© 2001 bei Prof. Dr. Uwe Kastens

Cl1-37

Syntactic analysis

Input: token sequence

Tasks:
Parsing : construct derivation according to concrete syntax ,

Tree construction according to abstract syntax
Error handling (detection, message, recovery)

Result: abstract program tree

Compiler module parser:
deterministic stack automaton, augmented by actions for tree construction

top-down parsers: leftmost derivation; tree construction top-down or bottom-up
bottom-up parsers: rightmost derivation backwards; tree construction bottom-up

Abstract program tree (condensed derivation tree):
represented by a data structure in memory for the translation phase to operate on,
linear sequence of nodes on a file (costly in runtime),
sequence of calls of functions of the translation phase.

© 2001 bei Prof. Dr. Uwe Kastens

CI1-38
Concrete and abstract syntax

concrete syntax abstract syntax

context-free grammar context-free grammar

defines the structure of source programs defines abstract program trees
unambigous usually ambiguous

specifies derivation and parser translation phase is based on it
parser actions specify the ---> tree construction

some chain productions only for syntactic purposekeep only semantically relevant ones
Expr ::= Fact have no action no node created

symbols of syntactic chain productions comprised in symbol classes Exp={Expr,Fact}

same action at structural equivalent productions:
Expr ::= Expr AddOpr Fact &BIinEXx
Fact .= Fact MulOpr Opd &BinEXx

terminal symbols keep only semantically relevant ones
as tree nodes

given the concrete syntax and the symbol classes
the actions and the abstract syntax can be generated

© 2001 bei Prof. Dr. Uwe Kastens

CI-39

Example: concrete expression grammar

name production action
pl: Expr ::= Expr AddOpr Fact BinEx
p2: Expr ::=Fact
p3: Fact ::=Fact MulOpr Opd BinEx
p4:. Fact = Opd
pS>: Opd ='(" Expr’) Expr
p6: Opd = dent IdEX p2|
p7: AddOpr = PlusOpr Fact
p8: AddOpr ::= MinusOpr p3 |\
p9: MUI'OIOr :/ TimesOpr FamOpr Opd
pl0: MulOpr ::= DivOpr p4| p9| / | \p5
Opd * (Expr)
1
Pé | | T
a Expr AddOpr Fact
p2 p7| p4
Fact + Opd
p4 p6
derivation tree for a* (b + c) Opd c
p6

© 2001 bei Prof. Dr. Uwe Kastens

Cl-40

Example: abstract expression grammar

name production
BinEX: Exp ::= Exp BinOpr Exp
IdEX: Exp :=Ident

PlusOpr: BinOpr ::="+'
MinusOpr: BinOpr ;="'
TimesOpr: BinOpr ::
DivOpr: BinOpr ::

%!

y abstract program tree for a* (b +c)

EXp

BINEX
Exp/BinOpr\EXp |
IdEX | TimesOpr /| \B'nEX

a EXp BinOpr EXxp
* IdEx | PlusOpr] |dEX

b + C

symbol classes . Exp = { Expr, Fact, Opd }, BinOpr = { AddOpr, MulOpr }

Actions of the concrete syntax: productions of the abstract syntax to create tree nodes for
no action at a concrete chain production: no tree node is created

© 2001 bei Prof. Dr. Uwe Kastens

Recursive descent parser

top-down (construction of the derivation tree), predictive method

Sytematic transformation of a context-free grammar into a set of functions:

non-terminal symbol X function X
alternative productions for X branches in the function body
decision set of production pi decision for branch pi
non-terminal occurrence X ::=... Y ... function call Y()
terminal occurrence X ::= ... t ... accept a token t an read the next token
Example:
pl: Stmt ;= Variable ="' Expr p2: Stmt ::= 'while' Expr 'do’ Stmt
Function: void Stmt ()
{ switch (CurrSymbol)
{
case decision set for p1 ; case decision set for p2

Variable(); aCCEE)t(WhlleSym);

accept(assignSym); Expr();

Expr8; acceFt(doSym);

break; Stmt();

break;

default: Fehlerbehandlung();
o}

Cl-41

© 2001 bei Prof. Dr. Uwe Kastens

Cl-42

Grammar conditions for recursive descent

A context-free grammar is strong LL(1) , if for any pair of productions that have the same
symbol on their left-hand sides, the decision sets are disjoint

productions: A:=u A:=v
decision sets: First (u Follow(A)) n First (v Follow(A)) =0

First set and follow set:
First(u) ={t0OT|vUV*existsandaderivationul*tv} and € [First (u) if u I * € exists

Follow (A) :={t T | u,v OV* exist, A LN and a derivation S 1 * u A v such that t I First (v) }

Example:
production decision set
pl: Prog :=Block# begin non-terminal X
p2: Block ::=begin Decls Stmts end | begin First(X) Follow(X)
p3: Decls ::=Decl; Decls new
p4. Decls ::= ldent begin Prog begin
p5: Decls ::=new Ident new Block | begin #; end
p6: Stmts ::= Stmts ; Stmt begin Ident Decls | € new Ident begin
p7. Stmts = Stmt begin Ident Decl new :
p8: Stmt ::= Block begin Stmts | begin ldent | ; end
p9: Stmt ::=Ident:= Ident ldent Stmt begin Ident | ; end

© 2006 bei Prof. Dr. Uwe Kastens

Grammar transformations for LL(1)

Cl-43

Consequences of strong LL(1) condition: A strong LL(1) grammar can not have

- alternative productions that begin with the same symbols
« productions that are directly or indirectly left-recursive.

Simple grammar transformations that keep the defined language invariant:

- left-factorization: non-LL(1) productions transformed
u, v, wV*))
X ON does not occur in the Ar=vu A:fVX
original grammar Al=vw Xi=u
Xi=w
- elimination of direct recursion : A:=Au A:=vX
A:=v X:=uX
X =
EBNF constructs can avoid violation of strong LL(1) condition:
for example repetition of u: A:=v(u)'w
additional condition: First(u) n First(w Follow(A)) = [
branch in the function body: v while (CurrToken in First(u)) {u} w

correspondingly for EBNF constructs u™, [u]

© 2001 bei Prof. Dr. Uwe Kastens

Cl-44

Comparison: top-down vs. bottom-up

Information a stack automata has when it decides to apply production A ::=Xx:

top-down, predictive bottom-up
leftmost derivation rightmost derivation backwards
/ "~ N
< / AN
contents of P A
the stack - - - ——=
u v &
X
input -T-------- input ————
accepted k accepted K
lookahead lookahead

A bottom-up parser has seen more of the input when it decides to apply a production.

Consequence: bottom-up parsers and their grammar classes are more powerful .

© 2001 bei Prof. Dr. Uwe Kastens

Cl-45
LR(1) automata
LR(k) grammars introduced 1965 by Donald Knuth; non-practical until subclasses were defined.
LR parsers construct the derivation tree bottom-up, a right-derivation backwards.

LR(k) grammar condition can not be checked directly, but
a context-free grammar is LR(K), iff the (canonical) LR(k) automaton is deterministic

We consider only 1 token lookahead: LR(1).

The stacks of LR(k) (and LL(k)) automata contain states .
The construction of LR and LL states is based on the notion of items (also called situations):

An item represents the progress of analysis with respect to one production:
| A:=u .v R z.B. [B:=(.D;S) {#}]

. position of analysis R expected right context, i. e. a set of terminals which

may follow after the application of the complete production.
(for general k: R contains terminal sequences not longer than k)

Reduce item:
[A:=uv . R] z.B. [B:=(D;S) . {#}]

characterizes a reduction using this production if the next input token is in R.

Each state of an automaton represents LL: one item LR: a set of items

© 2001 bei Prof. Dr. Uwe Kastens

LR(1) states and operations

A state of an LR automaton represents a set of items
Each item represents a way in which analysis may

Cl-46

proceed from that state. 2| B:=(.D;S) {#}
D:=.D;a {;}
A shift transition is made under D:=.a {;}
a token read from input or A
a non-terminal symbol ¢ D
obtained from a preceding reduction. 4 B:=(D.:S) {#
The state is pushed. a D:=D.: é)
A reduction is made according to a reduce item.
n states are popped for a production of length n. 3D =4 0 red. p3
Operations: shift read and push the next state on the stack

reduce reduce with a certain production, pop n states from the stack

error error recognized, report it, recover
stop input accepted

© 2006 bei Prof. Dr. Uwe Kastens

Grammar:
pl B:=(D;S)

p2 D:=D;a
p3 D:=a
pd S:=b;S
pd S:=b

Example for a LR(1) automaton

1

2

10

11

B:=.(D;S) {#

v (3
B:=(.D;S) {#} 2> D:=a. £
D:=.D;a {}

D:=.a {;}

l D 6 D:=D;a. {}
B:=(D.;S) {#

D:=D.;a {;} a

I 73?@';3 0)
B:=(D:.S) {# C U
D:=D;.a {} 8 ¢ :
gf l; s {} b Su=b:.S {)

= {} S:=.b;S {)}

‘S b~ s:=.b 0}
B:=(D;S.) {#

) ° 5

S:=b;S. {}
B:=(D;S). {#

red. p1, stop

Cl-47

red. p3

red. p2

red. p5

red. p4

© 2001 bei Prof. Dr. Uwe Kastens

Cl-48

Construction of LR(1) automata

Create the start state; create transitions and states as long as new ones can be created.

Transitive closure is to be applied to each state: before: B:=(.D;S) {#
If [A:=u . B v R] Iisinstateq,
with the analysis position before a non-terminal B, 4o/ 2[B=(.D:S) {#
then for each production B ::=w D:=.D:a 8
[Bi=.w First(VR)] D:=.a £}

has to be added to state q.

Start state :
Closureof [S:= .u {#}] 1
S:=u is the unique start production |, B:=.(D;S) {#
is an artificial end symbol (eof)

Successor states
For each symbol x (terminal or non-terminal), which

occurs in some items after the analysis position 2lB:=(.D;S) {#
a transition is created to a successor state . That D::=.D;a {;}
contains a corresponding item with the analysis position D:=.a {:}
advanced behind the x occurrence. D la

4 3

S
EDD.;a) ﬁ} D:=a. {;}

B ::
D ::

© 2001 bei Prof. Dr. Uwe Kastens

Operations of the LR(1) automaton

shift x (terminal or non-terminal):
from current state q
under x into thesuccessor state g°,
push g

reduce p:
apply productionp B ::=u,
pop as many states,
as there are symbols in u, from the
new current state make a shift with B

error:
the current state has no transition
under the next input token,
iISsue a message and recover

stop:
recuce start production,
see # in the input

Example:

stack

w

S e
o1 O

RN\ \QU L\ \ G \ \ U \ G N .

NDNDDNDNDDNDNDNDNDNDNDN

S
&)

12457
124578
1245787
124578
1245789
1245
124510
12351011
1

Cl-49

input reduction

O
HH H= H

= .

OO OCUTCUTUTUTUTUTUT

- =

OO OTOCUTCUTUOUTOCUOUTUTT

HHFHFFHFHFHFHFEHFEHEHEHHHHHR

p3

© 2001 bei Prof. Dr. Uwe Kastens

CI-50

LR conflicts

An LR(1) automaton that has conflicts is not deterministic . Its grammar is not LR(1) ;
correspondingly defined for any other LR class.

2 kinds of conflicts:

reduce-reduce conflict:
A state contains two reduce items, the A:=u. R1 R1, R2
B

right context sets of which are not disjoint : =v. R2 | not
disjoint

shift-reduce conflict
A state contains
a shift item with the analysis position in frontofa t and | . _
:) NN A:=u.tv R1
a reduce item with t in its right context set . B:=w. R2 t 0 R2

© 2006 bei Prof. Dr. Uwe Kastens

Shift-reduce conflict for ,,dangling else“ ambiguity

1/S :=.Stmt {#) _ Stmt
Stmt ;= . if ... then Stmt {#}
Stmt ::=.if ... then Stmt else Stmt {#}
Stmt:=.a {#} _a .
¢ LI * then
3[Stmt == if ... then . Stmt #
Stmt ;= if ... then . Stmt else Stmt {#} ﬂ»
Stmt ;= . if ... then Stmt {# else}
Stmt ::=.if ... then Stmt else Stmt {# else} a
Stmt::=.a {#else} |—>
¢ LI # then
S/ Stmt ::= if ... then . Stmt {# else} _
Stmt ::=if ... then . Stmt else Stmt {# else} 'f_,
Stmt ;= . if ... then Stmt {# else}
Stmt ::=.if ... then Stmt else Stmt {# else}
Stmt::=.a {# else} _a .
y Stmt
0 Stmt ;= if ... then Stmt . {# else} else >

Stmt :=if ... then Stmt . else Stmt {# else} _ _
shift-reduce conflict

Cl-51

© 2001 bei Prof. Dr. Uwe Kastens

Cl-52

Simplified LR grammar classes

LR(1):
too many states for practical use Grammar hierarchy:
Reason : right-contexts distinguish many states (strict inclusions)
Strategy: simplify right-contexts sets,
fewer states, grammar classes are less powerful Context‘-free
LR(0): unambiguous

all items without right-context |

Consequence: reduce items only in / LR‘(k)

singleton sets LL(K) LR(1)

. |
SLR(1): LALR(1)

LR(0) states ; in reduce items / |

use larger right-context sets for decision:
: N M) strong LL(1) = LL(1) SLR(1)

LALR(1): LR(0)

identify LR(1) states if their items differ only

in their right-context sets, unite the sets for those items;

yields the states of the LR(0) automaton

augmented by the "exact” LR(1) right-context.

State-of-the-art parser generators accept LALR(1)

© 2001 bei Prof. Dr. Uwe Kastens

Implementation of LR automata

Table-driven: . .
terminals nonterminals
sq: shift into
sq sq state
states p rp: reduce |
. - production p
- e: error
~: never reached

Compress tables :
« merge rows or columns that differ only in irrelevant entries; method: graph coloring

 extract a separate error matrix (bit matrix); increases the chances for merging

CI-53

« normalize the values of rows or columns ; yields smaller domain; supports merging

« eliminate LR(0) reduce states ; new operation in predecessor state: shift-reduce
eliminates about 30% of the states in practical cases

About 10-20% of the original table sizes can be achieved!

Directly programmed LR-automata are possible - but usually too large.

© 2001 bei Prof. Dr. Uwe Kastens

Error handling: general criteria

recognize error as early as possible
LL and LR can do that

report the symptom in terms of the source text
continue parsing short after the error position
avoid avalanche errors

build a tree that has a correct structure

do not backtrack, do not undo actions

no runtime penalty for correct programs

Cl-54

© 2001 bei Prof. Dr. Uwe Kastens

CI-55

Error position

Error recovery : Means that are taken by the parser after recognition of a syntactic error
in order to continue parsing

Correct prefix : The token sequence w [JT* is a correct prefix in the language L(G),
if there is an u OT* such that w u LL(G); I. e.w can be extended to a sentence in L(G).

Error position : tis the (first) error position in the inputw t x , where t T and w, x LJT?,
if wis a correct prefix in L(G) and w tis not a correct prefix

Example: int compute (inti) {a=1*/c; returni;}

W t

LL and LR parsers recognize an error at the error position;
they can not accept t in the current state.

© 2001 bei Prof. Dr. Uwe Kastens

CI-56

Error recovery

Continuation point
The token d at or behind the error position t such that
parsing of the input continues at d

Error repair
with respect to a consistent derivation - regardless the intension of the programmer!

Let the input be w t x with the error position attand letwtx =wyd z,
then the recovery (conceptually) deletes y and inserts v,
such that w v d is a correct prefix in L(G), withd OT and w, y, v, z OT*,

Examples:

w yd z W yd z w ydz
a=i*/c;... a=i*/c.. a=i*/c;..
a=i* C... a=1i*elc.... a=i*e ;.

delete / insert error id. e delete /¢

and insert errorid. e

© 2001 bei Prof. Dr. Uwe Kastens

Cl-57

Recovery method: simulated continuation

Problem : Determine a continuation point close to the error position and reach it.

Idea: Use parse stack to determine a set of tokens as potential continuation points.

Steps of the method:

1.
2.

5.

Save the contents of the parse stack when an error is recognized. Skip the error token.

Compute aset D I T of tokens that may be used as continuation point (anchor set)
Let a modified parser run to completion:
Instead of reading a token from input it is inserted into D; (modification given below)

Find a continuation pointd : Skip input tokens until a token of D is found.

Reach the continuation point d

Restore the saved parser stack as the current stack.

Perform dedicated transitions until d is acceptable.

Instead of reading tokens (conceptually) insert tokens. Thus a correct prefix is constructed.

Continue normal parsing

Augment parser construction for steps 2 and 4

For each parser state select a transition and its token,

such that the parser empties its stack and terminates as fast as possible.

This selection can be generated automatically .

The quality of the recovery can be improved by influence on the computation of D.

© 2001 bei Prof. Dr. Uwe Kastens

PGS
Cola
Lalr
Yacc
Bison
Ligen
Deer

CI-58

Parser generators

Univ. Karlsruhe; in Eli LALR(1), table-driven

Univ. Paderborn; in Eli LALR(1), optional: table-driven or directly programmed
Univ. / GMD Karlsruhe LALR(1), table-driven

Unix tool LALR(1), table-driven

Gnu LALR(1), table-driven

Amsterdam Compiler Kit LL(1), recursive descent

Univ. Colorado, Bouder LL(1), recursive descent

Form of grammar specification:
EBNF:Cola, PGS, Lalr; BNF: Yacc, Bison

Error recovery:
simulated continuation, automatically generated: Cola, PGS, Lalr

error productions, hand-specified: Yacc, Bison
Actions:

statements in the implementation language

at the end of productions: Yacc, Bison

anywhere in productions: Cola, PGS, Lalr
Conflict resolution:

modification of states (reduce if ...) Cola, PGS, Lalr

order of productions: Yacc, Bison

rules for precedence and associativity: Yacc, Bison

Implementation languages:
C: Cola, Yacc, Bison C, Pascal, Modula-2, Ada : PGS, Lalr

