
4.2 Definition module

Central data structure, stores properties of program entities
 e. g. type of a variable, element type of an array type

A program entity is identified by the key of its entry in the data structure.

Operations:

NewKey () yields a new key

ResetP (k, v) sets the property P to have the value v for key k

SetP (k, v, d) as ResetP; but the property is set to d if it has been set before

GetP (k, d) yields the value of the Property P for the key k;
yields the default-Wert d, if P has not been set

Operations are called as dependent computations in the tree

Implementation: a property list for every key, for example

Generation of the definition module : From specifications of the form

Property name : property type;
ElementNumber: int;

functions ResetElementNumber, SetElementNumber, GetElementNumber are generated.

CI-79

4.3 Type analysis

Task: Compute and check types of program entities and constructs at compile time

CI-80

• defined entities (e. g. variables)
have a type property , stored in the definition module

• program constructs (e. g. expressions)
have a type attribute, associated to their symbol resp. tree node
special task: resolution of overloaded operators (functions, methods)

• types themselves are program entities
represented by keys;
named using type definitions; unnamed in complex type notations

• types have properties
e. g. the element type of an array type

• type checking for program entities and for program constructs
a type must / may not have certain properties in certain contexts
compare expected and given type; type relations : equal, compatible;
compute type coercion

Declarations and type notations
CI-81

Declaration
Type

TypeNotation
Type

DefIdent
Key

DefIdent
Key

TypeNotation
Type

TypeNotation
Type

ResetTypeOf (,)
ResetIndexType (,)

ResetElemTyp e (,)

NewKey ()

ResetTypeOf (,)

a, b: array [1..10] of real;

create type entry and

set its properties

Variables:
set their type property

operations in the tree for the construct:

Types of expressions required by context

Stmt

Variable
Type

Expr
Type ReqType

UseIdent
Key Type

Variable
Type

Variable
Type

Expr
Type ReqType

Compatibl e (,)

GetTypeOf () GetElemType ()

GetIndexType ()

x := a[i];

operations in the tree for:

compute
type attributes

check typecompute
type attributes

CI-82

Overloading resolution for operators
Overloading : same operator symbol (source operator) is used for several target operators
having different signatures and different meanings , e. g. specified by a table like:

symbol signature meaning
+ int ✕ int -> int addition of integral numbers
+ real ✕ real -> real floating point addition
+ set ✕ set -> set union of sets
= t ✕ t -> boolean comparison for values of type t

Coercion: implicitly applicable type conversion: e. g. int -> real, char -> string, ...

CI-83

BinOpr
LType SrcOpr TgtOpr RType

Coercible (,)

IdentifyOpr (, ,)

Expr
Type ReqType

Expr
Type ReqType

Expr
Type ReqType

Context of overloaded binary operators:

given: source operator and operand types
find: target operator

©
 2

00
2

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Type analysis for object-oriented languages

Class hierarchy is a type hierarchy:

implicit type coercion: class -> super class
explicit type cast: class -> subclass

Variable of class type may contain
an object (reference) of its subclass

Check signature of overriding methods:

calls must be type safe; Java requires the same signature;
following weaker requirements are sufficient (contra variant parameters, language Sather):

Analyse dynamic methode binding; try to decide it statically:

static analysis tries to further restrict the run-time type:

GeometricShape f;...; f = new Circle(...);...; a = f.area();

CI-84

X x; A a; P p;
a = x.m (p);

class X { C m (Q q) { use of q;... return c; } }

class Y { B m (R r) { use of r;... return b; } }

C c; B b;
Variable:call of dynamically

bound method:

super class

subclass

Circle k = new Circle (...);

GeometricShape f = k;

k = (Circle) f;

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Type analysis for functional languages (1)

Static typing and type checking without types in declarations

Type inference : Types of program entities are inferred from the context where they are used

CI-85

cnt: 'a,
fct: 'b->'c,
choice: ('a * ('b->'c)) -> 'd

'c = bool
'b = 'a
'd = 'a
'a = int

Example in ML:

describe the types of entities using type variables:

form equations that describe the uses of typed entities

solve the system of equations:

fun choice (cnt, fct) =
if fct cnt then cnt else cnt - 1;

choice: (int * (int->bool)) -> int

©
 2

00
2

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Type analysis for functional languages (2)

Parametrically polymorphic types: types having type parameters

Example in ML:

fun map (l, f) =
if null l
then nil
else (f (hd l)) :: map (tl l, f)

polymorphic signature:

map: ('a list * ('a -> 'b)) -> 'b list

Type inference yields most general type of the function,
such that all uses of entities in operations are correct;

i. e. as many unbound type parameters as possible

calls with different concrete types, consistently substituted for the type parameter:

map([1,2,3], fn i => i*i) 'a = int, 'b = int
map([1,2,3], even) 'a = int, 'b = bool
map([1,2,3], fn i =(i,i)) 'a = int, 'b = ('a*'a)

CI-86

