© 2001 bei Prof. Dr. Uwe Kastens

Ci-26

Lexical Analysis

Input: Program represented by a sequence of characters
Tasks: Compiler modul:

Input reader
Recognize and classify tokens Scanner (central phase, finite state machine)
Skip irrelevant characters
Encode tokens:

Identifier modul
Store token information Literal modules

Conversion String storage

Output: Program represented by a sequence of encoded tokens

Lecture Compiler | WS 2001/2002 / Slide 26

Objectives:
Understand lexical analysis subtasks

In the lecture:

Explain

= subtasks and their interfaces using slide CI-16,
= unusual notation of keywords,

= different forms of comments,

= sparation of tokens in FORTRAN,

Suggested reading:
Kastens / Ubersetzerbau, Section 3, 3.3.1

Questions:

= Give examples of context dependent information about tokens, which the lexical analysis can not know.

= Some decisions on the notation of tokens and the syntax of a language may complicate lexical analysis. Give examples.
= Explain the typedef problem in C.

© 2001 bei Prof. Dr. Uwe Kastens

Representation of tokens

Uniform encoding of tokens by triples:

Cl-27

Syntax code attribute source position
terminal code of value or reference to locate error messages
the concrete syntax into data module of later compiler phases
Examples : double sum = 5.6e-5;
while (count < maxVect)
{ sum = sum + vect[count];

DoubleToken 12,1
Ident 138 12,8
Assign 12, 12
FloatNumber 16 12,14
Semicolon 12, 20
WhileToken 13,1
OpenParen 13,7
Ident 139 13,8
LessOpr 13,14
Ident 137 13, 16
CloseParen 13, 23
OpenBracket 14,1
Ident 138 14,3

Lecture Compiler | WS 2001/2002 / Slide 27

Objectives:

Understand token representation

In the lecture:
Explain the roles of the 3 components using the examples

Suggested reading:
Kastens / Ubersetzerbau, Section 3, 3.3.1

Questions:

= What are the requirements for the encoding of identifiers?

= How does the identifier module meet them?

= Can the values of integer literals be represented as attribute values, or do we have to store them in a data module?
Explain! Consider also cross compilers!

© 2001 bei Prof. Dr. Uwe Kastens

Cl-28

Specification of token notations

Example: identifiers
Ident = Letter (Letter | Digit)*

regular regular
——— .
grammar expression
Ident ::= Letter X
X = Letter X \ /
X = Digit X syntax
X = diagram @
Ident: @
finite state
acceptor: .
machine
f Letter
‘ Letter|
t Digit
Lecture Compiler | WS 2001/2002 / Slide 28
Objectives:

Equivalent forms of specification

In the lecture:
= Repeat calculi of the lectures "Modellierung" and "Berechenbarkeit und formale Sprachen".
= Our strategy: Specify regular expressions, transform into syntax diagrams, and from there into finite state machines

Suggested reading:

Kastens / Ubersetzerbau, Section 3.1

Questions:

= Give examples for Unix tools which use regular expressions to describe their input.

© 2001 bei Prof. Dr. Uwe Kastens

CI-29

Regular expressions mapped to syntax diagrams

Transformation rules:

regular expression A syntax diagram for A
empty > empty
a 4>@—> single character
BC » B - C—» sequence
» B
B|C —> alternative
» C
B*

> repetition, may be empty
b el
B T B —» repetition, non-empty

Lecture Compiler | WS 2001/2002 / Slide 29

Objectives:
Construct by recursive substitution

In the lecture:
= Explain the construction for floating point numbers of Pascal.

Suggested reading:
Kastens / Ubersetzerbau, Section 3.1

Assignments:
= Apply the technique Exercise 6

Questions:

= If one transforms syntax diagrams into regular expressions, certain structures of the diagram requires duplication of
subexpressions. Give examples.

= Explain the analogy to control flows of programs with labels, jumps and loops.

© 2001 bei Prof. Dr. Uwe Kastens

CI-30

Construction of deterministic finite state machines

Syntax diagram deterministic finite state machine
nodes, arcs transitions, states

set of nodes m, state q

sets of nodes mg and m, transitions g ---> r with character a

connected with the same character a
Construction:
1. enumerate nodes ; exit of the diagram gets the number 0

2. initial set of nodes mj contains all nodes initial state 1
that are reachable from the begin of the diagram

3. construct new sets of nodes (states) and transitions: For a character a and a set m,
containing node k create set mwith all nodes n, according to the following schema:

Kk [z n[n k' n'
for r create 9 !
a

4. repeat step 3 until no new sets of nodes can be created

5. astate gis afinal state iff Oisin my.

Lecture Compiler | WS 2001/2002 / Slide 30

Objectives:
Understand the method

In the lecture:
= Explain the idea with a small artificial example
= Explain the method using floating point numbers of Pascal (Slide CI-31)

Suggested reading:
Kastens / Ubersetzerbau, Section 3.2

Assignments:
= Apply the method Exercise 6

Questions:
= Why does the method yield deterministic automata?
= Describe roughly a simple technique which may yield non-deterministic automata.

© 2001 bei Prof. Dr. Uwe Kastens

Example: Floating point numbers in Pascal

Syntax diagram

1
ﬁr’@

CI-31

2 3 4 7
5

{1} {1.2,4}

8t {840 {5671 {7} {7,

deterministic finite state machine

Objectives:

Lecture Compiler | WS 2001/2002 / Slide 31

Understand the construction method

In the lecture:

The construction process of slide CI-30 is explained using this example.

© 2001 bei Prof. Dr. Uwe Kastens

CI-32

Composition of token automata

Construct one finite state machine for each token. Compose them forming a single one:

- Identify the initial states of the single automata
and identical structures evolving from there (transitions with the same character and states).

« Keep the final states of single automata distinct, they classify the tokens.
- Add automata for comments and irrelevant characters (white space)

Example: tokens of Lax
[Waite, Goos:
Compiler Construction]

character classes:

a all but *

c all but * or)

d digits

| all letters but E

s +-*<>;)[]"

b blank tab newline

Lecture Compiler | WS 2001/2002 / Slide 32

Objectives:

Construct a multi-token automaton

In the lecture:

Use the example to

= discuss the composition steps,

= introduce the abbreviation by character classes,
= to see a non-trivial complete automaton.

Suggested reading:
Kastens /7 Ubersetzerbau, Section 3.2

Questions:
Describe the notation of Lax tokens and comments in English.

© 2001 bei Prof. Dr. Uwe Kastens

Rule of the longest match

An automaton may contain transitions from final states:

When does the automaton stop?

Rule of the longest match:

« The automaton continues as long as there is a transition with the next character.

- After having stopped it sets back to the most recently passed final state.
« If no final state has been passed an error message is issued.

Consequence: Some kinds of tokens have to be separated explicitly.

Check the concrete grammar for tokens that may occur adjacent!

CI-33

Lecture Compiler | WS 2001/2002 / Slide 33

Objectives:
Understand the consequences of the rule

In the lecture:
= Discuss examples for the rule of the longest match.
= Discuss different cases of token separation.

Suggested reading:
Kastens / Ubersetzerbau, Section 3.2

Questions:
= Point out applications of the rule in the Lax automaton, which arose from the composition of sub-automata.
= Which tokens have to be separated by white space?

© 2006 bei Prof. Dr. Uwe Kastens

Cl-34
Scanner: Aspects of implementation

« Runtime is proportional to the number of characters in the program
- Operations per character must be fast - otherwise the Scanner dominates compilation time

- Table driven automata are too slow:
Loop interprets table, 2-dimensional array access, branches

- Directly programmed automata is faster; transform transitions into control flow:

sequence

O—0O
@ repeat loop
O

branch

» Fast loops for sequences of irrelevant blanks.

- Implementation of character classes:
bit pattern or indexing - avoid slow operations with sets of characters.

« Do not copy characters from input buffer - maintain a pointer into the buffer, instead.

Lecture Compiler | WS 2001/2002 / Slide 34

Objectives:
Runtime efficiency is important

In the lecture:
= Advantages of directly programmed automata. Compare to table driven.

= Measurements on occurrences of symbols: Single spaces, identifiers, keywords, squences of spaces are most frequent.
Comments contribute most characters.

Suggested reading:
Kastens / Ubersetzerbau, Section 3.3

Assignments:
= Generate directly programmed automata Exercise 7

Questions:
= Are there advantages for table-driven automata? Check your arguments carefully!

© 2006 bei Prof. Dr. Uwe Kastens

Identifier module and literal modules

« Uniform interface for all scanner support modules:
Input parameters: pointer to token text and its length;
Output parameters: syntax code, attribute

- Identifier module encodes identifier occurrences bijective (1:1), and

recognizes keywords
Implementation: hash vector, extensible table, collision lists

- Literal modules for floating point numbers, integral numbers, strings

Variants for representation in memory:
token text; value converted into compiler data; value converted into target data

Caution:
Avoid overflow on conversion!
Cross compiler: compiler representation may differ from target representation

« Character string memory:
stores strings without limits on their lengths,
used by the identifier module and the literal modules

CI-35

Lecture Compiler | WS 2001/2002 / Slide 35

Objectives:
Safe and efficient standard implementations are available

In the lecture:

= Give reasons for the implementation techniques.

= Show different representations of floating point numbers.
= Escape characters in strings need conversion.

Suggested reading:
Kastens /7 Ubersetzerbau, Section 3.3

Questions:
= Give examples why the analysis phase needs to know values of integral literals.
= Give examples for representation of literals and their conversion.

© 2001 bei Prof. Dr. Uwe Kastens

Scanner generators

generate the central function of lexical analysis
GLA University of Colorado, Boulder; component of the Eli system
Lex Unix standard tool
Flex Successor of Lex
Rex GMD Karlsruhe

Token specification: regular expressions

GLA library of precoined specifications;
recognizers for some tokens may be programmed

Lex, Flex, Rex transitions may be made conditional

Interface:

GLA as described in this chapter; cooperates with other Eli components

Lex, Flex, Rex actions may be associated with tokens (statement sequences)
interface to parser generator Yacc

Implementation:

GLA directly programmed automaton in C

Lex, Flex, Rex table-driven automaton in C

Rex table-driven automaton in C or in Modula-2

Flex, Rex faster, smaller implementations than generated by Lex

CI-36

Lecture Compiler | WS 2001/2002 / Slide 36

Objectives:
Know about some common generators

In the lecture:
Explain specific properties mentioned here.

Suggested reading:
Kastens /7 Ubersetzerbau, Section 3.4

Assignments:
Use GLA and Lex Exercise 7

