
4. Semantic analysis and transformation

Input: abstract program tree

Tasks: Compiler module:

name analysis environment module

properties of program entities definition module

type analysis, operator identification signature module

transformation tree generator

Output: target tree, intermediate code, target program in case of source-to-source

Standard implementations and generators for compiler modules

Operations of the compiler modules are called at nodes of the abstract program tree

Model: dependent computations in trees

Specification: attribute grammars

generated: tree walking algorithm that calls operations
in specified contexts and in an admissable order
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4.1 Attribute grammars

Attribute grammar (AG) specifies dependent computations in the abstract program tree
declarative : explicit dependencies only; a suitable order of execution is computed

Computations solve the tasks of semantic analysis and transformation

Generator  produces a plan for tree walks
that execute calls of the computations,
such that the specified dependencies are obeyed,
computed values are propagated through the tree

Result: attribute evaluator ; applicable for any tree specified by the AG

CI-68

RULE Decls ::= Decls Decl  COMPUTE
Decls[1].size =

Add (Decls[2].size, Decl.size);
END;
RULE Decls ::= Decl  COMPUTE

Decls.size = Decl.size;
END;
RULE Decl ::= Type Name  COMPUTE

Decl.size = ...;
END;

Decls
size 16

Decls
size 12

Decls
size 4

Decl
size 4

Decl
size 8

Decl
size 4

Example: attribute grammar tree with dependent attributes
evaluated
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Basic concepts of attribute grammars

An AG specifies computations in tree:
expressed by computations associated to productions of the abstract syntax

RULE p: Y ::= u  COMPUTE f(...); g(...);  END;

computations f(...) and g(...) are executed in every tree context of type p

An AG specifies dependencies between computations:
expressed by attributes associated to grammar symbols

RULE p: X ::= u Y v COMPUTE X.b = f(Y.a);
Y.a = g(...);

END; post-condition pre-condition
f(Y.a)  uses the result of g(...) ; hence Y.a=g(...)  will be executed before f(Y.a)

dependent computations in adjacent contexts:

RULE r: X ::= v Y w COMPUTE X.b = f(Y.a); END;
RULE p: Y ::= u COMPUTE Y.a = g(...); END;

attributes may specify dependencies without propagating any value:

X.GotType = ResetTypeOf(...);
Y.Type = GetTypeOf(...) <- X.GotType;

ResetTypeOf will be called before GetTypeOf

CI-69
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Definition of attribute grammars

An attribute grammar  is defined by

a context-free grammar G , (abstract syntax, tree grammar)

for each symbol X  of G a set of attributes A(X) , written X.a if a ∈ A(X)

for each production (rule) p  of G a set of computations  of one of the forms

X.a = f ( ... Y.b ... ) or g (... Y.b ... ) where X and Y occur in p

Consistency and completeness  of an AG:

Each A(X) is partitioned into two disjoint subsets: AI(X) and AS(X)

AI(X): inherited attributes  are computed in rules p where X is on the right -hand side of p

AS(X): synthesized attributes are computed in rules p where X is on the left -hand side of p

Each rule p: X ::= ... Y ... has exactly one computation
for all attributes of AS(X), and
for all attributes of AI(Y), for all symbol occurrences on the right-hand side of p

CI-69a
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AG Example: Compute expression values

The AG specifies: The value of an expression is computed and printed:

CI-69b

ATTR value: int;

RULE: Root ::=  Expr  COMPUTE

printf ("value is %d\n",

Expr.value);

END;

TERM Number: int;

RULE: Expr ::= Number COMPUTE

Expr.value = Number;

END;

RULE: Expr ::= Expr Opr Expr

COMPUTE

Expr[1].value = Opr.value;

Opr.left  = Expr[2].value;

Opr.right = Expr[3].value;

END;

SYMBOL Opr: left, right: int;

RULE: Opr ::=  '+'  COMPUTE

  Opr.value  =

ADD (Opr.left, Opr.right);

END;

RULE: Opr ::=  '*'  COMPUTE

  Opr.value =

MUL (Opr.left, Opr.right);

END;
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AG Binary numbers

Attributes: L.v, B.v value
L.lg number of digits in the sequence L
L.s, B.s scaling of B or the least significant digit of L

RULE p1: D ::= L '.' L COMPUTE
D.v = ADD (L[1].v, L[2].v);
L[1].s = 0;
L[2].s = NEG (L[2].lg);

END;
RULE p2: L ::= L B COMPUTE

L[1].v = ADD (L[2].v, B.v);
B.s = L[1].s;
L[2].s = ADD (L[1].s, 1);
L[1].lg = ADD (L[2].lg, 1);

END;
RULE p3: L ::= B COMPUTE

L.v = B.v;
B.s = L.s;
L.lg = 1;

END;
RULE p4: B ::= '0' COMPUTE

B.v = 0;
END;
RULE p5: B ::= '1' COMPUTE

B.v = Power2 (B.s);
END;

CI-70
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An attributed tree for AG Binary numbers
CI-71
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Dependency analysis for AGs

2 disjoint sets of attributes for each symbol X:

AI (X) : inherited  (dt. erworben), computed in upper contexts  of X

AS (X): synthesized  (dt. abgeleitet), computed in lower contexts  of X.

Necessary precondition for the existence of such a partition:
No node in any tree has direct or indirect dependencies that contradict the evaluation order of
the sequence of sets: AI (X, 1), AS (X, 1), ..., AI (X, k), AS (X, k)

upper context of X
p:  Y ::= u X v dependencies

between
attributes

context switch
on  tree walk

lower context of X
q : X ::= w

AI (X,1)               AI (X,2)

AS (X,1)             AS (X,2)

y

u v

w

CI-72

Objective: Partition  of
attribute sets, such that

AI (X, i)  is computed
before the i-th visit  of X

AS (X, i)  is computed
during the i-th visit  of X
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Dependency graphs for AG Binary numbers

CI-73
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Construction of attribute evaluators

For a given attribute grammar an attribute evaluator is constructed:

• It is applicable to any tree  that obeys the abstract syntax specified in the rules of the AG.

• It performs a tree walk  and
executes computations  when visiting a context for which they are specified.

• The execution order obeys the attribute dependencies .

Pass-oriented strategies  for the tree walk: AG class

k times depth-first left-to-right LAG (k)
k times depth-first alternatingly left-to-right / right-to left AAG (k)
once bottom-up SAG

The attribute dependencies of the AG are checked
whether the desired pass-oriented strategy is applicable; see LAG(k) algorithm.

non-pass-oriented strategies:
visit-sequences : OAG
an individual plan for each rule of the abstract syntax

Generator fits the plans to the dependencies.

CI-74
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Visit-sequences

A visit-sequence (dt. Besuchssequenz) vsp for each production  of the tree grammar:

p: Xo ::= X1 ... Xi ... Xn

A visit-sequence is a sequence of operations :

↓ i, j  j-th visit of the i-th subtree

↑ j  j-th return to the ancestor  node

evalc  execution of a computation  c associated to p

Example in the tree: visit-sequences

Implementation:

one procedure for each section of a visit-sequence upto ↑
a call with a switch over applicable productions for ↓

  B C

D          E

A

p: A::= BC

q: C::= DE

vsp:  ... ↓C,1 ...↓B,1 ...↓C,2 ...↑1

vsq:  ... ↓D,1 ... ↑1 ... ↓E,1 ... ↑2

CI-75

 AI (X,1)              AI (X,2)

AS (X,1)             AS (X,2)

attribute partitions
guaranty
correct interleaving:
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Visit-sequences for the AG Binary numbers

vsp1: D ::= L '.' L

↓L[1],1 ;  L[1].s=0; ↓L[1],2 ; ↓L[2],1 ;  L[2].s=NEG(L[2].lg);

↓L[2],2 ;  D.v=ADD(L[1].v, L[2].v); ↑1

vsp2: L ::= L B

↓L[2],1 ; L[1].lg=ADD(L[2].lg,1); ↑1

L[2].s=ADD(L[1].s,1); ↓L[2],2 ;  B.s=L[1].s; ↓B,1; L[1].v=ADD(L[2].v, B.v); ↑2

vsp3: L ::= B

L.lg=1; ↑1;  B.s=L.s; ↓B,1;  L.v=B.v; ↑2

vsp4: B ::= '0'

B.v=0; ↑1

vsp5: B ::= '1'

B.v=Power2(B.s); ↑1

Implementation :
Procedure  vs<i><p> for each section  of a vsp to a ↑i
a call with a switch over alternative rules for ↓X,i

CI-76



©
 2

00
1 

be
i P

ro
f. 

D
r.

 U
w

e 
K

as
te

ns
Tree walk for AG Binary numbers

CI-76a
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LAG (k) condition and algorithm

An AG is a LAG(k), if: For each symbol X there is an attribute partition A (X,1), ..., A (X, k),
such that the attributes in A (X, i) can be computed in the i-th depth-first left-to-right pass.

Necessary and sufficient condition over dependency graphs - expressed graphically:

Algorithm:  computes A (1), ..., A (k), if the AG is LAG(k), for  i = 1, 2, ...
A (i) := all attributes that are not yet assigned
remove attributes from A(i) as long as the following rules are applicable:

• remove X.b, if there is a context where it depends on an attribute of A (i) according to the
pattern given above,

• remove Z.c, if it depends on a removed attribute

Finally : all attributes are assigned to a passes i = 1, ..., k the AG is LAG(k)
all attributes are removed from A(i) the AG is not LAG(k) for any k

X Y
b a

A(X,j) A(Y,i)
j > i

X
a b

A(X,i) A(X,j)
i < j

∈ ∈ ∈ ∈

A dependency
from right to left

A dependency
at one symbol
on the right-hand
side

CI-77

Generators for attribute grammars

LIGA University of Paderborn OAG

FNC-2 INRIA ANCAG (Oberklasse von OAG)

Synthesizer Generator Cornell University OAG, inkrementell

CoCo Universität Linz LAG(1)

Properties of the generator LIGA

• integrated in the Eli system , cooperates with other Eli tools

• high level specification language  Lido

• modular and reusable AG components

• object-oriented constructs usable for abstraction of computational patterns

• computations are calls of functions  implemented outside the AG

• side-effect computations  can be controlled by dependencies

• notations for remote attribute access

• visit-sequence  controlled attribute evaluators, implemented in C

• attribute storage optimization

CI-78
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State attributes without values
CI-78a

RULE: Root ::= Expr COMPUTE
  Expr.print = "yes";
  printf ("\n") <- Expr.printed;
END;

RULE: Expr ::= Number COMPUTE
  Expr.printed =
    printf ("%d ", Number) <- Expr.print;
END;

RULE: Opr  ::= '+' COMPUTE
  Opr.printed = printf ("+ ") <- Opr.print;
END;

RULE: Opr  ::= '*' COMPUTE
  Opr.printed = printf ("* ") <- Opr.print;
END;

RULE: Expr  ::= Expr Opr Expr COMPUTE
  Expr[2].print = Expr[1].print;
  Expr[3].print = Expr[2].printed;
  Opr.print = Expr[3].printed;
  Expr[1].printed = Opr.printed;
END;

The attributes print
and printed  do not
have a value

They just describe pre-
and post-conditions of
computations:

Expr.print:
postfix output has
been done up to
not including this
node

Expr.printed:
postfix output has
been done up to
including this node
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Dependency pattern CHAIN

CI-78b

CHAIN print: VOID;

RULE: Root ::= Expr COMPUTE
  CHAINSTART HEAD.print = "yes";
  printf ("\n ") <- TAIL.print;
END;

RULE: Expr ::= Number COMPUTE
  Expr.print =
    printf ("%d ", Number) <- Expr.print;
END;

RULE: Opr ::= '+' COMPUTE
  Opr.post = printf ("+") <- Opr.pre;
END;

RULE: Expr ::= Expr Opr Expr COMPUTE
  Opr.pre = Expr[3].print;
  Expr[1].print = Opr.post;
END;

A CHAIN specifies a
left-to-right depth-first
dependency through a
subtree.

Trivial computations  of
the form X.a = Y.b in the
CHAIN order can be
omitted . They are added
as needed.
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Dependency pattern INCLUDING
CI-78c

ATTR depth: int;

RULE: Root ::= Block COMPUTE
  Block.depth = 0;
END;

RULE: Statement ::= Block COMPUTE
  Block.depth =

ADD (INCLUDING Block.depth, 1);
END;

TERM Ident: int;

RULE: Definition ::= ‘define' Ident COMPUTE
  printf ("%s defined on depth %d\n ",
           StringTable (Ident),
           INCLUDING Block.depth);
END;

An attribute  at the root of
a subtree is used from
within the subtree .

Propagation  through the
contexts in between is
omitted .

INCLUDING Block.depth
accesses the depth attribut of the next upper node of
type Block .
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Dependency pattern CONSTITUENTS
CI-78d

RULE: Block ::= '{' Sequence '}' COMPUTE
  Block.DefDone =
    CONSTITUENTS Definition.DefDone;
END;

RULE: Definition ::= 'Define' Ident COMPUTE
  Definition.DefDone =
    printf ("%s defined in line %d\n",
            StringTable(Ident), LINE);
END;

RULE: Usage ::= 'use' Ident COMPUTE
   printf ("%s used in line %d\n ",
           StringTable(Ident), LINE),
   <- INCLUDING BLOCK.DefDone;
END;

A computation accesses
attributes from the
subtree below its context.

Propagation  through the
contexts in between is
omitted .

The shown combination
with INCLUDING is a
common dependency
pattern.

CONSTITUENTS Definition.DefDone  accesses the
DefDone  attributes of all Definition nodes in the
subtree below this context


