© 2002 bei Prof. Dr. Uwe Kastens

Uwe Kastens

Cl-97

6. Synthesis: An Overview

Source program
Lexical analysis

Token sequence
Syntactic analysis

L

Abstract program tree

Semantic analysis program analysis

Transformation

Analysis (frontend)

Intermediate language

- optimizing transformation

Optimization (DFA) ____—code & storage mapping

Code generation | _

= |Peephole obfﬁwﬁi\'éﬁ'orr~'{—VW,,,,,,,%%
— ~register allocation

Synthesis (backend)

code selection

. Abstract
machine program

/
/
/

Assembly

Target program ~ . . .
automatic parallelization

© 2002 bei Prof. Dr.

Cl-99

Optimizing Transformations

Name of transformation:

2*3.14 x+0 x*2 x**2
X=2;..y=x*5;

x=a*(b+c);...y=(b+c)/2;
Xx=a+b;..x=5;

« Algebraic simplification of expressions

« Constant propagation (dt. Konstantenweitergabe)

+ Common subexpressions (Gemeinsame Teilausdriicke)

- Dead variables (Uberfliissige Zuweisungen)

« Copy propagation (Uberfliissige Kopieranweisungen)

« Dead code (nicht erreichbarer Code) b =true;...if (b) x =5; elsey = 7;

« Code motion (Code-Verschiebung) if (c) x = (a+b)*2; else x = (a+h)/2;

int Sqgr (inti) {returni*i; }
while (b) {..

X=Y, i Z2=X

« Function inlining (Einsetzen von Aufrufen)
» Loop invariant code

* Induction variables in loops ) ) o
i = 1; while (b) { k = i*3; f(k); i = i+1;}
Analysis checks preconditions for safe application of each transformation;
more applications, if preconditions are analysed in larger contexts.

Interdependences:
Application of a transformation may enable or inhibit another application of a transformation.

Order of transformations is relevant.

Example for its application:

© 2002 bei Prof. Dr. Uwe Kastens

Cl-98
Optimization

Objective: Reduce run-time and/or code size of the program, without changing its effect.
Eliminate redundant computations, simplify computations.

Input: Program in intermediate language
Task: Analysis (find redundancies), apply transformations
Output: Improved program in intermediate language

Program analysis:
static properties of program structure and execution
safe, pessimistic assumptions where input and dynamic execution paths are not known

Context of analysis:

Expression local optimization
Basic block local optimization
Control flow graph (procedure) global intra-procedural optimization
Control flow graph, call graph global inter-procedural optimization

© 2002 bei Prof. Dr. Uwe Kastens

CI-100

Analysis in Compilers

__ syntactic structure

program entities
B properties
" relations

Source program
Lexical analysis

Token sequence
Syntactic analysis -

Abstract program tree _— — control-flow graph

I<I¢
\
\

Semantic analysis
data-flow information

Transformation

Analysis (frontend)

Intermediate language |
Optimizati DFA
Synthesis (backend) 1]

Code generation

_ use-def relations

— data dependency graph

~ .
= dominator tree, loops

—

Abstract = [Peephole optimization |

machine program

call graph

W

Assembly
Target program




© 2002 bei Prof. Dr. Uwe Kastens

Uwe Kastens

Example for a Control-flow Graph

Intermediate code with basic blocks:

1 receive m
2 f0<-0
3 fl<1 Bl
4 if m<=1goto L3
5 i<-2 B3
6 ‘Ll: if i <= m goto L2 \ B4
7 ‘ return 2 ‘ B5
8|L2: f2<-fO+fl
9 fo<-f1
10 fl<-f2 B6
11 i<-i+1
12 goto L1
13|L3: return m B2

Cl-101

Control-flow graph:

[Muchnick, p. 172]

entry
v
Bl
v
B3
R —
B4
v l
B5 B6
]

exit

© 2006 bei Prof. Dr.

Specification of a DFA Problem

Specification of reaching definitions:
- Description:

A definiton d of a variable v reaches the begin of a block B
if there is a path from d to B on which v is not assigned again.

It is a forward problem.
The meet operator is union.

The analysis information in the sets are

assignments at certain program positions.

Gen (B):

contains all definitions d: v = g; in B,
such that v is not defined after d in B.
Kill (B):

if v is assigned in B, then Kill(B)
contains all definitions d: v = g;
in blocks different from B,

such that B has a definition of v.

CI-103

2 equations for each basic block:

Out(B)=Gen (B) O

(In (B) - Kill (B))

In (B =\ poreqsy UM
B

— —

pred (B) | (In - Kill) O Gen = Out

/

L
\

Uwe Kastens

© 2006 bei Prof. Dr

Cl-102

Data-Flow Analysis
Data-flow analysis (DFA) provides information about how the execution of a program may
manipulate its data.

Many different problems can be formulated as data-flow problems, for example:
« Which assignments to variable v may influence a use of v at a certain program position?

« |Is a variable v used on any path from a program position p to the exit node?
« The values of which expressions are available at program position p?

Data-flow problems are stated in terms of
« paths through the control-flow graph and

» properties of basic blocks.
Data-flow analysis provides information for global optimization.

Data-flow analysis does not know
« input values provided at run-time,

« branches taken at run-time.

Its results are to be interpreted pessimistic.

© 2002 bei Prof. Dr. Uwe Kastens

Cl-104
Call Graphs for object-oriented programs

The call graph is reduced to a set of reachable methods using the
class hierarchy and the static type of the receiver expression in the call:

If a method F-p is reachable and
if it contains a dynamically bound call v.m(...) and
T is the static type of v,

then every method m that is inherited by T or by a subtype of T
is also reachable, and arcs go from F-p to them.

Call graph for F-p containing v.m(...)

class A
method m : . .
method p Am Ap static type: F v;
class B class C
method m method m B-m C-m
class D class E class F \
method m method p F-p

/ \ E-m
method m G-m




Uwe Kastens

© 2002 bei Prof. Dr.

Uwe Kastens

CI-105
Code Generation

Input: Program in intermediate language

Tasks:

properties of program objects (size, address) in the definition module
Code selection generate instruction sequence, optimizing selection
Register allocation  use of registers for intermediate results and for variables

Output: abstract machine program, stored in a data structure

Storage mapping

Design of code generation:

- analyze properties of the target processor

- plan storage mapping

- design at least one instruction sequence for each operation of the intermediate language

Implementation of code generation:

 Storage mapping:
a traversal through the program and the definition module computes
sizes and addresses of storage objects

« Code selection: use a generator for pattern matching in trees

- Register allocation:
methods for expression trees, basic blocks, and for CFGs

© 2006 bei Prof. Dr.

CI-107

Run-Time Stack

Run-time stack contains one activation record for each active function call.
Activation record provides storage local data of a function call. (see C-31)

Nested functions (nested classes and objects): static predecessor chain
links the accessible activation records, closure of a function

h Tfloat a; .
q .. hia:t static
Rinehons i " fnke
e q Ir:: | —
int b; .
b=i+1; q :, | —
rQ; r
= i H— ]
L a0; push, pop 4 b=i+1;

Requirement: The closure of a function is still on the run-time stack when the function is called.
Languages without recursive functions (FORTRAN) do not use a run-time stack.

Optimization: activation records of non-recursive functions may be allocated statically.
Parallel processes, threads, coroutines need a separate run-time stack each.

© 2002 bei Prof. Dr. Uwe Kastens

Cl-106
Storage Mapping
Objective:
for each storable program object compute storage class, relative address, size
Implementation:
use properties in the definition module, travers defined program objects

Design the use of storage areas:

code storage progam code

global data to be linked for all compilation units

run-time stack  activation records for function calls

heap storage for dynamically allocated objects, garbage collection

addressing of storage areas (e. g. stack pointer)
function results, arguments
local variables, intermediate results (register allocation )

registers for

Design the type mapping ... C-29

© 2006 bei Prof. Dr. Uwe Kastens

Cl-108
Code Sequences for Control Statements

A code sequence defines how a control statement is transformed into jumps and labels.

Several variants of code sequences may be defined for one statement.

Example:
while (Condition) Body M1: Code (Condition, false, M2)
Code (Body)
goto M1
M2:
variant:
goto M2

M1: Code (Body)
M2:  Code (Condition, true, M1)

Meaning of the Code constructs:
Code (S):
Code (C, true, M)

generate code for statements S

generate code for condition C such that
it branches to M if Cis true,
otherwise control continues without branching




© 2002 bei Prof. Dr. Uwe Kastens

Uwe Kastens

© 2006 bei Prof. Dr.

CI-109
Example for Code Selection
tree for assignment ... = a[il.s;
R5
cont Coslt?2718)
/oacﬂ
R4,12 | R2,18
addradd addradd
Rz,lz/ add R3 R2,1 6
addradd Coé‘St load aggzjadd c%nst
Rs,l/v/add\ R1 Rs,;/ \ R1
addr cont addr cont
R6,12 /oauL R6,12 load ps o
6.8 aiko
add?® R6:8
R6,8 '
load (R6,8), R1
00 Koa ol RS add R6,R1R2
load 6,R3 store (R2,18),...
%%%7/%5?2?%5 cost: 3 instructions
store R5, ...
cost: 6 instructions
Cl-111
Example for Graph Coloring
CFG with definitions and uses of variables interference graph
a-= d2 d1 d3
B1 c:= f a d
f:=
a
a = c b e
B2 | 4= b:= B3 43 d2 d1
c
v . v
d:= =
B4 | 5 o= B5
b

B6

QT

Uwe Kastens

© 2002 bei Prof. Dr

CI-110
Register Allocation

Use of registers:
intermediate results of expression evaluation
reused results of expression evaluation (CSE)
contents of frequently used variables
parameters of functions, function result (cf. register windowing)
stack pointer, frame pointer, heap pointer, ...
Number of registers is limited - for each register class: address, integer, floting point

register allocation aims at ruduction of

- number of memory accesses

« spill code, i. e. instructions that store and reload the contents of registers
specific allocation methods for different context ranges:

- expression trees (Sethi, Ullman)

« basic blocks (Belady)

« control flow graphs (graph coloring)

useful technique: defer register allocation until a later phase,
use an unbound set of symbolic registers instead

© 2006 bei Prof. Dr. Uwe Kastens

Cl-112

Code Parallelization

Target processor executes several instructions in parallel.
Compiler arranges instruction sequence for shortest execution time: instruction scheduling

Principles of parallelism in processors:

Data parallel processor
vector processor

Parallel functional units (FU)

super scalar, VLIW: ) .
all FUs execute the same instruction

| Fu1 [ Fu2 | Fu3 | on individual data (SIMD)

[Fuo] .. [Fusi]
parallelized \ /"

instruction fori:=0to 31
sequence do cfi] := afi] + b [i;
is one instruction!

Analyze and transform loops

Pipeline processor

s3s | s2 [ st W4 W

sequential code scheduled for pipelining




Uwe Kastens

© 2006 bei Prof. Dr.

CI-113
Software Pipelining
Technique for parallelization of loops.
A single loop body does not exhibit enough parallelism => sparse schedule.
Idea of software pipelining:
transformed loop body executes several loop iterations in parallel,
iterations are shifted in time => compact schedule
Prologue, epilogue: initiation and finalization code
Technique:
1. DDG for loop body without with software pipelining
with dependencies into Il
later iterations I prologue
2. Find a schedule such that o a B m tlgaonsformed
iterations can begin with 9 - - - P
a short initiation interval Il epilogue

3. Construct new loop,

prologue, and epilogue II: Initiation Interval

Uwe Kastens

© 2006 bei Prof. Dr

Loop Parallelization

Compilation steps: DECLARE B[0..N,0..N+1]

« nested loops operating on arrays, FOR1:=1.N
sequentiell execution of iteration space FORdi !
B[I-1,9]+B[I-1,3-1]
END FOR
END FOR

- analyze data dependencies
data-flow: definition and use of array elements

» transform loops .
keep data dependencies intact :

(4 44 4 ’,

- parallelize inner loop(s) | §
map onto field or vector of processors

+ map arrays onto processors
such that many acceses are local,
transform index spaces

Cl-114




