
©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Compiler I

(dt. Übersetzer I)

Prof. Dr. Uwe Kastens

Winter 2001/2002

CI-1 Lecture Compiler I WS 2001/2002 / Slide 01

In the lecture:

Welcome to the lecture!

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Objectives
CI-2

Lectures

Tutorials

Homeworks

Exercises
Running project

Forms of teaching:

The participants are taught to

• understand fundamental techniques of language implementation,

• use generating tools and standard solutions ,

• understand compiler construction as a systematic combination of
algorithms, theories and software engineering methods for the solution of a
precisely specified task ,

• apply compiler techniques for languages other than programming languages .

Lecture Compiler I WS 2001/2002 / Slide 02

Objectives:

Understand the objectives of the course.

In the lecture:

The objectives are explained.

Questions:

• What are your objectives?

• Do they match with these?

• When did you last listen to a talk given in English?

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Lectures in English

Some agreements about giving lectures in English:

• I’ll speak English unless someone asks me to explain something in German.

• Stop me or slow me down whenever you get lost.

• I don‘t speak as well as a native speaker; but I’ll do my best ...

• You may ask questions and give answers in English or in German.

• I’ll prepare the slides in English. A German version is available.

• You‘ll have to learn to speak about the material in at least one of the two languages.

• You may vote which language to be used in the tutorials.

• You may chose German or English for the oral exam.

CI-3 Lecture Compiler I WS 2001/2002 / Slide 03

Objectives:

Clarification about the use of the English language in this course

In the lecture:

The topics on the slide are discussed.

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Syllabus

Week Chapter Topic

1 Introduction Compiler tasks
2 Compiler structure

3 Lexical analysis Scanning, token representation

4 Syntactic analysis Recursive decent parsing
5 LR Parsing
6 Parser generators
7 Grammar design

8 Semantic analysis Attribute grammars
9 Attribute grammar specifications

10 Name analysis
11 Type analysis

12 Transformation Intermediate language, target trees
13 Target texts

14 Synthesis Overview

15 Summary

CI-4 Lecture Compiler I WS 2001/2002 / Slide 04

Objectives:

Overview over the topics of the course

In the lecture:

Comments on the topics.

Prerequisites

from Lecture Topic here needed for

Foundations of Programming Languages:

4 levels of language properties Compiler tasks, compiler structure

Context-free grammars Syntactic analysis

Scope rules Name analysis

Data types Type analysis

Lifetime, runtime stack Storage model, code generation

Modeling:
Finite automata Lexical analysis

Context-free grammars Syntactic analysis

CI-5 Lecture Compiler I WS 2001/2002 / Slide 05

Objectives:

Identify concrete topics of other courses

In the lecture:

Point to material to be used for repetition

Suggested reading:

 Course material for Foundations of Programming Languages

 Course material for Modeling

Questions:

• Do you have the prerequisites?

• Are you going to learn or to repeat that material?

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

References

Material for this course Compiler I : http://www.uni-paderborn.de/cs/ag-kastens/compi
in German Übersetzer I (1999/2000): http://www.uni-paderborn.de/cs/ag-kastens/uebi
in English Compiler II : http://www.uni-paderborn.de/cs/ag-kastens/uebii

Modellierung : http://www.uni-paderborn.de/cs/ag-kastens/model
Grundlagen der Programmiersprachen : http://www.uni-paderborn.de/cs/ag-kastens/gdp

U. Kastens: Übersetzerbau , Handbuch der Informatik 3.3, Oldenbourg, 1990
(not available on the market anymore, available in the library of the University)

W. M. Waite, L. R. Carter: An Introduction to Compiler Construction,
Harper Collins, New York, 1993

W. M. Waite, G. Goos: Compiler Construction , Springer-Verlag, 1983

R. Wilhelm, D. Maurer: Übersetzerbau - Theorie, Konstruktion, Generierung ,
Springer-Verlag, 1992

A. Aho, R. Sethi, J. D. Ullman: Compilers - Principles, Techniques and Tools ,
Addison-Wesley, 1986

A. W. Appel: Modern Compiler Implementation in C , Cambridge University Press, 1997
(available for Java and for ML, too)

CI-6 Lecture Compiler I WS 2001/2002 / Slide 06

Objectives:

Useful references for the course

In the lecture:

Comments of the course material and books

• The material for this course is being translated from the material of "Übersetzer I (WS 1999/2000)" while the course is
given

• The course "Compiler II" will follow next semester.

Questions:

• Find the material in the Web, get used to its structure, place suitable bookmarks.

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Course material in the Web

CI-7 Lecture Compiler I WS 2001/2002 / Slide 07

Objectives:

The root page of the course material.

In the lecture:

The navigation structure is explained.

Assignments:

Explore the course material.

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Commented slide in the course material
CI-7a Lecture Compiler I WS 2001/2002 / Slide 07a

Objectives:

A slide of the course material.

In the lecture:

The comments are explained.

Assignments:

Explore the course material.

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
What does a compiler compile?

A compiler transforms correct sentences of its source language into sentences of its
target language such that their meaning is unchanged.

Examples :

Source language: Target language:

Programming language Machine language
C++ Sparc code

Programming language Abstract machine
Java Java Bytecode

Programming language Programming language (source-to-source)
C++ C

Application language Application language
LaTeX HTML
Data base language (SQL) Data base system calls

CI-8 Lecture Compiler I WS 2001/2002 / Slide 08

Objectives:

Variety of compiler applications

In the lecture:

Explain examples for pairs of source and target languages.

Suggested reading:

Kastens / Übersetzerbau, Section 1.

Assignments:

• Find more examples for application languages.

• Exercise 3 Recognize patterns in the target programs compiled from simple source programs.

Questions:

What are reasons to compile into other than machine languages?

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

What is compiled here?
CI-9

 class Average

 { private:

 int sum, count;

 public:

 Average (void)

 { sum = 0; count = 0; }

 void Enter (int val)

{ sum = sum + val; count++; }

 float GetAverage (void)

 { return sum / count; }

 };

_Enter__7Averagei:

 pushl %ebp

 movl %esp,%ebp

 movl 8(%ebp),%edx

 movl 12(%ebp),%eax

 addl %eax,(%edx)

 incl 4(%edx)

 L6:

 movl %ebp,%esp

 popl %ebp

 ret

class Average
{ private
 int sum, count;
 public
 Average ()
 { sum = 0; count = 0; }
 void Enter (int val)
 { sum = sum + val; count++; }
 float GetAverage ()
 { return sum / count; }
};

1: Enter: (int) --> void
 Access: []
 Attribute ‚Code‘ (Length 49)
 Code: 21 Bytes Stackdepth: 3 Locals: 2
 0: aload_0
 1: aload_0
 2: getfield cp4
 5: iload_1
 6: iadd
 7: putfield cp4
 10: aload_0
 11: dup
 12: getfield cp3
 15: iconst_1
 16: iadd

Lecture Compiler I WS 2001/2002 / Slide 09

Objectives:

Recognize examples for compilations

In the lecture:

Anwer the questions below.

Questions:

• Which source and target language are shown here?

• How did you recognize them?

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
What is compiled here?

CI-10

 program Average;

 var sum, count: integer;

 aver: integer;

 procedure Enter (val: integer);

 begin sum := sum + val;

 count := count + 1;

 end;

 begin

 sum := 0; count := 0;

 Enter (5); Enter (7);

 aver := sum div count;

 end.

void ENTER_5 (char *slnk , int VAL_4)

 {

 {/* data definitions: */

 /* executable code: */

 {

 SUM_1 = (SUM_1)+(VAL_4);

 COUNT_2 = (COUNT_2)+(1);

 ;

 }

 }}/* ENTER_5 */

\documentstyle[12pt]{article}
\begin{document}
\section{Introduction}
This is a very short document.
It just shows
\begin{itemize}
\item an item, and
\item another item.
\end{itemize}
\end{document}

%%Page: 1 1
1 0 bop 164 315 a Fc(1)81
b(In)n(tro)r(duction)
164 425 y Fb(This)16
b(is)g(a)h(v)o(ery)e(short)
i(do)q(cumen)o(t.)j(It)c(just)g
(sho)o(ws)237 527 y Fa(\017)24 b
Fb(an)17 b(item,)
c(and)237 628 y Fa(\017)24 b
Fb(another)17 b(item.)
961 2607 y(1)p
eop

Lecture Compiler I WS 2001/2002 / Slide 10

Objectives:

Recognize examples for compilations

In the lecture:

Anwer the questions below.

Questions:

• Which source and target language are shown here?

• How did you recognize them?

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Languages for specification and modeling

SDL (CCITT) UML
Specification and Description Language: Unified Modeling Language:

CI-11 Lecture Compiler I WS 2001/2002 / Slide 11

Objectives:

Be aware of specification languages

In the lecture:

Comments on SDL and UML

Suggested reading:

Text

Questions:

What kind of tools are needed for such specification languages?

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Domain Specific Languages (DSL)

A language designed for a specific application domain.
Application Generator : Implementation of a DSL by a program generator

Examples:

• Simulation of mechatronic feedback systems

• Robot control

• Collecting data from instruments

• Testing car instruments

• Report generator for bibliographies:

CI-12

string name = InString "Which author?";
int since = InInt "Since which year?";
int cnt = 0;

"\nPapers of ", name, " since ", since, ":\n";

[SELECT name <= Author && since <= Year;
 cnt = cnt + 1;
 Year, "\t", Title, "\n";
]
"\n", name, " published ", cnt, "papers.\n";

U. Kastens: Construction of
Application Generators
Using Eli,
Workshop on Compiler
Techniques for Application
Domain Languages ...,
Linköping, April 1996

Lecture Compiler I WS 2001/2002 / Slide 12

Objectives:

Understand DSL by examples

In the lecture:

Explain the examples

Suggested reading:

• C.W. Krueger: Software Reuse, ACM Computing Surveys 24, June 1992

• Conference on DSL (USENIX), Santa Babara, Oct. 1997

• ACM SIGPLAN Workshop on DSL (POPL), Paris, Jan 1997

Questions:

Give examples for tools that can be used for such languages.

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Programming languages as source or target languages

Programming languages as source languages:

• Program analysis
call graphs, control-flow graph, data dependencies, e. g. for the year 2000 problem

• Recognition of structures and patterns
e. g. for Reengineering

Program languages as target languages:

• Specifications (SDL, OMT, UML)

• graphic modeling of structures

• DSL, Application generator

=> Compiler task: Source-to-source compilation

CI-13 Lecture Compiler I WS 2001/2002 / Slide 13

Objectives:

Understand programming languages in different roles

In the lecture:

• Comments on the examples

• Role of program analysis in software engineering

• Role of Source-to-source compilation in software engineering

Questions:

Give examples for the use of program analysis in software engineering.

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Semester project as running example

CI-14

Design a domain specific language .

Implement an application generator for it.

Apply all techniques of the course that are useful for the task.

A Structure Generator

We are going to develop a tool that implements record structures . In
particular, the structure generator takes a set of record descriptions . Each
specifies a set of named and typed fields . For each record a Java class
declaration is to be generated. It contains a constructor method and access
methods for the specified record fields.

The tool will be used in an environment where field description are created by
other tools, which for example analyze texts for the occurrence of certain
phrases. Hence, the descriptions of fields may occur in arbitrary order, and
the same field may be described more than once. The structure generator
accumulates the field descriptions such that for each record a single class
declaration is generated which has all fields of that record.

Lecture Compiler I WS 2001/2002 / Slide 14

Objectives:

Get an idea of the task

In the lecture:

• Comment the task description.

• Explain the role of the running example.

Assignments:

In the tutorial

• Discuss the task description.

• Explain the purpose of such a generator.

• Give examples for its input and output.

• What are the consequences of the second paragraph of the task description?

• Discuss variants of the input.

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Meaning preserving transformation

A compiler transforms correct sentences of its source language into sentences of its
target language such that their meaning is unchanged .

A meaning is defined only for correct programs. Compiler task: Error handling

The compiler analyses static properties of the program at compile time,
e. g. definitions of Variables, types of expressions. Decides: Is the program compilable?

Dynamic properties of the program are checked at runtime,
e. g. indexing of arrays. Decides: Is the program executable?

But in Java: Compilation of bytecode at runtime, just in time compilation (JIT)

Source language

Target language

Compilation

Execution

Meaning
described for
abstract machine

Language
definition

Machine
description

same results

CI-15 Lecture Compiler I WS 2001/2002 / Slide 15

Objectives:

Understand fundamental notions of compilation

In the lecture:

The topics on the slide are explained. Examples are given.

• Explain the role of the arcs in the commuting diagram.

• Distinguish compile time and run-time concepts.

• Discuss examples.

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Example: Tokens and structure

CI-16

Character sequence

int count = 0; double sum = 0.0; while (count<maxVect) { sum = sum+vect[count]; count++;}

int count = 0; double sum = 0.0; while (count<maxVect) { sum = sum+vect[count]; count++;}

Tokens

Expressions

StatementsDeclarations

Structure

Lecture Compiler I WS 2001/2002 / Slide 16

Objectives:

Get an idea of the structuring task

In the lecture:

Some requirements for recognizing tokens and deriving the program structure are discussed along the example:

• kinds of tokens,

• characters between tokens,

• nested structure

Questions:

Where do you find the exact requirements for the structuring tasks?

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Example: Names, types, generated code

0 iconst_0
1 istore_1
2 dconst_0
3 dstore_2
4 goto 19
7 dload_2
8 getstatic #5 <vect[]>
11 iload_1

12 faload
13 f2d
14 dadd
15 dstore_2
16 iinc 1 1
19 iload_1
20 getstatic #4 <maxVect>
23 if_icmplt 7

generated Bytecode

CI-17

int count = 0; double sum = 0.0; while (count<maxVect) { sum = sum+vect[count]; count++;}

Tokens

Names and types

int double int int
boolean

. . .k1: (count, local variable, int)
k2: (sum, local variable, double)

k3: (maxVect, member variable, int)
k4: (vect, member variable, double array)

Lecture Compiler I WS 2001/2002 / Slide 17

Objectives:

Get an idea of the name analysis and transformation task

In the lecture:

Some requirements for these tasks are discussed along the example:

• program objects and their properties,

• program constructs and their types

• target program

Questions:

• Why is the name (e.g. count) a property of a program object (e.g. k1)?

• Can you impose some structure on the target code?

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Language definition - Compiler task

• Notation of tokens lexical analysis
keywords, identifiers, literals
formal definition: regular expressions

• Syntactic structure syntactic analysis
formal definition: context-free grammar

• Static semantics semantic analysis, transformation
binding names to program objects, typing rules
usually defined by informal texts

• Dynamic semantics transformation, code generation
semantics, effect of the execution of constructs
usually defined by informal texts
in terms of an abstract machine

• Definition of the target language (machine) transformation, code generation
assembly

CI-18 Lecture Compiler I WS 2001/2002 / Slide 18

Objectives:

Relate language properties to levels of definitions

In the lecture:

• These are prerequisites of the course "Grundlagen der Programmiersprachen" (see course material GdP-13, GdP13a).

• Discuss the examples of the preceding slides under these categories.

Suggested reading:

Kastens / Übersetzerbau, Section 1.2

Assignments:

• Exercise 1 Let the compiler produce error messages for each level.

• Exercise 2 Relate concrete language properties to these levels.

Questions:

Some language properties can be defined on different levels. Discuss the following for hypothetical languages:

• "Parameters may not be of array type." Syntax or static semantics?

• "The index range of an array may not be empty." Static or dynamic semantics?

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Compiler tasks

Structuring

Translation

Encoding

Syntactic analysis

Transformation

Assembly

Semantic analysis

Code generation

Scanning

Conversion

Parsing

Tree construction

Name analysis

Type analysis

Data mapping

Action mapping

Execution-order

Register allocation
Instruction selection

Instruction encoding
Internal Addressing
External Addressing

Lexical analysis

CI-19 Lecture Compiler I WS 2001/2002 / Slide 19

Objectives:

Task decomposition leads to compiler structure

In the lecture:

• Explain tasks of the rightmost column.

• Relate the tasks to chapters of the course.

Suggested reading:

Kastens / Übersetzerbau, Section 2.1

Assignments:

Learn the German translations of the technical terms.

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Compiler structure and interfaces

Lexical analysis

Syntactic analysis

Semantic analysis

Transformation

Optimization

Code generation

Peephole optimization

Assembly

Source program

Token sequence

Abstract program tree

Intermediate language

Abstract

Target program

Analysis (frontend)

Synthesis (backend)

machine program

CI-20 Lecture Compiler I WS 2001/2002 / Slide 20

Objectives:

Derive compiler modules from tasks

In the lecture:

In this course we focus on the analysis phase (frontend).

Suggested reading:

Kastens / Übersetzerbau, Section 2.1

Assignments:

Compare this slide with U-08 and learn the translations of the technical terms used here.

Questions:

Use this information to explain the example on slide CI-16

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Software qualities of the compiler
CI-21

• Correctness Translate correct programs correctly.
Reject wrong programs and give error messages

• Efficiency Storage and time used by the compiler

• Code efficiency Storage and time used by the generated code
Compiler task: Optimization

• User support Compiler task: Error handling
(recognition, message, recovery)

• Robustness Give a reasonable reaction on every input

Lecture Compiler I WS 2001/2002 / Slide 21

Objectives:

Consider compiler as a software product

In the lecture:

Give examples for the qualities.

Questions:

Explain: For a compiler the requirements are specified much more precisely than for other software products.

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Strategies for compiler construction

CI-22

• Obey exactly to the language definition

• Use generating tools

• Use standard components

• Apply standard methods

• Validate the compiler against a test suite

• Verify components of the compiler

Lecture Compiler I WS 2001/2002 / Slide 22

Objectives:

Apply software methods for compiler construction

In the lecture:

It is explained that effective construction methods exists especially for compilers.

Questions:

What do the specifications of the compiler tasks contribute to more systematic compiler construction?

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Generators

Typical compiler tasks solved by generators:

Specification Generator Implemented
algorithm

Environment

Interfaces

Pattern:

Specifications Cooperating
generators Compiler

integrated system Eli:

CI-23

Regular expressions Scanner generator Finite automaton

Context-free grammar Parser generator Stack automaton

Attribute grammar Attribute evaluator Tree walking algorithm
generator

Code patterns Code selection Pattern matching
generator

Lecture Compiler I WS 2001/2002 / Slide 23

Objectives:

Usage of generators in compiler construction

In the lecture:

The topics on the slide are explained. Examples are given.

Suggested reading:

Kastens / Übersetzerbau, Section 2.5

Assignments:

• Exercise 5: Find as many generators as possible in the Eli system.

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Environment of compilers

Libraries
Preprocessor

Compiler

Linker

Compilation units

Source programs

Code files

Executable program

Interpreter

Analysis part

abstract machine

Source program

Input Output

Debugger

Executable program

Interactive commands

Input
Output

Source program

Core dump

CI-24 Lecture Compiler I WS 2001/2002 / Slide 24

Objectives:

Understand the cooperation between compilers and other language tools

In the lecture:

• Explain the roles of language tools

• Explain the flow of information

Suggested reading:

Kastens / Übersetzerbau, Section 2.4

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Compilation and interpretation of Java programs

Compiler

Source modules

Bytecode prozessor
in softwareClass

loader
Just-In-Time
Compiler

(JIT)

Class files
in Java Bytecode
(intermediate language)

load needed
class files
dynamically -
local or via Internet

Machine code

Interpreter
Java Virtual Machine
JVM

Input Output

Java

CI-25 Lecture Compiler I WS 2001/2002 / Slide 25

Objectives:

Special situation for Java

In the lecture:

Explain the role of the absctract machine JVM:

• Interpretation of bytecode.

• Compile and optimize while executing the program.

• Load class files while executing the program.

Questions:

• explain why the JVM can not rely on the type checks made by the compiler.

