© 2001 bei Prof. Dr. Uwe Kastens

Ci-26

Lexical Analysis

Input: Program represented by a sequence of characters
Tasks: Compiler modul:
Input reader
Recognize and classify tokens Scanner (central phase, finite state machine)
Skip irrelevant characters
Encode tokens:
|dentifier modul

Store token information Literal modules
Conversion String storage

Output: Program represented by a sequence of encoded tokens

© 2001 bei Prof. Dr. Uwe Kastens

Representation of tokens

Uniform encoding of tokens by triples:

Syntax code

terminal code of
the concrete syntax

Examples :

DoubleToken
ldent

Assign
FloatNumber
Semicolon
WhileToken
OpenParen
ldent
LessOpr
ldent
CloseParen
OpenBracket
ldent

attribute source position
value or reference to locate error messages
into data module of later compiler phases

double sum = 5.6e-5;
while (count < maxVect)
{ sum = sum + vect[count];

12,1
138 12, 8
12,12
16 12, 14
12, 20
13,1
13,7
139 13, 8
13, 14
137 13, 16
13, 23
14, 1
138 14, 3

Cl-27

© 2001 bei Prof. Dr. Uwe Kastens

ldent
X
X
X

Cl-28

Specification of token notations

Example: identifiers
Ident = Letter (Letter | Digit)*

regular regular

grammar - P> expression

.= Letter X
.= Letter X \ /
= Digit X syntax

= diagram
< (Letien)ay
ldent:
<—

finite state
machine

. Letter

acceptor:

Letter

I
2
L Digit

© 2001 bei Prof. Dr. Uwe Kastens

Cl-29

Regular expressions mapped to syntax diagrams

Transformation rules:

regular expression A

empty

a

BC

B|C

B*

syntax diagram for A

empty

single character

sequence

alternative

repetition, may be empty

repetition, non-empty

© 2001 bei Prof. Dr. Uwe Kastens

CI-30

Construction of deterministic finite state machines

Syntax diagram deterministic finite state machine
nodes, arcs transitions, states

set of nodes m, state g

sets of nodes m, and m, transitions q ---> r with character a

connected with the same character a
Construction:
1. enumerate nodes ; exit of the diagram gets the number 0

2. initial set of nodes m; contains all nodes initial state 1
that are reachable from the begin of the diagram

3. construct new sets of nodes (states) and transitions: For a character a and a set m
containing node k create set mwith all nodes n, according to the following schema:

k(1n N[y k' n'
for r Create I '
a

4. repeat step 3 until no new sets of nodes can be created

5. astate gis afinal state Iff Ois in my,

© 2001 bei Prof. Dr. Uwe Kastens

Example: Floating point numbers in Pascal

Syntax diagram

Cl-31

1} 11,2,4} 3 3,40 $B.67 {7 {7

Z z . E Z z E + - Z V4

deterministic finite state machine

© 2001 bei Prof. Dr. Uwe Kastens

Cl1-32

Composition of token automata

Construct one finite state machine for each token. Compose them forming a single one:

- Identify the initial states of the single automata
and identical structures evolving from there (transitions with the same character and states).

« Keep the final states of single automata distinct, they classify the tokens.
« Add automata for comments and irrelevant characters (white space)
|, E, d Example: tokens of Lax

a . 1 _ . .
* A [Waite, Goos:
%)/\ 04 @ Compiler Construction]

LS

20/« €9
character classes: / ’ ~ 9 12
a all but * 19 / ; T El d
c all but * or)
d digits 17 14| 13 71—E .10 +
| all letters but E L/ ¢ — l: , -
S +-*<>;)] q
b blank tab newline 18 16 15

© 2001 bei Prof. Dr. Uwe Kastens

Rule of the longest match

An automaton may contain transitions from final states:

When does the automaton stop?

Rule of the longest match:

« The automaton continues as long as there is a transition with the next character.

« After having stopped it sets back to the most recently passed final state.
- If no final state has been passed an error message is issued.

Consequence: Some kinds of tokens have to be separated explicitly.

Check the concrete grammar for tokens that may occur adjacent!

CI-33

© 2006 bei Prof. Dr. Uwe Kastens

Cl-34
Scanner: Aspects of implementation

« Runtime is proportional to the number of characters in the program
- Operations per character must be fast - otherwise the Scanner dominates compilation time

« Table driven automata are too slow:
Loop interprets table, 2-dimensional array access, branches

 Directly programmed automata is faster; transform transitions into control flow:

©_>© sequence

5 repeat loop

©< branch

- Fast loops for sequences of irrelevant blanks.

- Implementation of character classes:
bit pattern or indexing - avoid slow operations with sets of characters.

- Do not copy characters from input buffer - maintain a pointer into the buffer, instead.

© 2006 bei Prof. Dr. Uwe Kastens

Identifier module and literal modules

- Uniform interface for all scanner support modules:
Input parameters: pointer to token text and its length;
Output parameters: syntax code, attribute

- Identifier module encodes identifier occurrences bijective (1:1), and

recognizes keywords
Implementation: hash vector, extensible table, collision lists

- Literal modules for floating point numbers, integral numbers, strings

Variants for representation in memory:
token text; value converted into compiler data; value converted into target data

Caution:
Avoid overflow on conversion!
Cross compiler: compiler representation may differ from target representation

- Character string memory:
stores strings without limits on their lengths,
used by the identifier module and the literal modules

Cl-35

© 2001 bei Prof. Dr. Uwe Kastens

Scanner generators

generate the central function of lexical analysis

GLA University of Colorado, Boulder; component of the Eli system
Lex Unix standard tool

Flex Successor of Lex

Rex GMD Karlsruhe

Token specification: regular expressions

GLA library of precoined specifications;
recognizers for some tokens may be programmed

Lex, Flex, Rex transitions may be made conditional

Interface;

GLA as described in this chapter; cooperates with other Eli components

Lex, Flex, Rex actions may be associated with tokens (statement sequences)
interface to parser generator Yacc

Implementation:

GLA directly programmed automaton in C
Lex, Flex, Rex table-driven automaton in C
Rex table-driven automaton in C or in Modula-2

Flex, Rex faster, smaller implementations than generated by Lex

CI-36

