4. Semantic analysis and transformation

Input: abstract program tree
Tasks: Compiler module:
name analysis environment module
properties of program entities definition module
type analysis, operator identification signature module
transformation tree generator
Output: target tree, intermediate code, target program in case of source-to-source

Standard implementations and generators for compiler modules

Operations of the compiler modules are called at nodes of the abstract program tree
Model: dependent computations in trees

Specification: attribute grammars

generated: tree walking algorithm that calls operations
In specified contexts and in an admissable order

Cl-67

© 2001 bei Prof. Dr. Uwe Kastens

4.1 Attribute grammars

Attribute grammar (AG) specifies dependent computations in the abstract program tree
declarative : explicit dependencies only; a suitable order of execution is computed

Computations solve the tasks of semantic analysis and transformation

Generator produces a plan for tree walks
that execute calls of the computations,
such that the specified dependencies are obeyed,
computed values are propagated through the tree

Result: attribute evaluator ; applicable for any tree specified by the AG

Example: attribute grammar
RULE Decls ::= Decls Decl COMPUTE evaluated
Decls[1].size =
Add (Decls[2].size, Decl.size);

tree with dependent attributes

Decls
size

END: Decls
RULE Decls ::= Decl COMPUTE size
Decls.size = Decl.size; /
END; bects [4
RULE Decl ::= Type Name COMPUTE T
Decl.size = ...
’ Decl
END: size 4

\ Slze
Decl

Size

Cl-68

© 2001 bei Prof. Dr. Uwe Kastens

Cl1-69

Basic concepts of attribute grammars

An AG specifies computations in tree:
expressed by computations associated to productions of the abstract syntax

RULE p: Y ::=u COMPUTET(...); g(...); END;
computations f(...) and g(...) are executed in every tree context of type p

An AG specifies dependencies between computations:
expressed by attributes associated to grammar symbols

RULE p: X :=uY v COMPUTE X.b= f(Y.a);
Ya= g(..);
END; post-condition pre-condition
f(Y.a) usestheresultof g(...) ;hence Y.a=g(...) will be executed before f(Y.a)

dependent computations in adjacent contexts:
RULE T X:=vYw COMPUTE X.b =1(Y.a); END;
RULE p:Y :=u COMPUTE Y.a=g(...); END;
attributes may specify dependencies without propagating any value:

X.GotType = ResetTypeOf(...);
Y.Type = GetTypeOf(...) <- X.GotType;

ResetTypeOf will be called before GetTypeOf

© 2001 bei Prof. Dr. Uwe Kastens

Cl-69a

Definition of attribute grammars

An attribute grammar is defined by
a context-free grammar G , (abstract syntax, tree grammar)
for each symbol X of G a set of attributes A(X) , written X.a if a [A(X)
for each production (rule) p of G a set of computations of one of the forms

Xa=f(..Yb..) or g(..Y.b..) whereXandY occurinp

Consistency and completeness of an AG:
Each A(X) is partitioned into two disjoint subsets: Al(X) and AS(X)
Al(X): inherited attributes are computed in rules p where X is on the right -hand side of p
AS(X): synthesized attributes are computed in rules p where X is on the left-hand side of p

Each rule p: X ::= ... Y ... has exactly one computation

for all attributes of AS(X), and
for all attributes of Al(Y), for all symbol occurrences on the right-hand side of p

© 2001 bei Prof. Dr. Uwe Kastens

AG Example: Compute expression values

The AG specifies: The value of an expression is computed and printed:

ATTR value: int;

RULE: Root ::= Expr COMPUTE
printf ("value is %d\n",
Expr.value);
END;

TERM Number: int;

RULE: Expr ::= Number COMPUTE
Expr.value = Number;
END;

RULE: Expr ::= Expr Opr Expr
COMPUTE
Expr[1].value = Opr.value;
Opr.left = Expr[2].value;
Opr.right = Expr[3].value;
END,;

SYMBOL Opr: left, right: int;

RULE: Opr ::= '+' COMPUTE
Opr.value =

ADD (Opr.left, Opr.right);
END;

RULE: Opr ::= * COMPUTE
Opr.value =
MUL (Opr.left, Opr.right);
END;

CI-69b

© 2001 bei Prof. Dr. Uwe Kastens

CI-70

AG Binary numbers

Attributes: L.v, B.v value
L.Ig number of digits in the sequence L
L.s, B.s scaling of B or the least significant digit of L

RULEpl: D:=L'L COMPUTE
D.v=ADD (L[1].v, L[2].v);

L[1].s = O;
L[2].s = NEG (L[2].19);
END;
RULEp2: L:=LB COMPUTE
L[1].v = ADD (L[2].v, B.v);
B.s = L[1].s;

L[2].s = ADD (L[1].s, 1);
L[1].lg = ADD (L[2].lg, 1);

END,;

RULEp3: L:=B COMPUTE
L.v=B.v;
B.s=L.s;
L.Ig = 1;

END,;

RULE p4: B:='0 COMPUTE
B.v =0;

END,;

RULE p5: B :='1 COMPUTE
B.v = Power2 (B.s);

END,;

© 2001 bei Prof. Dr. Uwe Kastens

An attributed tree for AG Binary numbers

1
LN
i i ‘
p2 \DE)

> T
Lll4 B0
3 0 ‘
B4

Cl-71

dependency

‘ attributes:

© 2001 bei Prof. Dr. Uwe Kastens

Cl-72

Dependency analysis for AGs

2 disjoint sets of attributes for each symbol X:
Al (X) : inherited (dt. erworben), computed in upper contexts of X
AS (X): synthesized (dt. abgeleitet), computed in lower contexts of X.

upper context of X Yy

p: Y =uXv dependencies
between
attributes

Objective: Partition of
attribute sets, such that

Ve / \ Al (X, i) is computed
context switch before the i-th visit of X

on tree walk AS (X, i) is computed
during the i-th visit of X

u

lower context of X
q:X:i=w

Necessary precondition for the existence of such a partition:
No node in any tree has direct or indirect dependencies that contradict the evaluation order of

the sequence of sets: Al (X, 1), AS (X, 1), ..., Al (X, k), AS (X, k)

© 2001 bei Prof. Dr. Uwe Kastens

Dependency graphs for AG Binary numbers

CI-73

DV /N
pl L LS
g Y v
//\i p3 p4
Y
L S 5
Ig Y lg | '
4 \ \\ i
- \ \v/A
//F‘
L 3
p2 lg v
B S
5
L B S p5
Ig Y \
4 \
- P T N
indirect -

dependency

© 2002 bei Prof. Dr. Uwe Kastens

Cl-74

Construction of attribute evaluators

For a given attribute grammar an attribute evaluator is constructed:
- It is applicable to any tree that obeys the abstract syntax specified in the rules of the AG.

o It performs a tree walk and
executes computations when visiting a context for which they are specified.

« The execution order obeys the attribute dependencies

Pass-oriented strategies for the tree walk: AG class
k times depth-first left-to-right LAG (k)
k times depth-first alternatingly left-to-right / right-to left ~ AAG (K)
once bottom-up SAG

The attribute dependencies of the AG are checked
whether the desired pass-oriented strategy is applicable; see LAG(K) algorithm.

non-pass-oriented strategies:
visit-sequences OAG
an individual plan for each rule of the abstract syntax

Generator fits the plans to the dependencies.

© 2001 bei Prof. Dr. Uwe Kastens

Visit-sequences

A visit-sequence (dt. Besuchssequenz) vs, for each production
P: Xg 1= Xq oo Xj o Xp

A visit-sequence is a sequence of operations
Ly j-th visit of the i-th subtree
] j-th return to the ancestor node
eval. execution of a computation c¢ associated to p

Example in the tree: visit-sequences

VSp: ... 1C1...1B,1...1C,2...11
// \ // \

Implementation:
one procedure for each section of a visit-sequence upto 1
a call with a switch over applicable productions for |

of the tree grammar:

attribute partitions
guaranty
correct interleaving:

CI-75

Al (X,1) Al (X,2)
S (x,1\ AS (X,2

© 2001 bei Prof. Dr. Uwe Kastens

Visit-sequences for the AG Binary numbers o

vspp: D=LV L

IL[1],1; L[1].s=0; IL[1],2; (L[2],1; L[2].s=NEG(L[2].I9);

1L[2],2; D.v=ADD(L[1].v, L[2].v); 11
VSpptLi=LB

1L[2],1; L[1].lg=ADD(L[2].Ilg,1); 11

L[2].s=ADD(L[1].5,1); (L[2],2; B.s=L[1].s; !B,1;L[1].v=ADD(L[2].v, B.v); 12
VSp3:L:i=B

L.Ilg=1; 11; B.s=L.s; 1B,1; Lv=B.v; 12

VSpy: B =0
B.v=0; 11
VSps: B ii="1

B.v=Power2(B.s); 11

Implementation
Procedure vs<i><p> for each section ofavs,toa i

a call with a switch over alternative rules for | X,i

© 2001 bei Prof. Dr. Uwe Kastens

Tree walk for AG Binary numbers

D

pl

5.25

Cl-76a

tree walk

!

attributes:

© 2001 bei Prof. Dr. Uwe Kastens

Cl-77

LAG (k) condition and algorithm

An AG is a LAG(K), if: For each symbol X there is an attribute partition A (X,1), ..., A (X, k),
such that the attributes in A (X, i) can be computed in the i-th depth-first left-to-right pass.

Necessary and sufficient condition over dependency graphs - expressed graphically:

A dependency ﬂ i /\F i A dependency
from right to left b a 2 b at one symbol

X Y X on the right-hand
[]]]] side

A(X,)) A(Y,i) AXi) A(X))
j>i <]

Algorithm: computes A (1), ..., A (k), if the AG is LAG(K), for i=1, 2, ...
A (i) := all attributes that are not yet assigned
remove attributes from A(i) as long as the following rules are applicable:

« remove X.b, if there is a context where it depends on an attribute of A (i) according to the
pattern given above,

e remove Z.c, if it depends on a removed attribute

Finally : all attributes are assigned to a passesi=1, ..., kK the AG is LAG(k)
all attributes are removed from A(i) the AG is not LAG(k) for any k

CI-78

Generators for attribute grammars

LIGA University of Paderborn OAG

FNC-2 INRIA ANCAG (Oberklasse von OAG)
Synthesizer Generator Cornell University OAG, inkrementell

CoCo Universitat Linz LAG(1)

Properties of the generator LIGA

integrated in the Eli system , cooperates with other Eli tools

high level specification language Lido

modular and reusable AG components

object-oriented constructs usable for abstraction of computational patterns
computations are calls of functions implemented outside the AG
side-effect computations can be controlled by dependencies

notations for remote attribute access

visit-sequence controlled attribute evaluators, implemented in C

attribute storage optimization

© 2001 bei Prof. Dr. Uwe Kastens

State attributes without values

RULE: Root ::= Expr COMPUTE
Expr.print = "yes";
printf ("\n") <- Expr.printed;
END;

RULE: Expr ::= Number COMPUTE
Expr.printed =
printf ("%d ", Number) <- Expr.print;
END;

RULE: Opr ::='+' COMPUTE
Opr.printed = printf ("+ ") <- Opr.print;
END,;

RULE: Opr ="' COMPUTE
Opr.printed = printf ("* ") <- Opr.print;
END,;

RULE: Expr ::= Expr Opr Expr COMPUTE
Expr[2].print = Expr[1].print;
Expr[3].print = Expr[2].printed;
Opr.print = Expr[3].printed;
Expr[1].printed = Opr.printed,;

END,;

Cl-78a

The attributes print
and printed do not
have a value

They just describe pre-
and post-conditions of
computations:

Expr.print:
postfix output has
been done up to
not including this
node

Expr.printed:
postfix output has
been done up to
including this node

© 2001 bei Prof. Dr. Uwe Kastens

CI-78b

Dependency pattern CHAIN

A CHAIN specifies a

CHAIN print: VOID; ' '
prin left-to-right depth-first

RULE: Root ::= EXpI’ COMPUTE dependency through a
CHAINSTART HEAD.print = "yes"; subtree.
printf ("\n ") <- TAIL.print;
END: Trivial computations of
RULE: Expr ::= Number COMPUTE the form X.a = ¥.b in the

CHAIN order can be

Expr.print = :
printf ("%d ", Number) <- Expr.print; omitted . They are added
END: as needed.

RULE: Opr ::="'+' COMPUTE
Opr.post = printf ("+") <- Opr.pre;

END;

RULE: Expr ::= Expr Opr Expr COMPUTE
Opr.pre = Expr[3].print;
Expr[1].print = Opr.post;

END;

© 2001 bei Prof. Dr. Uwe Kastens

Cl-78c

Dependency pattern INCLUDING

ATTR depth: int;

RULE: Root ::= Block COMPUTE
Block.depth = 0;

END:;
RULE: Statement ::= Block COMPUTE
Block.depth =
ADD (INCLUDING Block.depth, 1);
END:;

TERM ldent: int;

RULE: Definition ::= ‘define' Ident COMPUTE
printf ("%s defined on depth %d\n ",
StringTable (Ident),
INCLUDING Block.depth);
END;

INCLUDING Block.depth
accesses the depth attribut of the next upper node of
type Block .

An attribute at the root of
a subtree is used from
within the subtree .

Propagation through the
contexts in between is
omitted .

© 2001 bei Prof. Dr. Uwe Kastens

Cl-78d

Dependency pattern CONSTITUENTS

A computation accesses
attributes from the
subtree below its context.

RULE: Block ::="'{' Sequence '}' COMPUTE
Block.DefDone =
CONSTITUENTS Definition.DefDone;

END; Propagation through the
RULE: Definition ::= 'Define' Ident COMPUTE con_texts in between is
Definition.DefDone = omitted .

printf ("%s defined in line %d\n",

StringTable(ldent), LINE);
END:; The shown combination

RULE: Usage ::= 'use’ Ident COMPUTE with INCLUDING Is a
printf ("%s used in line %d\n ", common dependency
StringTable(ldent), LINE), pattern.
<- INCLUDING BLOCK.DefDone:
END:

CONSTITUENTS Definition.DefDone accesses the
DefDone attributes of all Definition nodes in the
subtree below this context

