CI-79

4.2 Definition module

Central data structure, stores properties of program entities
e. g. type of a variable, element type of an array type
A program entity is identified by the key of its entry in the data structure.
Operations:
NewKey () yields a new key
ResetP (k, v) sets the property P to have the value v for key k
SetP (k, v, d) as ResetP; but the property is set to d if it has been set before

GetP (k, d) yields the value of the Property P for the key k;
yields the default-Wert d, if P has not been set

Operations are called as dependent computations in the tree

Implementation: a property list for every key, for example
Generation of the definition module : From specifications of the form

Property name : property type;
ElementNumber: int;

functions ResetElementNumber, SetElementNumber, GetElementNumber are generated.

CI-80

4.3 Type analysis

Task: Compute and check types of program entities and constructs at compile time

- defined entities (e. g. variables)
have a type property , stored in the definition module

program constructs (e. g. expressions)
have a type attribute, associated to their symbol resp. tree node
special task: resolution of overloaded operators (functions, methods)

types themselves are program entities
represented by keys;
named using type definitions; unnamed in complex type notations

types have properties
e. g. the element type of an array type

type checking for program entities and for program constructs

a type must / may not have certain properties in certain contexts
compare expected and given type; type relations : equal, compatible;
compute type coercion

Cl-81

Declarations and type notations
operations in the tree for the construct:
a, b: array [1..10] of real;

create type entry and

_~" | Declaration | >« set its properties

e Type AN
| Defldent | | Defldent | ,/ I{pel\l,qta,tigrl I
Key Key | L/ Ty\pe |
ResetTypeOf &) /// NewKey (3\
ya \
ResetTypeor (1] - ResetindexType (,) X \

. ’ ResetElemTyp e (,) \
Variables: / \
settheir type property ,Typ@NO,taﬁgrl | \TypeNotation |

Type Type

Cl-82
Types of expressions required by context
operations in the tree for:
x = ali;
- LStmt | T~
 Variable| Expr X
| Type g TypelReqType
\ !
| | .
compute | ! N Compatibl e () check type
type attributes | ! ' !
Useldent K ariable |
| Key Type '] " Tvpe |
/ Type \\\ compute
! \ type attributes
GetTypeof() // GetE/emType () \\ yp

/[GetindexType () N

/ \

Variable - E)g)[x

Type 7Type Requpé

CI-83
Overloading resolution for operators

Overloading : same operator symbol (source operator) is used for several target operators
having different signatures and different meanings , e. g. specified by a table like:

symbol signature meaning
+ int 0 int -> int addition of integral numbers
+ real O real -> real floating point addition
+ set [set -> set union of sets
= t 0 t -> boolean comparison for values of type t

Coercion: implicitly applicable type conversion: e. g. int -> real, char -> string, ...

Context of overloaded binary operators: Expr

Type ReqType

)
Coem

Expr y A BinOpr [v _ [| Expr ¥

7Type Requipiei LT)lpe Srcfpr TgtOpr R'l’ype Type ReqType
[y

given: source operator and operand types ; $
find: target operator IdentifyOpr (.,)

© 2001 bei Prof. Dr. Uwe Kastens

CI-85

Type analysis for functional languages (1)

Static typing and type checking without types in declarations
Type inference : Types of program entities are inferred from the context where they are used

Example in ML:
fun choice (cnt, fct) =
if fct cnt then cnt else cnt - 1;

describe the types of entities using type variables:

cnt: a,
fet: 'b->'c,
choice: (‘a* ('b->'c)) ->'d

form equations that describe the uses of typed entities

¢ =bool
b ='a
ld :la
'‘a =int

solve the system of equations: o))
choice: (int * (int->bool)) -> int

© 2002 bei Prof. Dr. Uwe Kastens

Type analysis for object-oriented languages

Class hierarchy is a type hierarchy: Circle k = new Circle (...);

implicit type coercion: class -> super class GeometricShape f = k;
explicit type cast: class -> subclass
pIetyp k = (Circle) f;

Variable of class type may contain
an object (reference) of its subclass

Check signature of overriding methods:
calls must be type safe; Java requires the same signature;

Cl-84

following weaker requirements are sufficient (contra variant parameters, language Sather):

call of dynamically ; “XxAa Pp:
bound method: a=xm (p); Variable: A >é A g p;
super class classX{Cm (Qaq){ use of q;...returnc; }}
subclass classY{Bm (Rr){ use of r;... return b; } }

Analyse dynamic methode binding; try to decide it statically:
static analysis tries to further restrict the run-time type:

GeometricShape f;...; f = new Circle(...);...; a = f.area();

© 2002 bei Prof. Dr. Uwe Kastens

Type analysis for functional languages (2)

Parametrically polymorphic types: types having type parameters

Example in ML:

funmap (I, f) =
if null |
then nil
else (f(hd I)) :: map (tl I, f)

polymorphic signature:
map: (‘alist * (‘a -> 'b)) -> 'b list

Type inference yields most general type of the function,
such that all uses of entities in operations are correct;

i. e. as many unbound type parameters as possible

calls with different concrete types, consistently substituted for the type parameter:

map([1,2,3], fn i =>i*) '‘a=int,'b =int
map([1,2,3], even) '‘a=int, 'b = bool
map([1,2,3], fn i =(i,i)) ‘a=int,'b = (‘a*'a)

Cl-86

