shows
\begin{itemize}
\item an item, and
\item another item.
\end{itemize}
\end{document}

%%Page: 1 1
1 0 bop 164 315 a Fc(1)81
b(In)n(tro)r(duction)
164 425 y Fb(This)16
b(is)g(a)h(v)o(ery)e(short)
i(do)q(cumen)o(t.)j(It)c(just)g
(sho)o(ws)237 527 y Fa(\017)24 b
Fb(an)17 b(item,)
c(and)237 628 y Fa(\017)24 b
Fb(another)17 b(item.)
961 2607 y(1)p
eop

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Languages for specification and modeling

SDL (CCITT) UML
Specification and Description Language: Unified Modeling Language:

CI-11

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Domain Specific Languages (DSL)

A language designed for a specific application domain.
Application Generator : Implementation of a DSL by a program generator

Examples:

• Simulation of mechatronic feedback systems

• Robot control

• Collecting data from instruments

• Testing car instruments

• Report generator for bibliographies:

CI-12

string name = InString "Which author?";
int since = InInt "Since which year?";
int cnt = 0;

"\nPapers of ", name, " since ", since, ":\n";

[SELECT name <= Author && since <= Year;
 cnt = cnt + 1;
 Year, "\t", Title, "\n";
]
"\n", name, " published ", cnt, "papers.\n";

U. Kastens: Construction of
Application Generators
Using Eli,
Workshop on Compiler
Techniques for Application
Domain Languages ...,
Linköping, April 1996

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Programming languages as source or target languages

Programming languages as source languages:

• Program analysis
call graphs, control-flow graph, data dependencies, e. g. for the year 2000 problem

• Recognition of structures and patterns
e. g. for Reengineering

Program languages as target languages:

• Specifications (SDL, OMT, UML)

• graphic modeling of structures

• DSL, Application generator

=> Compiler task: Source-to-source compilation

CI-13
©

 2
00

1
be

i P
ro

f.
D

r.
 U

w
e

K
as

te
ns

Semester project as running example
CI-14

Design a domain specific language .

Implement an application generator for it.

Apply all techniques of the course that are useful for the task.

A Structure Generator

We are going to develop a tool that implements record structures . In
particular, the structure generator takes a set of record descriptions . Each
specifies a set of named and typed fields . For each record a Java class
declaration is to be generated. It contains a constructor method and access
methods for the specified record fields.

The tool will be used in an environment where field description are created by
other tools, which for example analyze texts for the occurrence of certain
phrases. Hence, the descriptions of fields may occur in arbitrary order, and
the same field may be described more than once. The structure generator
accumulates the field descriptions such that for each record a single class
declaration is generated which has all fields of that record.

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Meaning preserving transformation

A compiler transforms correct sentences of its source language into sentences of its
target language such that their meaning is unchanged .

A meaning is defined only for correct programs. Compiler task: Error handling

The compiler analyses static properties of the program at compile time,
e. g. definitions of Variables, types of expressions. Decides: Is the program compilable?

Dynamic properties of the program are checked at runtime,
e. g. indexing of arrays. Decides: Is the program executable?

But in Java: Compilation of bytecode at runtime, just in time compilation (JIT)

Source language

Target language

Compilation

Execution

Meaning
described for
abstract machine

Language
definition

Machine
description

same results

CI-15

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Example: Tokens and structure

CI-16

Character sequence

int count = 0; double sum = 0.0; while (count<maxVect) { sum = sum+vect[count]; count++;}

int count = 0; double sum = 0.0; while (count<maxVect) { sum = sum+vect[count]; count++;}

Tokens

Expressions

StatementsDeclarations

Structure

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Example: Names, types, generated code

0 iconst_0
1 istore_1
2 dconst_0
3 dstore_2
4 goto 19
7 dload_2
8 getstatic #5 <vect[]>
11 iload_1

12 faload
13 f2d
14 dadd
15 dstore_2
16 iinc 1 1
19 iload_1
20 getstatic #4 <maxVect>
23 if_icmplt 7

generated Bytecode

CI-17

int count = 0; double sum = 0.0; while (count<maxVect) { sum = sum+vect[count]; count++;}

Tokens

Names and types

int double int int
boolean

. . .k1: (count, local variable, int)
k2: (sum, local variable, double)

k3: (maxVect, member variable, int)
k4: (vect, member variable, double array)

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Language definition - Compiler task

• Notation of tokens lexical analysis
keywords, identifiers, literals
formal definition: regular expressions

• Syntactic structure syntactic analysis
formal definition: context-free grammar

• Static semantics semantic analysis, transformation
binding names to program objects, typing rules
usually defined by informal texts

• Dynamic semantics transformation, code generation
semantics, effect of the execution of constructs
usually defined by informal texts
in terms of an abstract machine

• Definition of the target language (machine) transformation, code generation
assembly

CI-18

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Compiler tasks

Structuring

Translation

Encoding

Syntactic analysis

Transformation

Assembly

Semantic analysis

Code generation

Scanning

Conversion

Parsing

Tree construction

Name analysis

Type analysis

Data mapping

Action mapping

Execution-order

Register allocation
Instruction selection

Instruction encoding
Internal Addressing
External Addressing

Lexical analysis

CI-19

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Compiler structure and interfaces

Lexical analysis

Syntactic analysis

Semantic analysis

Transformation

Optimization

Code generation

Peephole optimization

Assembly

Source program

Token sequence

Abstract program tree

Intermediate language

Abstract

Target program

Analysis (frontend)

Synthesis (backend)

machine program

CI-20

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Software qualities of the compiler
CI-21

• Correctness Translate correct programs correctly.
Reject wrong programs and give error messages

• Efficiency Storage and time used by the compiler

• Code efficiency Storage and time used by the generated code
Compiler task: Optimization

• User support Compiler task: Error handling
(recognition, message, recovery)

• Robustness Give a reasonable reaction on every input

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Strategies for compiler construction
CI-22

• Obey exactly to the language definition

• Use generating tools

• Use standard components

• Apply standard methods

• Validate the compiler against a test suite

• Verify components of the compiler

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Generators

Typical compiler tasks solved by generators:

Specification Generator Implemented
algorithm

Environment

Interfaces

Pattern:

Specifications Cooperating
generators Compiler

integrated system Eli:

CI-23

Regular expressions Scanner generator Finite automaton

Context-free grammar Parser generator Stack automaton

Attribute grammar Attribute evaluator Tree walking algorithm
generator

Code patterns Code selection Pattern matching
generator

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Environment of compilers

Libraries
Preprocessor

Compiler

Linker

Compilation units

Source programs

Code files

Executable program

Interpreter

Analysis part

abstract machine

Source program

Input Output

Debugger

Executable program

Interactive commands

Input
Output

Source program

Core dump

CI-24

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Compilation and interpretation of Java programs

Compiler

Source modules

Bytecode prozessor
in softwareClass

loader
Just-In-Time
Compiler

(JIT)

Class files
in Java Bytecode
(intermediate language)

load needed
class files
dynamically -
local or via Internet

Machine code

Interpreter
Java Virtual Machine
JVM

Input Output

Java

CI-25

