
©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Syntactic analysis

Input: token sequence

Tasks:
Parsing : construct derivation according to concrete syntax ,
Tree construction according to abstract syntax ,
Error handling (detection, message, recovery)

Result: abstract program tree

Compiler module parser:
deterministic stack automaton, augmented by actions for tree construction
top-down parsers: leftmost derivation; tree construction top-down or bottom-up
bottom-up parsers: rightmost derivation backwards; tree construction bottom-up

Abstract program tree (condensed derivation tree):
represented by a data structure in memory for the translation phase to operate on,

linear sequence of nodes on a file (costly in runtime),
sequence of calls of functions of the translation phase.

CI-37

©
 2

00
1

be
i P

ro
f.

 D
r.

 U
w

e
K

as
te

ns

Concrete and abstract syntax

concrete syntax abstract syntax

context-free grammar context-free grammar

defines the structure of source programs defines abstract program trees

unambigous usually ambiguous

specifies derivation and parser translation phase is based on it

parser actions specify the ---> tree construction

some chain productions only for syntactic purposekeep only semantically relevant ones
Expr ::= Fact have no action no node created

symbols of syntactic chain productions comprised in symbol classes Exp={Expr,Fact}

same action at structural equivalent productions:
Expr ::= Expr AddOpr Fact &BinEx
Fact ::= Fact MulOpr Opd &BinEx

terminal symbols keep only semantically relevant ones
as tree nodes

given the concrete syntax and the symbol classes
the actions and the abstract syntax can be generated

CI-38
©

 2
00

1
be

i P
ro

f.
D

r.
 U

w
e

K
as

te
ns

Expr

Fact

Opd

a

Fact MulOpr

*Opd ()Expr

Expr Fact

Opd

b

AddOpr

+Fact

Opd c

p2

p3

p4

p6

p9 p5

p1

p2

p4

p6

p7 p4

p6

Example: concrete expression grammar

name production action

p1: Expr ::= Expr AddOpr Fact BinEx
p2: Expr ::= Fact
p3: Fact ::= Fact MulOpr Opd BinEx
p4: Fact ::= Opd
p5: Opd ::= '(' Expr ')'
p6: Opd ::= Ident IdEx
p7: AddOpr ::= '+' PlusOpr
p8: AddOpr ::= '-' MinusOpr
p9: MulOpr ::= '*' TimesOpr
p10: MulOpr ::= '/' DivOpr

 derivation tree for a * (b + c)

CI-39

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Example: abstract expression grammar

name production

BinEx: Exp ::= Exp BinOpr Exp
IdEx: Exp ::= Ident
PlusOpr: BinOpr ::= '+'
MinusOpr: BinOpr ::= '-'
TimesOpr: BinOpr ::= '*'
DivOpr: BinOpr ::= '/'

symbol classes : Exp = { Expr, Fact, Opd }, BinOpr = { AddOpr, MulOpr }

Actions of the concrete syntax: productions of the abstract syntax to create tree nodes for
no action at a concrete chain production: no tree node is created

CI-40

Exp

a

Exp BinOpr

*

Exp

Exp Exp

b

BinOpr

+ c

BinEx

IdEx TimesOpr BinEx

IdEx PlusOpr IdEx

abstract program tree for a * (b + c)

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Recursive descent parser

top-down (construction of the derivation tree), predictive method

Sytematic transformation of a context-free grammar into a set of functions:

non-terminal symbol X function X
alternative productions for X branches in the function body
decision set of production pi decision for branch pi
non-terminal occurrence X ::= ... Y ... function call Y()
terminal occurrence X ::= ... t ... accept a token t an read the next token

Example:
p1: Stmt ::= Variable ':=' Expr p2: Stmt ::= 'while' Expr 'do' Stmt

Function:

CI-41

case decision set for p1 :
Variable();
accept(assignSym);
Expr();
break;

case decision set for p2 :
accept(whileSym);
Expr();
accept(doSym);
Stmt();
break;

void Stmt ()
{ switch (CurrSymbol)

{

default: Fehlerbehandlung();
} }

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Grammar conditions for recursive descent

A context-free grammar is strong LL(1) , if for any pair of productions that have the same
symbol on their left-hand sides, the decision sets are disjoint :

productions: A ::= u A ::= v
decision sets: First (u Follow(A)) ∩ First (v Follow(A)) = ∅

First set and follow set:
First (u) := { t ∈ T | v ∈V* exists and a derivation u ⇒* t v } and ε ∈First (u) if u ⇒* ε exists

Follow (A) := { t ∈ T | u,v ∈V* exist, A ∈N and a derivation S ⇒* u A v such that t ∈ First (v) }

CI-42

p1: Prog ::= Block # begin
p2: Block ::= begin Decls Stmts end begin
p3: Decls ::= Decl ; Decls new
p4: Decls ::= Ident begin
p5: Decls ::= new Ident new
p6: Stmts ::= Stmts ; Stmt begin Ident
p7: Stmts ::= Stmt begin Ident
p8: Stmt ::= Block begin
p9: Stmt ::= Ident := Ident Ident

Prog begin
Block begin # ; end
Decls ε new Ident begin
Decl new ;
Stmts begin Ident ; end
Stmt begin Ident ; end

Example:
production decision set

non-terminal X
First(X) Follow(X)

©
 2

00
6

be
i P

ro
f.

 D
r.

 U
w

e
K

as
te

ns

Grammar transformations for LL(1)

Consequences of strong LL(1) condition: A strong LL(1) grammar can not have
• alternative productions that begin with the same symbols

• productions that are directly or indirectly left-recursive.

Simple grammar transformations that keep the defined language invariant:

• left-factorization:

• elimination of direct recursion :

EBNF constructs can avoid violation of strong LL(1) condition:

for example repetition of u: A ::= v (u)* w
additional condition: First(u) ∩ First(w Follow(A)) = ∅
branch in the function body: v while (CurrToken in First(u)) { u } w
correspondingly for EBNF constructs u+, [u]

CI-43

non-LL(1) productions transformed

A ::= v u A ::= v X
A ::= v w X ::= u

X ::= w

u, v, w ∈ V*
X ∈ N does not occur in the

original grammar

A ::= A u A ::= v X
A ::= v X ::= u X

X ::=

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Comparison: top-down vs. bottom-up

Information a stack automata has when it decides to apply production A ::= x :

top-down, predictive bottom-up
leftmost derivation rightmost derivation backwards

A bottom-up parser has seen more of the input when it decides to apply a production.

Consequence: bottom-up parsers and their grammar classes are more powerful .

CI-44

A

x
u v

contents of
the stack

input

k
lookahead

accepted

A

x
u

input
k

lookahead
accepted

direction of
tree construction

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
LR(1) automata

LR(k) grammars introduced 1965 by Donald Knuth; non-practical until subclasses were defined.

LR parsers construct the derivation tree bottom-up, a right-derivation backwards.

LR(k) grammar condition can not be checked directly, but
a context-free grammar is LR(k), iff the (canonical) LR(k) automaton is deterministic .

We consider only 1 token lookahead: LR(1).

The stacks of LR(k) (and LL(k)) automata contain states .
The construction of LR and LL states is based on the notion of items (also called situations):

An item represents the progress of analysis with respect to one production:

[A ::= u . v R] z. B. [B ::= (. D ; S) {#}]
. position of analysis R expected right context, i. e. a set of terminals which

may follow after the application of the complete production.
(for general k: R contains terminal sequences not longer than k)

Reduce item:

[A ::= u v . R] z. B. [B ::= (D ; S) . {#}]

characterizes a reduction using this production if the next input token is in R.

Each state of an automaton represents LL: one item LR: a set of items

CI-45

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

LR(1) states and operations

A state of an LR automaton represents a set of items
Each item represents a way in which analysis may
proceed from that state.

A shift transition is made under
a token read from input or
a non-terminal symbol

obtained from a preceding reduction.
The state is pushed.

A reduction is made according to a reduce item.
n states are popped for a production of length n.

Operations: shift read and push the next state on the stack
reduce reduce with a certain production, pop n states from the stack
error error recognized, report it, recover
stop input accepted

CI-46

B ::= (. D ; S) {#}

D ::= . D ; a {;}

D ::= . a {;}

2

B ::= (D . ; S) {#}
D ::= D . ; a {;}

D
4

D ::= a . {;}

a

red. p33

©
 2

00
6

be
i P

ro
f.

 D
r.

 U
w

e
K

as
te

ns

Example for a LR(1) automaton
CI-47

B ::= . (D ; S) {#}

B ::= (. D ; S) {#}
D ::= . D ; a {;}
D ::= . a {;}

B ::= (D . ; S) {#}
D ::= D . ; a {;}

B ::= (D ; . S) {#}
D ::= D ; . a {;}
S ::= . b ; S {)}
S ::= . b {)}

B ::= (D ; S .) {#}

B ::= (D ; S) . {#}

D ::= a . {;}

D ::= D ; a . {;}

S ::= b . ; S {)}
S ::= b . {)}

S ::= b ; . S {)}
S ::= . b ; S {)}
S ::= . b {)}

S ::= b ; S . {)}

(

D

;

S

)

a

a

b

b

;

S

1

2
3

4

5

6

7

8

9

10

11

red. p1, stop

red. p3

red. p2

red. p5

red. p4

Grammar:
p1 B ::= (D ; S)
p2 D ::= D ; a
p3 D ::= a
p4 S ::= b ; S
p5 S ::= b

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

B ::= (. D ; S) {#}
D ::= . D ; a {;}
D ::= . a {;}

B ::= (D . ; S) {#}
D ::= D . ; a {;} D ::= a . {;}

D a

2

34

Construction of LR(1) automata

Create the start state; create transitions and states as long as new ones can be created.

Transitive closure is to be applied to each state:
If [A ::= u . B v R] is in state q,
with the analysis position before a non-terminal B,
then for each production B ::= w

[B ::= . w First (v R)]
has to be added to state q.

Start state :
Closure of [S ::= . u {#}]
S ::= u is the unique start production ,
is an artificial end symbol (eof)

Successor states :
For each symbol x (terminal or non-terminal), which
occurs in some items after the analysis position ,
a transition is created to a successor state . That
contains a corresponding item with the analysis position
advanced behind the x occurrence.

CI-48

B ::= (. D ; S) {#}

B ::= (. D ; S) {#}
D ::= . D ; a {;}
D ::= . a {;}

2

before:

after:

B ::= . (D ; S) {#}1

©
 2

00
1

be
i P

ro
f.

 D
r.

 U
w

e
K

as
te

ns
Operations of the LR(1) automaton

shift x (terminal or non-terminal):
from current state q
under x into thesuccessor state q‘ ,
push q‘

reduce p:
apply production p B ::= u ,
pop as many states,
as there are symbols in u, from the
new current state make a shift with B

error:
the current state has no transition
under the next input token,
issue a message and recover

stop:
recuce start production,
see # in the input

CI-49

Example:

stack input reduction

1 (a ; a ; b ; b) #
1 2 a ; a ; b ; b) #
1 2 3 ; a ; b ; b) # p3
1 2 ; a ; b ; b) #
1 2 4 ; a ; b ; b) #
1 2 4 5 a ; b ; b) #
1 2 4 5 6 ; b ; b) # p2
1 2 ; b ; b) #
1 2 4 ; b ; b) #
1 2 4 5 b ; b) #
1 2 4 5 7 ; b) #
1 2 4 5 7 8 b) #
1 2 4 5 7 8 7) # p5
1 2 4 5 7 8) #
1 2 4 5 7 8 9) # p4
1 2 4 5) #
1 2 4 5 10) #
1 2 3 5 10 11 # p1
1 #

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

LR conflicts

An LR(1) automaton that has conflicts is not deterministic . Its grammar is not LR(1) ;
correspondingly defined for any other LR class.

2 kinds of conflicts:

reduce-reduce conflict:
A state contains two reduce items, the
right context sets of which are not disjoint :

shift-reduce conflict :
 A state contains
a shift item with the analysis position in front of a t and
a reduce item with t in its right context set .

CI-50

...
A ::= u . R1
B ::= v . R2
...

R1, R2
not
disjoint

...
A ::= u .t v R1
B ::= w . R2
...

t ∈ R2

©
 2

00
6

be
i P

ro
f.

 D
r.

 U
w

e
K

as
te

ns

Shift-reduce conflict for „dangling else“ ambiguity
CI-51

S ::= . Stmt {#}
Stmt ::= . if ... then Stmt {#}
Stmt ::= . if ... then Stmt else Stmt {#}
Stmt ::= . a {#}

Stmt ::= if ... then . Stmt {#}
Stmt ::= if ... then . Stmt else Stmt {#}
Stmt ::= . if ... then Stmt {# else}
Stmt ::= . if ... then Stmt else Stmt {# else}
Stmt ::= . a {# else}

Stmt ::= if ... then Stmt . {# else}
Stmt ::= if ... then Stmt . else Stmt {# else}

Stmt ::= if ... then . Stmt {# else}
Stmt ::= if ... then . Stmt else Stmt {# else}
Stmt ::= . if ... then Stmt {# else}
Stmt ::= . if ... then Stmt else Stmt {# else}
Stmt ::= . a {# else}

if
then...

if
then...

Stmt

1

3

5

6

Stmt

a

Stmt

a

if

a

else

shift-reduce conflict

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

context-free

unambiguous

LR(k)

LR(1)

LALR(1)

SLR(1)

LR(0)

LL(k)

strong LL(1) = LL(1)

Grammar hierarchy:
(strict inclusions)

Simplified LR grammar classes

LR(1):
too many states for practical use
Reason : right-contexts distinguish many states
Strategy: simplify right-contexts sets,

fewer states, grammar classes are less powerful

LR(0):
all items without right-context
Consequence: reduce items only in

singleton sets

SLR(1):
LR(0) states ; in reduce items
use larger right-context sets for decision:

[A ::= u . Follow (A)]

LALR(1):
identify LR(1) states if their items differ only
in their right-context sets, unite the sets for those items;
yields the states of the LR(0) automaton
augmented by the "exact“ LR(1) right-context.
State-of-the-art parser generators accept LALR(1)

CI-52

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Implementation of LR automata

Table-driven:

Compress tables :

• merge rows or columns that differ only in irrelevant entries; method: graph coloring

• extract a separate error matrix (bit matrix); increases the chances for merging

• normalize the values of rows or columns ; yields smaller domain; supports merging

• eliminate LR(0) reduce states ; new operation in predecessor state: shift-reduce
eliminates about 30% of the states in practical cases

About 10-20% of the original table sizes can be achieved!

Directly programmed LR-automata are possible - but usually too large.

CI-53

sq: shift into
state q

rp: reduce
production p

e: error
~: never reached

terminals nonterminals

states

sq

rp

e ~

sq

~

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Error handling: general criteria
CI-54

• recognize error as early as possible
LL and LR can do that

• report the symptom in terms of the source text

• continue parsing short after the error position

• avoid avalanche errors

• build a tree that has a correct structure

• do not backtrack, do not undo actions

• no runtime penalty for correct programs

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Error position

Error recovery : Means that are taken by the parser after recognition of a syntactic error
in order to continue parsing

Correct prefix : The token sequence w ∈T* is a correct prefix in the language L(G),
if there is an u ∈T* such that w u ∈L(G); i. e. w can be extended to a sentence in L(G).

Error position : t is the (first) error position in the input w t x , where t ∈T and w, x ∈T*,
if w is a correct prefix in L(G) and w t is not a correct prefix .

LL and LR parsers recognize an error at the error position;
they can not accept t in the current state.

CI-55

int compute (int i) { a = i * / c; return i;}

w t

Example:
©

 2
00

1
be

i P
ro

f.
D

r.
 U

w
e

K
as

te
ns

Error recovery

Continuation point :
The token d at or behind the error position t such that
parsing of the input continues at d .

Error repair
with respect to a consistent derivation - regardless the intension of the programmer!

Let the input be w t x with the error position at t and let w t x = w y d z,
then the recovery (conceptually) deletes y and inserts v ,
such that w v d is a correct prefix in L(G), with d ∈T and w, y, v, z ∈T*.

CI-56

a = i * / c;...

a = i * c;...
a = i * / c;...
a = i *e/ c;...

a = i * / c;...

a = i * e ;...

w y d z w y zd w y zd

delete / insert error id. e delete / c

Examples:

and insert error id. e

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Recovery method: simulated continuation

Problem : Determine a continuation point close to the error position and reach it.

Idea: Use parse stack to determine a set of tokens as potential continuation points.

Steps of the method:

1. Save the contents of the parse stack when an error is recognized. Skip the error token.

2. Compute a set D ⊆ T of tokens that may be used as continuation point (anchor set)
Let a modified parser run to completion:
Instead of reading a token from input it is inserted into D; (modification given below)

3. Find a continuation point d : Skip input tokens until a token of D is found.

4. Reach the continuation point d :
Restore the saved parser stack as the current stack.
Perform dedicated transitions until d is acceptable.
Instead of reading tokens (conceptually) insert tokens. Thus a correct prefix is constructed.

5. Continue normal parsing .

Augment parser construction for steps 2 and 4 :
For each parser state select a transition and its token,
such that the parser empties its stack and terminates as fast as possible.
This selection can be generated automatically .
The quality of the recovery can be improved by influence on the computation of D.

CI-57

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Parser generators
PGS Univ. Karlsruhe; in Eli LALR(1), table-driven
Cola Univ. Paderborn; in Eli LALR(1), optional: table-driven or directly programmed
Lalr Univ. / GMD Karlsruhe LALR(1), table-driven
Yacc Unix tool LALR(1), table-driven
Bison Gnu LALR(1), table-driven
Llgen Amsterdam Compiler Kit LL(1), recursive descent
Deer Univ. Colorado, Bouder LL(1), recursive descent

Form of grammar specification:
EBNF: Cola, PGS, Lalr; BNF: Yacc, Bison

Error recovery:
simulated continuation, automatically generated: Cola, PGS, Lalr
error productions, hand-specified: Yacc, Bison

Actions:
statements in the implementation language
at the end of productions: Yacc, Bison
anywhere in productions: Cola, PGS, Lalr

Conflict resolution:
modification of states (reduce if ...) Cola, PGS, Lalr
order of productions: Yacc, Bison
rules for precedence and associativity: Yacc, Bison

Implementation languages:
C: Cola, Yacc, Bison C, Pascal, Modula-2, Ada : PGS, Lalr

CI-58

