© 2001 bei Prof. Dr. Uwe Kastens

Cl-67

4. Semantic analysis and transformation

Input: abstract program tree
Tasks: Compiler module:
name analysis environment module
properties of program entities definition module
type analysis, operator identification signature module
transformation tree generator
Output: target tree, intermediate code, target program in case of source-to-source

Standard implementations and generators for compiler modules

Operations of the compiler modules are called at nodes of the abstract program tree
Model: dependent computations in trees

Specification: attribute grammars

generated: tree walking algorithm that calls operations
in specified contexts and in an admissable order

Cl-68

4.1 Attribute grammars

Attribute grammar (AG) specifies dependent computations in the abstract program tree
declarative : explicit dependencies only; a suitable order of execution is computed

Computations solve the tasks of semantic analysis and transformation

Generator produces a plan for tree walks
that execute calls of the computations,
such that the specified dependencies are obeyed,
computed values are propagated through the tree

Result: attribute evaluator ; applicable for any tree specified by the AG

Example: attribute grammar tree with dependent attributes

RULE Decls ::= Decls Decl COMPUTE evaluated De_cls
Decls[1].size = size

Add (Decls[2].size, Decl.size);
END: Decls

RULE Decls ::= Decl COMPUTE S'Ze size
Decls.size = Decl.size;
END: Decls Decl
: size S|ze

RULE Decl ::= Type Name COMPUTE
Decl.size = ..;
: Decl
END; glcze 4

© 2001 bei Prof. Dr. Uwe Kastens

© 2001 bei Prof. Dr. Uwe Kastens

CI-69

Basic concepts of attribute grammars

An AG specifies computations in tree:
expressed by computations associated to productions of the abstract syntax

RULE p: Y =u COMPUTET(...); 9(...); END;
computations f(...) and g(...) are executed in every tree context of type p
An AG specifies dependencies between computations:
expressed by attributes associated to grammar symbols

RULE p: X::=u Y v COMPUTE Xb= f(Y.a);
Ya= gd(.);
END; post-condition pre-condition
f(Y.a) usestheresultof g(...) ;hence Y.a=g(...) will be executed before f(Y.a)

dependent computations in adjacent contexts:
RULETr: X::=vYw COMPUTE X.b =f(Y.a); END;
RULE p: Y ::=u COMPUTE Y.a =(g(...); END;
attributes may specify dependencies without propagating any value:

X.GotType = ResetTypeOf(...);
Y.Type = GetTypeOf(...) <- X.GotType,;

ResetTypeOf will be called before GetTypeOf

Cl-69a
Definition of attribute grammars
An attribute grammar is defined by
a context-free grammar G , (abstract syntax, tree grammar)
for each symbol X of G a set of attributes A(X) , written X.a if a O A(X)
for each production (rule) p of G a set of computations of one of the forms

Xa=f(..Yb..) or g(..Y.b..) whereXandY occurinp

Consistency and completeness of an AG:
Each A(X) is partitioned into two disjoint subsets: Al(X) and AS(X)
AI(X): inherited attributes are computed in rules p where X is on the right -hand side of p
AS(X): synthesized attributes are computed in rules p where X is on the left-hand side of p

Each rule p: X ::= ... Y ... has exactly one computation
for all attributes of AS(X), and
for all attributes of Al(Y), for all symbol occurrences on the right-hand side of p

© 2001 bei Prof. Dr. Uwe Kastens

© 2001 bei Prof. Dr. Uwe Kastens

CI-69b

AG Example: Compute expression values

The AG specifies: The value of an expression is computed and printed:

ATTR value: int;

RULE: Root ::= Expr COMPUTE
printf ("value is %d\n",
Expr.value);
END;

TERM Number: int;

RULE: Expr ::= Number COMPUTE
Expr.value = Number;
END;

RULE: Expr ::= Expr Opr Expr
COMPUTE
Expr[1].value = Opr.value;
Opr.left = Expr[2].value;
Opr.right = Expr[3].value;
END;

SYMBOL Opr: left, right: int;

RULE: Opr ::= '+' COMPUTE
Opr.value =

ADD (Opr.left, Opr.right);
END;

RULE: Opr ::= ** COMPUTE
Opr.value =
MUL (Opr.left, Opr.right);
END;

CI-70

AG Binary numbers

Attributes: L.v, B.v value
L.lg number of digits in the sequence L
L.s, B.s scaling of B or the least significant digit of L
RULEpl: D:=L''L COMPUTE
D.v=ADD (L[1].v, L[2].v);
L[1].s =0;
L[2].s = NEG (L[2].l9);
END;
RULE p2: L:=LB COMPUTE
L[1].v = ADD (L[2].v, B.v);
B.s = L[1].s;
L[2].s = ADD (L[1].s, 1);
L[1].lg = ADD (L[2].lg, 1);
END:;
RULE p3: L:=B COMPUTE
L.v=B.v;
B.s=L.s;
L.lg=1,;
END;
RULEp4: B:='0 COMPUTE
B.v=0;
END;
RULE p5: B:="1' COMPUTE

B.v = Power2 (B.s);
END;

© 2001 bei Prof. Dr. Uwe Kastens

© 2001 bei Prof. Dr. Uwe Kastens

Cl-71

An attributed tree for AG Binary numbers

dependency

attributes:

Cl-72
Dependency analysis for AGs
2 disjoint sets of attributes for each symbol X:
Al (X) : inherited (dt. erworben), computed in upper contexts of X
AS (X): synthesized (dt. abgeleitet), computed in lower contexts of X.
upper context of X Yy
p: Yi=uXyv dependencies
between
attributes
y/ Objective: Partition of

attribute sets, such that

v / \ Al (X, i) is computed

Al (X,1) Al (X,2)

S
lower context of X AS (X,l context switch before the |'th VISIt Of X
q:Xi=w / f on tree walk AS (X, i) is computed
during the i-th visit of X
e

Necessary precondition for the existence of such a partition:
No node in any tree has direct or indirect dependencies that contradict the evaluation order of
the sequence of sets: Al (X, 1), AS (X, 1), ..., Al (X, k), AS (X, k)

Dependency graphs for AG Binary numbers

CI-73

© 2001 bei Prof. Dr. Uwe Kastens

© 2002 bei Prof. Dr. Uwe Kastens

D Vv // l
|
PL - IQ v B
\Y
'\
p3 p4
s /\s Y
L T L T B S
|g \ \V |g \ Vv ‘
4 \ I
N N . /4
//H‘
L |3
p2 Al ALV
B S
‘ 5
L ‘S B S p5
Ig \ \Y | \Y;
\
\~/A Ty \ 4
indirect -
dependency
Cl-74

Construction of attribute evaluators

For a given attribute grammar an attribute evaluator is constructed:
- Itis applicable to any tree

o It performs a tree walk and
executes computations when visiting a context for which they are specified.

« The execution order obeys the attribute dependencies

Pass-oriented strategies for the tree walk: AG class
k times depth-first left-to-right LAG (k)
k times depth-first alternatingly left-to-right / right-to left ~ AAG (k)
once bottom-up SAG

The attribute dependencies of the AG are checked

whether the desired pass-oriented strategy is applicable; see LAG(k) algorithm.

non-pass-oriented strategies:
visit-sequences
an individual plan for each rule of the abstract syntax

OAG

Generator fits the plans to the dependencies.

that obeys the abstract syntax specified in the rules of the AG.

© 2001 bei Prof. Dr. Uwe Kastens

© 2001 bei Prof. Dr. Uwe Kastens

Visit-sequences

A visit-sequence (dt. Besuchssequenz) vs, for each production
p: Xg = X1 o Xj oo X

A visit-sequence is a sequence of operations
Ly j-th visit of the i-th subtree
] j-th return to the ancestor node
eval; execution of a computation c associated to p

Example in the tree: visit-sequences

VSl ... 1Cl..1B1..1C2..11
SN ;Y

Implementation:
one procedure for each section of a visit-sequence upto 1
a call with a switch over applicable productions for |

of the tree grammar:

attribute partitions
guaranty
correct interleaving:

Al (X,1) I (X,2)

CI-75

AS (X,l\ AS (X,Z:\

Visit-sequences for the AG Binary numbers

vspp:D=LuVL

tL[1],1; L[1].s=0; t(L[1],2; tL[2],1; L[2].s=NEG(L[2].l9);

1L[2],2; D.v=ADD(L[1].v, L[2].v); 11
VSppiLi=L B
tL[2],1; L[1].lg=ADD(L[2].lg,1); 11

L[2].s=ADD(L[1].s,1); lL[2],2; B.s=L[1].s; |B,1;L[1].v=ADD(L[2].v, B.v);

vsSpz:L =B
L.lg=1; 11; B.s=L.s; IB,1; L.v=B.v; 12

VSpg: B =0
B.v=0; 11
VSps: B =1

B.v=Power2(B.s); 11

Implementation :
Procedure vs<i><p> for each section ofavsytoa i

a call with a switch over alternative rules for | X,i

CI-76

12

© 2001 bei Prof. Dr. Uwe Kastens

© 2001 bei Prof. Dr. Uwe Kastens

Cl-76a

Tree walk for AG Binary numbers

LIs 2
5 L\ ==\
L~ \ 4 Z 25
tree walk
/é
1Y 1

attributes:

p5 T—| V)

Cl-77

LAG (k) condition and algorithm

An AG is a LAG(k), if: For each symbol X there is an attribute partition A (X,1), ..., A (X, k),
such that the attributes in A (X, i) can be computed in the i-th depth-first left-to-right pass.

Necessary and sufficient condition over dependency graphs - expressed graphically:

A dependency ﬁ A dependency
from right to left at one symbol
yL2al x alb on the right-hand
- C] 0o side
A(X.)) A(Y,) AXD) ARK))
j>i i<j

Algorithm: computes A (1), ..., A (k), if the AG is LAG(k), for i=1, 2, ...
A (i) := all attributes that are not yet assigned
remove attributes from A(i) as long as the following rules are applicable:

« remove X.b, if there is a context where it depends on an attribute of A (i) according to the
pattern given above,

« remove Z.c, if it depends on a removed attribute

Finally : all attributes are assigned to apassesi=1, ..., k the AG is LAG(k)
all attributes are removed from A(i) the AG is not LAG(k) for any k

© 2001 bei Prof. Dr. Uwe Kastens

Generators for attribute grammars

CI-78

LIGA University of Paderborn OAG

FNC-2 INRIA ANCAG (Oberklasse von OAG)
Synthesizer Generator Cornell University OAG, inkrementell

CoCo Universitat Linz LAG(1)

Properties of the generator LIGA

integrated in the Eli system , cooperates with other Eli tools

high level specification language Lido

modular and reusable AG components

object-oriented constructs usable for abstraction of computational patterns
computations are calls of functions implemented outside the AG
side-effect computations can be controlled by dependencies

notations for remote attribute access

visit-sequence controlled attribute evaluators, implemented in C

attribute storage optimization

Cl-78a
State attributes without values
RULE: Root ::= Expr COMPUTE
printf ("\n") <- Expr.printed; and printed do not
END: have a value
RULE: Expr ::= Number COMPUTE They just describe pre-
Expr.printed = and post-conditions of
printf ("%d ", Number) <- Expr.print; computations:
END; :
Expr.print:
RULE: Opr ="'+ COMPUTE postfix Output has
Opr.printed = printf ("+ ") <- Opr.print; been done up to
END; not including this
RULE: Opr ::='* COMPUTE node
Opr..printed = printf ("* ") <- Opr.print; Expr.printed:
END; postfix output has
RULE: Expr ::= Expr Opr Expr COMPUTE been done up to
Expr[2].print = Expr[1].print; including this node

Expr[3].print = Expr[2].printed,;

Opr.print = Expr[3].printed;

Expr[1].printed = Opr.printed;
END;

© 2001 bei Prof. Dr. Uwe Kastens

© 2001 bei Prof. Dr. Uwe Kastens

Dependency pattern CHAIN

CHAIN print: VOID;

RULE: Root ::= Expr COMPUTE
CHAINSTART HEAD.print = "yes";
printf ("\n ") <- TAIL.print;

END;
RULE: Expr ::= Number COMPUTE
Expr.print =
printf ("%d ", Number) <- Expr.print;
END;

RULE: Opr ::='+' COMPUTE
Opr.post = printf ("+") <- Opr.pre;

END;

RULE: Expr ::= Expr Opr Expr COMPUTE
Opr.pre = Expr[3].print;
Expr[1].print = Opr.post;

END;

CI-78b

A CHAIN specifies a
left-to-right depth-first
dependency through a
subtree.

Trivial computations of
the form X.a = Y.b in the
CHAIN order can be
omitted . They are added
as needed.

Cl-78c

Dependency pattern INCLUDING

ATTR depth: int;

RULE: Root ::= Block COMPUTE
Block.depth = 0;

END;
RULE: Statement ::= Block COMPUTE
Block.depth =
ADD (INCLUDING Block.depth, 1);
END:;

TERM Ident: int;

RULE: Definition ::= ‘define’ ldent COMPUTE
printf ("%s defined on depth %d\n ",
StringTable (Ident),
INCLUDING Block.depth);
END;

INCLUDING Block.depth
accesses the depth attribut of the next upper node of
type Block .

An attribute at the root of
a subtree is used from
within the subtree .

Propagation through the
contexts in between is
omitted .

© 2001 bei Prof. Dr. Uwe Kastens

Cl-78d

Dependency pattern CONSTITUENTS

RULE: Block ::='{" Sequence '} COMPUTE
Block.DefDone =
CONSTITUENTS Definition.DefDone;
END;

RULE: Definition ::= 'Define' Ident COMPUTE
Definition.DefDone =
printf ("%s defined in line %d\n",
StringTable(ldent), LINE);
END;

RULE: Usage ::="'use' Ident COMPUTE
printf ("%s used in line %d\n ",
StringTable(ldent), LINE),
<- INCLUDING BLOCK.DefDone;
END;

CONSTITUENTS Definition.DefDone accesses the
DefDone attributes of all Definition nodes in the
subtree below this context

A computation accesses
attributes from the
subtree below its context.

Propagation through the
contexts in between is
omitted .

The shown combination
with INCLUDING is a
common dependency
pattern.

