
4. Semantic analysis and transformation

Input: abstract program tree

Tasks: Compiler module:

name analysis environment module

properties of program entities definition module

type analysis, operator identification signature module

transformation tree generator

Output: target tree, intermediate code, target program in case of source-to-source

Standard implementations and generators for compiler modules

Operations of the compiler modules are called at nodes of the abstract program tree

Model: dependent computations in trees

Specification: attribute grammars

generated: tree walking algorithm that calls operations
in specified contexts and in an admissable order

CI-67

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

4.1 Attribute grammars

Attribute grammar (AG) specifies dependent computations in the abstract program tree
declarative : explicit dependencies only; a suitable order of execution is computed

Computations solve the tasks of semantic analysis and transformation

Generator produces a plan for tree walks
that execute calls of the computations,
such that the specified dependencies are obeyed,
computed values are propagated through the tree

Result: attribute evaluator ; applicable for any tree specified by the AG

CI-68

RULE Decls ::= Decls Decl COMPUTE
Decls[1].size =

Add (Decls[2].size, Decl.size);
END;
RULE Decls ::= Decl COMPUTE

Decls.size = Decl.size;
END;
RULE Decl ::= Type Name COMPUTE

Decl.size = ...;
END;

Decls
size 16

Decls
size 12

Decls
size 4

Decl
size 4

Decl
size 8

Decl
size 4

Example: attribute grammar tree with dependent attributes
evaluated

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Basic concepts of attribute grammars

An AG specifies computations in tree:
expressed by computations associated to productions of the abstract syntax

RULE p: Y ::= u COMPUTE f(...); g(...); END;

computations f(...) and g(...) are executed in every tree context of type p

An AG specifies dependencies between computations:
expressed by attributes associated to grammar symbols

RULE p: X ::= u Y v COMPUTE X.b = f(Y.a);
Y.a = g(...);

END; post-condition pre-condition
f(Y.a) uses the result of g(...) ; hence Y.a=g(...) will be executed before f(Y.a)

dependent computations in adjacent contexts:

RULE r: X ::= v Y w COMPUTE X.b = f(Y.a); END;
RULE p: Y ::= u COMPUTE Y.a = g(...); END;

attributes may specify dependencies without propagating any value:

X.GotType = ResetTypeOf(...);
Y.Type = GetTypeOf(...) <- X.GotType;

ResetTypeOf will be called before GetTypeOf

CI-69

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Definition of attribute grammars

An attribute grammar is defined by

a context-free grammar G , (abstract syntax, tree grammar)

for each symbol X of G a set of attributes A(X) , written X.a if a ∈ A(X)

for each production (rule) p of G a set of computations of one of the forms

X.a = f (... Y.b ...) or g (... Y.b ...) where X and Y occur in p

Consistency and completeness of an AG:

Each A(X) is partitioned into two disjoint subsets: AI(X) and AS(X)

AI(X): inherited attributes are computed in rules p where X is on the right -hand side of p

AS(X): synthesized attributes are computed in rules p where X is on the left -hand side of p

Each rule p: X ::= ... Y ... has exactly one computation
for all attributes of AS(X), and
for all attributes of AI(Y), for all symbol occurrences on the right-hand side of p

CI-69a

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
AG Example: Compute expression values

The AG specifies: The value of an expression is computed and printed:

CI-69b

ATTR value: int;

RULE: Root ::= Expr COMPUTE

printf ("value is %d\n",

Expr.value);

END;

TERM Number: int;

RULE: Expr ::= Number COMPUTE

Expr.value = Number;

END;

RULE: Expr ::= Expr Opr Expr

COMPUTE

Expr[1].value = Opr.value;

Opr.left = Expr[2].value;

Opr.right = Expr[3].value;

END;

SYMBOL Opr: left, right: int;

RULE: Opr ::= '+' COMPUTE

 Opr.value =

ADD (Opr.left, Opr.right);

END;

RULE: Opr ::= '*' COMPUTE

 Opr.value =

MUL (Opr.left, Opr.right);

END;

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

AG Binary numbers

Attributes: L.v, B.v value
L.lg number of digits in the sequence L
L.s, B.s scaling of B or the least significant digit of L

RULE p1: D ::= L '.' L COMPUTE
D.v = ADD (L[1].v, L[2].v);
L[1].s = 0;
L[2].s = NEG (L[2].lg);

END;
RULE p2: L ::= L B COMPUTE

L[1].v = ADD (L[2].v, B.v);
B.s = L[1].s;
L[2].s = ADD (L[1].s, 1);
L[1].lg = ADD (L[2].lg, 1);

END;
RULE p3: L ::= B COMPUTE

L.v = B.v;
B.s = L.s;
L.lg = 1;

END;
RULE p4: B ::= '0' COMPUTE

B.v = 0;
END;
RULE p5: B ::= '1' COMPUTE

B.v = Power2 (B.s);
END;

CI-70
©

 2
00

1
be

i P
ro

f.
D

r.
 U

w
e

K
as

te
ns

An attributed tree for AG Binary numbers
CI-71

v
s

lg

v
s

vD

L

B

5.25
D

.25
-2

2L5
0

3L

4
1

2L

4
2

1L

0
-1

1L

4
2

B

0
1

B

1
0

B

0
-1

B

.25
-2

B

1

0

1

0

1

p1

p2

p2

p2

p3

p3

p5

p5
p5

p4
p4

attributes:

dependency

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Dependency analysis for AGs

2 disjoint sets of attributes for each symbol X:

AI (X) : inherited (dt. erworben), computed in upper contexts of X

AS (X): synthesized (dt. abgeleitet), computed in lower contexts of X.

Necessary precondition for the existence of such a partition:
No node in any tree has direct or indirect dependencies that contradict the evaluation order of
the sequence of sets: AI (X, 1), AS (X, 1), ..., AI (X, k), AS (X, k)

upper context of X
p: Y ::= u X v dependencies

between
attributes

context switch
on tree walk

lower context of X
q : X ::= w

AI (X,1) AI (X,2)

AS (X,1) AS (X,2)

y

u v

w

CI-72

Objective: Partition of
attribute sets, such that

AI (X, i) is computed
before the i-th visit of X

AS (X, i) is computed
during the i-th visit of X

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Dependency graphs for AG Binary numbers

CI-73

L
lg

s

v

D v

p1

p2

L
lg

s

v

L
lg

s

v

L
lg

s

v

B s
v

indirect
dependency

L
lg

s

v B s
v

B s
v

p3 p4

p5

B s
v

©
 2

00
2

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Construction of attribute evaluators

For a given attribute grammar an attribute evaluator is constructed:

• It is applicable to any tree that obeys the abstract syntax specified in the rules of the AG.

• It performs a tree walk and
executes computations when visiting a context for which they are specified.

• The execution order obeys the attribute dependencies .

Pass-oriented strategies for the tree walk: AG class

k times depth-first left-to-right LAG (k)
k times depth-first alternatingly left-to-right / right-to left AAG (k)
once bottom-up SAG

The attribute dependencies of the AG are checked
whether the desired pass-oriented strategy is applicable; see LAG(k) algorithm.

non-pass-oriented strategies:
visit-sequences : OAG
an individual plan for each rule of the abstract syntax

Generator fits the plans to the dependencies.

CI-74
©

 2
00

1
be

i P
ro

f.
D

r.
 U

w
e

K
as

te
ns

Visit-sequences

A visit-sequence (dt. Besuchssequenz) vsp for each production of the tree grammar:

p: Xo ::= X1 ... Xi ... Xn

A visit-sequence is a sequence of operations :

↓ i, j j-th visit of the i-th subtree

↑ j j-th return to the ancestor node

evalc execution of a computation c associated to p

Example in the tree: visit-sequences

Implementation:

one procedure for each section of a visit-sequence upto ↑
a call with a switch over applicable productions for ↓

 B C

D E

A

p: A::= BC

q: C::= DE

vsp: ... ↓C,1 ...↓B,1 ...↓C,2 ...↑1

vsq: ... ↓D,1 ... ↑1 ... ↓E,1 ... ↑2

CI-75

 AI (X,1) AI (X,2)

AS (X,1) AS (X,2)

attribute partitions
guaranty
correct interleaving:

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Visit-sequences for the AG Binary numbers

vsp1: D ::= L '.' L

↓L[1],1 ; L[1].s=0; ↓L[1],2 ; ↓L[2],1 ; L[2].s=NEG(L[2].lg);

↓L[2],2 ; D.v=ADD(L[1].v, L[2].v); ↑1

vsp2: L ::= L B

↓L[2],1 ; L[1].lg=ADD(L[2].lg,1); ↑1

L[2].s=ADD(L[1].s,1); ↓L[2],2 ; B.s=L[1].s; ↓B,1; L[1].v=ADD(L[2].v, B.v); ↑2

vsp3: L ::= B

L.lg=1; ↑1; B.s=L.s; ↓B,1; L.v=B.v; ↑2

vsp4: B ::= '0'

B.v=0; ↑1

vsp5: B ::= '1'

B.v=Power2(B.s); ↑1

Implementation :
Procedure vs<i><p> for each section of a vsp to a ↑i
a call with a switch over alternative rules for ↓X,i

CI-76

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Tree walk for AG Binary numbers

CI-76a

v
s

lg

v
s

vD

L

B

5.25
D

.25
-2

2L5
0

3L

4
1

2L

4
2

1L

0
-1

1L

4
2

B

0
1

B

1
0

B

0
-1

B

.25
-2

B

1

0

1

0

1

p1

p2

p2

p2

p3

p3

p5

p5
p5

p4
p4

attributes:

tree walk

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

LAG (k) condition and algorithm

An AG is a LAG(k), if: For each symbol X there is an attribute partition A (X,1), ..., A (X, k),
such that the attributes in A (X, i) can be computed in the i-th depth-first left-to-right pass.

Necessary and sufficient condition over dependency graphs - expressed graphically:

Algorithm: computes A (1), ..., A (k), if the AG is LAG(k), for i = 1, 2, ...
A (i) := all attributes that are not yet assigned
remove attributes from A(i) as long as the following rules are applicable:

• remove X.b, if there is a context where it depends on an attribute of A (i) according to the
pattern given above,

• remove Z.c, if it depends on a removed attribute

Finally : all attributes are assigned to a passes i = 1, ..., k the AG is LAG(k)
all attributes are removed from A(i) the AG is not LAG(k) for any k

X Y
b a

A(X,j) A(Y,i)
j > i

X
a b

A(X,i) A(X,j)
i < j

∈ ∈ ∈ ∈

A dependency
from right to left

A dependency
at one symbol
on the right-hand
side

CI-77

Generators for attribute grammars

LIGA University of Paderborn OAG

FNC-2 INRIA ANCAG (Oberklasse von OAG)

Synthesizer Generator Cornell University OAG, inkrementell

CoCo Universität Linz LAG(1)

Properties of the generator LIGA

• integrated in the Eli system , cooperates with other Eli tools

• high level specification language Lido

• modular and reusable AG components

• object-oriented constructs usable for abstraction of computational patterns

• computations are calls of functions implemented outside the AG

• side-effect computations can be controlled by dependencies

• notations for remote attribute access

• visit-sequence controlled attribute evaluators, implemented in C

• attribute storage optimization

CI-78

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

State attributes without values
CI-78a

RULE: Root ::= Expr COMPUTE
 Expr.print = "yes";
 printf ("\n") <- Expr.printed;
END;

RULE: Expr ::= Number COMPUTE
 Expr.printed =
 printf ("%d ", Number) <- Expr.print;
END;

RULE: Opr ::= '+' COMPUTE
 Opr.printed = printf ("+ ") <- Opr.print;
END;

RULE: Opr ::= '*' COMPUTE
 Opr.printed = printf ("* ") <- Opr.print;
END;

RULE: Expr ::= Expr Opr Expr COMPUTE
 Expr[2].print = Expr[1].print;
 Expr[3].print = Expr[2].printed;
 Opr.print = Expr[3].printed;
 Expr[1].printed = Opr.printed;
END;

The attributes print
and printed do not
have a value

They just describe pre-
and post-conditions of
computations:

Expr.print:
postfix output has
been done up to
not including this
node

Expr.printed:
postfix output has
been done up to
including this node

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Dependency pattern CHAIN

CI-78b

CHAIN print: VOID;

RULE: Root ::= Expr COMPUTE
 CHAINSTART HEAD.print = "yes";
 printf ("\n ") <- TAIL.print;
END;

RULE: Expr ::= Number COMPUTE
 Expr.print =
 printf ("%d ", Number) <- Expr.print;
END;

RULE: Opr ::= '+' COMPUTE
 Opr.post = printf ("+") <- Opr.pre;
END;

RULE: Expr ::= Expr Opr Expr COMPUTE
 Opr.pre = Expr[3].print;
 Expr[1].print = Opr.post;
END;

A CHAIN specifies a
left-to-right depth-first
dependency through a
subtree.

Trivial computations of
the form X.a = Y.b in the
CHAIN order can be
omitted . They are added
as needed.

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Dependency pattern INCLUDING
CI-78c

ATTR depth: int;

RULE: Root ::= Block COMPUTE
 Block.depth = 0;
END;

RULE: Statement ::= Block COMPUTE
 Block.depth =

ADD (INCLUDING Block.depth, 1);
END;

TERM Ident: int;

RULE: Definition ::= ‘define' Ident COMPUTE
 printf ("%s defined on depth %d\n ",
 StringTable (Ident),
 INCLUDING Block.depth);
END;

An attribute at the root of
a subtree is used from
within the subtree .

Propagation through the
contexts in between is
omitted .

INCLUDING Block.depth
accesses the depth attribut of the next upper node of
type Block .

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Dependency pattern CONSTITUENTS
CI-78d

RULE: Block ::= '{' Sequence '}' COMPUTE
 Block.DefDone =
 CONSTITUENTS Definition.DefDone;
END;

RULE: Definition ::= 'Define' Ident COMPUTE
 Definition.DefDone =
 printf ("%s defined in line %d\n",
 StringTable(Ident), LINE);
END;

RULE: Usage ::= 'use' Ident COMPUTE
 printf ("%s used in line %d\n ",
 StringTable(Ident), LINE),
 <- INCLUDING BLOCK.DefDone;
END;

A computation accesses
attributes from the
subtree below its context.

Propagation through the
contexts in between is
omitted .

The shown combination
with INCLUDING is a
common dependency
pattern.

CONSTITUENTS Definition.DefDone accesses the
DefDone attributes of all Definition nodes in the
subtree below this context

