
©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Lexical Analysis

Input: Program represented by a sequence of characters

Tasks: Compiler modul:

Input reader

Recognize and classify tokens Scanner (central phase, finite state machine)

Skip irrelevant characters

Encode tokens:
Identifier modul

Store token information Literal modules
Conversion String storage

Output: Program represented by a sequence of encoded tokens

Ci-26

Lecture Compiler I WS 2001/2002 / Slide 26

Objectives:

Understand lexical analysis subtasks

In the lecture:

Explain

• subtasks and their interfaces using slide CI-16,

• unusual notation of keywords,

• different forms of comments,

• sparation of tokens in FORTRAN,

Suggested reading:

Kastens / Übersetzerbau, Section 3, 3.3.1

Questions:

• Give examples of context dependent information about tokens, which the lexical analysis can not know.

• Some decisions on the notation of tokens and the syntax of a language may complicate lexical analysis. Give examples.

• Explain the typedef problem in C.

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Representation of tokens
CI-27

Uniform encoding of tokens by triples:

Syntax code attribute source position

terminal code of value or reference to locate error messages
the concrete syntax into data module of later compiler phases

Examples : double sum = 5.6e-5;
while (count < maxVect)
{ sum = sum + vect[count];

DoubleToken 12, 1
Ident 138 12, 8
Assign 12, 12
FloatNumber 16 12, 14
Semicolon 12, 20
WhileToken 13, 1
OpenParen 13, 7
Ident 139 13, 8
LessOpr 13, 14
Ident 137 13, 16
CloseParen 13, 23
OpenBracket 14, 1
Ident 138 14, 3

Lecture Compiler I WS 2001/2002 / Slide 27

Objectives:

Understand token representation

In the lecture:

Explain the roles of the 3 components using the examples

Suggested reading:

Kastens / Übersetzerbau, Section 3, 3.3.1

Questions:

• What are the requirements for the encoding of identifiers?

• How does the identifier module meet them?

• Can the values of integer literals be represented as attribute values, or do we have to store them in a data module?
Explain! Consider also cross compilers!

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Specification of token notations

regular
grammar

regular
expression

syntax
diagram

finite state
machine

acceptor:

Example: identifiers
Ident = Letter (Letter | Digit)*

Letter

Digit

Letter

Ident:

Letter

Digit

Letter1 2

Ident ::= Letter X
X ::= Letter X
X ::= Digit X
X ::=

CI-28

Lecture Compiler I WS 2001/2002 / Slide 28

Objectives:

Equivalent forms of specification

In the lecture:

• Repeat calculi of the lectures "Modellierung" and "Berechenbarkeit und formale Sprachen".

• Our strategy: Specify regular expressions, transform into syntax diagrams, and from there into finite state machines

Suggested reading:

Kastens / Übersetzerbau, Section 3.1

Questions:

• Give examples for Unix tools which use regular expressions to describe their input.

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Regular expressions mapped to syntax diagrams

Transformation rules:

regular expression A syntax diagram for A

empty

a

B C

a

B C

B | C

B*

B+

B

C

B

B

empty

single character

sequence

alternative

repetition, may be empty

repetition, non-empty

CI-29

Lecture Compiler I WS 2001/2002 / Slide 29

Objectives:

Construct by recursive substitution

In the lecture:

• Explain the construction for floating point numbers of Pascal.

Suggested reading:

Kastens / Übersetzerbau, Section 3.1

Assignments:

• Apply the technique Exercise 6

Questions:

• If one transforms syntax diagrams into regular expressions, certain structures of the diagram requires duplication of
subexpressions. Give examples.

• Explain the analogy to control flows of programs with labels, jumps and loops.

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Construction of deterministic finite state machines

Syntax diagram deterministic finite state machine

nodes, arcs transitions, states

set of nodes mq state q

sets of nodes mq and mr transitions q ---> r with character a
connected with the same character a

Construction:

1. enumerate nodes ; exit of the diagram gets the number 0

2. initial set of nodes m1 contains all nodes initial state 1
that are reachable from the begin of the diagram

3. construct new sets of nodes (states) and transitions: For a character a and a set mq
containing node k create set mrwith all nodes n, according to the following schema:

4. repeat step 3 until no new sets of nodes can be created

5. a state q is a final state iff 0 is in mq.

a
k∈mq n∈mr

a

k‘∈mq n‘∈mr
for create

CI-30

Lecture Compiler I WS 2001/2002 / Slide 30

Objectives:

Understand the method

In the lecture:

• Explain the idea with a small artificial example

• Explain the method using floating point numbers of Pascal (Slide CI-31)

Suggested reading:

Kastens / Übersetzerbau, Section 3.2

Assignments:

• Apply the method Exercise 6

Questions:

• Why does the method yield deterministic automata?

• Describe roughly a simple technique which may yield non-deterministic automata.

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Example: Floating point numbers in Pascal
CI-31

z . z E z

+

-

1 2 3 4

5

6

7
0

Syntax diagram

1 2 3 4 5 6 7z

z

z

z
z

z

z

.

E

E
+

-

{1} {1, 2, 4} {3} {3, 4, 0} {5, 6, 7} {7} {7, 0}
z z . E z z E + - z z z

deterministic finite state machine

Lecture Compiler I WS 2001/2002 / Slide 31

Objectives:

Understand the construction method

In the lecture:

The construction process of slide CI-30 is explained using this example.

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Composition of token automata

Construct one finite state machine for each token. Compose them forming a single one:

• Identify the initial states of the single automata
and identical structures evolving from there (transitions with the same character and states).

• Keep the final states of single automata distinct, they classify the tokens.

• Add automata for comments and irrelevant characters (white space)

CI-32

1

2 3 4 5

6

7

8 9

10 11

12

1314

1516

17

18

0

19

20

a

c

* *

)

(

*
l, E

l, E, d

l, E, d

_

b

. d d

.

d

E
+, -

d

d

d=

=

:

=

/

/

s

eof

character classes:
a all but *
c all but * or)
d digits
l all letters but E
s + - * < > ; ,) [] ^
b blank tab newline

Example: tokens of Lax
[Waite, Goos:

Compiler Construction]

d

d E

Lecture Compiler I WS 2001/2002 / Slide 32

Objectives:

Construct a multi-token automaton

In the lecture:

Use the example to

• discuss the composition steps,

• introduce the abbreviation by character classes,

• to see a non-trivial complete automaton.

Suggested reading:

Kastens / Übersetzerbau, Section 3.2

Questions:

Describe the notation of Lax tokens and comments in English.

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Rule of the longest match

An automaton may contain transitions from final states:

When does the automaton stop?

Rule of the longest match:

• The automaton continues as long as there is a transition with the next character.

• After having stopped it sets back to the most recently passed final state.

• If no final state has been passed an error message is issued.

Consequence: Some kinds of tokens have to be separated explicitly.

Check the concrete grammar for tokens that may occur adjacent!

CI-33

... ...

Lecture Compiler I WS 2001/2002 / Slide 33

Objectives:

Understand the consequences of the rule

In the lecture:

• Discuss examples for the rule of the longest match.

• Discuss different cases of token separation.

Suggested reading:

Kastens / Übersetzerbau, Section 3.2

Questions:

• Point out applications of the rule in the Lax automaton, which arose from the composition of sub-automata.

• Which tokens have to be separated by white space?

©
 2

00
6

be
i P

ro
f.

 D
r.

 U
w

e
K

as
te

ns

Scanner: Aspects of implementation

• Runtime is proportional to the number of characters in the program

• Operations per character must be fast - otherwise the Scanner dominates compilation time

• Table driven automata are too slow:
Loop interprets table, 2-dimensional array access, branches

• Directly programmed automata is faster; transform transitions into control flow:

• Fast loops for sequences of irrelevant blanks.

• Implementation of character classes:
bit pattern or indexing - avoid slow operations with sets of characters.

• Do not copy characters from input buffer - maintain a pointer into the buffer, instead.

sequence

repeat loop

branch

CI-34

Lecture Compiler I WS 2001/2002 / Slide 34

Objectives:

Runtime efficiency is important

In the lecture:

• Advantages of directly programmed automata. Compare to table driven.

• Measurements on occurrences of symbols: Single spaces, identifiers, keywords, squences of spaces are most frequent.
Comments contribute most characters.

Suggested reading:

Kastens / Übersetzerbau, Section 3.3

Assignments:

• Generate directly programmed automata Exercise 7

Questions:

• Are there advantages for table-driven automata? Check your arguments carefully!

©
 2

00
6

be
i P

ro
f.

 D
r.

 U
w

e
K

as
te

ns

Identifier module and literal modules

• Uniform interface for all scanner support modules:
Input parameters: pointer to token text and its length;
Output parameters: syntax code, attribute

• Identifier module encodes identifier occurrences bijective (1:1), and
recognizes keywords
Implementation: hash vector, extensible table, collision lists

• Literal modules for floating point numbers, integral numbers, strings

Variants for representation in memory:
token text; value converted into compiler data; value converted into target data

Caution:
Avoid overflow on conversion!
Cross compiler: compiler representation may differ from target representation

• Character string memory:
stores strings without limits on their lengths,
used by the identifier module and the literal modules

CI-35

Lecture Compiler I WS 2001/2002 / Slide 35

Objectives:

Safe and efficient standard implementations are available

In the lecture:

• Give reasons for the implementation techniques.

• Show different representations of floating point numbers.

• Escape characters in strings need conversion.

Suggested reading:

Kastens / Übersetzerbau, Section 3.3

Questions:

• Give examples why the analysis phase needs to know values of integral literals.

• Give examples for representation of literals and their conversion.

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Scanner generators

generate the central function of lexical analysis

GLA University of Colorado, Boulder; component of the Eli system
Lex Unix standard tool
Flex Successor of Lex
Rex GMD Karlsruhe

Token specification: regular expressions

GLA library of precoined specifications;
recognizers for some tokens may be programmed

Lex, Flex, Rex transitions may be made conditional

Interface:

GLA as described in this chapter; cooperates with other Eli components
Lex, Flex, Rex actions may be associated with tokens (statement sequences)

interface to parser generator Yacc

Implementation:

GLA directly programmed automaton in C
Lex, Flex, Rex table-driven automaton in C
Rex table-driven automaton in C or in Modula-2
Flex, Rex faster, smaller implementations than generated by Lex

CI-36

Lecture Compiler I WS 2001/2002 / Slide 36

Objectives:

Know about some common generators

In the lecture:

Explain specific properties mentioned here.

Suggested reading:

Kastens / Übersetzerbau, Section 3.4

Assignments:

Use GLA and Lex Exercise 7

