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Syntactic analysis

Input: token sequence

Tasks:
Parsing : construct derivation according to concrete syntax ,
Tree construction according to abstract syntax ,
Error handling (detection, message, recovery)

Result: abstract program tree

Compiler module parser:
deterministic stack automaton, augmented by actions for tree construction
top-down parsers: leftmost derivation; tree construction top-down or bottom-up
bottom-up parsers: rightmost derivation backwards; tree construction bottom-up

Abstract program tree (condensed derivation tree):
represented  by a data structure in memory  for the translation phase to operate on,

linear sequence of nodes on a file  (costly in runtime),
sequence of calls  of functions of the translation phase.

CI-37
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Objectives:

Relation between parsing and tree construction

In the lecture:

• Explain the tasks, use example on CI-16.

• Sources of prerequisites:

• context-free grammars: "Grundlagen der Programmiersprachen (2nd Semester), or "Berechenbarkeit und formale
Sprachen" (3rd Semester),

• Tree representation in prefix form, postfix form: "Modellierung" (st Semester); see CI-5.

Suggested reading:

Kastens / Übersetzerbau, Section 4.1
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Concrete and abstract syntax

concrete syntax abstract syntax

context-free grammar context-free grammar

defines the structure of source programs defines abstract program trees

unambigous usually ambiguous

specifies derivation and parser translation phase is based on it

parser actions specify the    ---> tree construction

some chain productions only for syntactic purposekeep only semantically relevant ones
Expr ::= Fact      have no action no node created

symbols of syntactic chain productions comprised in symbol classes Exp={Expr,Fact}

same action at structural equivalent productions:
Expr ::= Expr AddOpr Fact &BinEx
Fact ::= Fact MulOpr Opd    &BinEx

terminal symbols keep only semantically relevant ones
as tree nodes

given the concrete syntax and the symbol classes
the actions and the abstract syntax can be generated

CI-38
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Objectives:

Distinguish roles and properties of concrete and abstract syntax

In the lecture:

• Use the expression grammar of CI-39, CI-40 for comparison.

• Construct abstract syntax systematically.

• Context-free grammars specify trees - not only strings! Is also used in software engineering to specify interfaces.

Suggested reading:

Kastens / Übersetzerbau, Section 4.1

Assignments:

• Generate abstract syntaxes from concrete syntaxes and symbol classes.

• Use Eli for that task. Exercise 10

Questions:

• Why is no information lost, when an expression is represented by an abstract program tree?

• Give examples for semantically irrelevant chain productions outside of expressions.

• Explain: XML-based languages are defined by context-free grammars. Their sentences are textual representations of
trees.
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Expr

Fact

Opd

a

Fact MulOpr

*Opd ( )Expr

Expr Fact

Opd

b

AddOpr

+Fact

Opd c

p2

p3

p4

p6

p9 p5

p1

p2

p4

p6

p7 p4

p6

Example: concrete expression grammar

name production action

p1: Expr ::= Expr AddOpr Fact BinEx
p2: Expr ::= Fact
p3: Fact ::= Fact MulOpr Opd BinEx
p4: Fact ::= Opd
p5: Opd ::= '(' Expr ')'
p6: Opd ::= Ident IdEx
p7: AddOpr ::= '+' PlusOpr
p8: AddOpr ::= '-' MinusOpr
p9: MulOpr ::= '*' TimesOpr
p10: MulOpr ::= '/' DivOpr

   derivation tree for a * (b + c)

CI-39
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Objectives:

Illustrate comparison of concrete and abstract syntax

In the lecture:

• Repeat concepts of "GdP" (slide GdP-2.5): Grammar expresses operator precedences and associativity.

• The derivation tree is constructed by the parser - not necessarily stored as a data structure.

• Chain productions have only one non-terminal symbol on their right-hand side.

Suggested reading:

Kastens / Übersetzerbau, Section 4.1

Suggested reading:

slide GdP-2.5

Questions:

• How does a grammar express operator precedences and associativity?

• What is the purpose of the chain productions in this example.

• What other purposes can chain productions serve?
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Example: abstract expression grammar

name production

BinEx: Exp    ::= Exp BinOpr Exp
IdEx: Exp    ::= Ident
PlusOpr: BinOpr ::= '+'
MinusOpr: BinOpr ::= '-'
TimesOpr: BinOpr ::= '*'
DivOpr: BinOpr ::= '/'

symbol classes : Exp = { Expr, Fact, Opd }, BinOpr = { AddOpr, MulOpr }

Actions  of the concrete syntax: productions  of the abstract syntax to create tree nodes for
no action  at a concrete chain production: no tree node  is created

CI-40

Exp

a

Exp BinOpr

*

Exp

Exp Exp

b

BinOpr

+ c

BinEx

IdEx TimesOpr BinEx

IdEx PlusOpr IdEx

abstract program tree for a * (b + c)
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Objectives:

Illustrate comparison of concrete and abstract syntax

In the lecture:

• Repeat concepts of "GdP" (slide GdP-2.9):

• Compare grammars and trees.

• Actions create nodes of the abstract program tree.

• Symbol classes shrink node pairs that represent chain productions into one node

Suggested reading:

Kastens / Übersetzerbau, Section 4.1

Suggested reading:

slide GdP-2.9

Questions:

• Is this abstract grammar unambiguous?

• Why is that irrelevant?
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Recursive descent parser

top-down  (construction of the derivation  tree), predictive  method

Sytematic transformation of a context-free grammar into a set of functions:

non-terminal symbol X function X
alternative productions for X branches in the function body
decision set of production pi decision for branch pi
non-terminal occurrence X ::= ... Y ... function call Y()
terminal occurrence X ::= ... t ... accept a token t an read the next token

Example:
p1: Stmt ::= Variable ':=' Expr p2: Stmt ::= 'while' Expr 'do' Stmt

Function:

CI-41

case decision set for p1 :
Variable();
accept(assignSym);
Expr();
break;

case decision set for p2 :
accept(whileSym);
Expr();
accept(doSym);
Stmt();
break;

void Stmt ()
{ switch (CurrSymbol)

{

default: Fehlerbehandlung();
} }
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Objectives:

Understand the construction schema

In the lecture:

Explanation of the method:

• Relate grammar constructs to function constructs.

• Each function plays the role of an acceptor for a symbol.

• accept function for reading and checking of the next token (scanner).

• Computation of decision sets on CI-42.

• Decision sets must be pairwise disjoint!

Suggested reading:

Kastens / Übersetzerbau, Section 4.2

Questions:

• A parser algorithm is based on a stack automaton. Where is the stack of a recursive descent parser? What corresponds
to the states of the stack automaton?

• Where can actions be inserted into the functions to output production sequences in postfix or in prefix form?
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Grammar conditions for recursive descent

A context-free grammar is strong LL(1) , if for any pair of productions that have the same
symbol on their left-hand sides, the decision sets are disjoint :

productions: A ::= u A ::= v
decision sets: First (u Follow(A)) ∩ First (v Follow(A)) = ∅

First set  and follow set:
First (u) := { t ∈ T | v ∈V* exists and a derivation u ⇒* t v } and ε ∈First (u) if u ⇒* ε exists

Follow (A) := { t ∈ T | u,v ∈V* exist, A ∈N and a derivation S ⇒* u A v such that t ∈ First (v) }

CI-42

p1: Prog ::= Block # begin
p2: Block ::= begin Decls Stmts end begin
p3: Decls ::= Decl ; Decls new
p4: Decls ::= Ident begin
p5: Decls ::= new Ident new
p6: Stmts ::= Stmts ; Stmt begin Ident
p7: Stmts ::= Stmt begin Ident
p8: Stmt ::= Block begin
p9: Stmt ::= Ident := Ident Ident

Prog begin
Block begin # ; end
Decls ε new Ident begin
Decl new ;
Stmts begin Ident ; end
Stmt begin Ident ; end

Example:
production decision set

non-terminal X
First(X) Follow(X)
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Objectives:

Strong LL(1) can easily be checked

In the lecture:

• Explain the definitions using the example.

• First set: set of terminal symbols, which may begin some token sequence that is derivable from u.

• Follow set: set of terminal symbols, which may follow an A in some derivation.

Suggested reading:

Kastens / Übersetzerbau, Section 4.2, LL(k) conditions, computation of First sets and Follow sets

Questions:

The example grammar is not strong LL(1).

• Show where the condition is violated.

• Explain the reason for the violation.

• What would happen if we constructed a recursive descent parser although the condition is violated?
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Grammar transformations for LL(1)

Consequences of strong LL(1) condition: A strong LL(1) grammar can not have
• alternative productions that begin with the same symbols

• productions that are directly or indirectly left-recursive.

Simple grammar transformations that keep the defined language invariant:

• left-factorization:

• elimination of direct recursion :

EBNF constructs can avoid violation of strong LL(1) condition:

for example repetition of u: A ::= v ( u )* w
additional condition: First(u) ∩ First(w Follow(A)) = ∅
branch in the function body: v while (CurrToken in First(u)) { u }     w
correspondingly for EBNF constructs u+, [u]

CI-43

non-LL(1) productions transformed

A ::= v u A ::= v X
A ::= v w X ::= u

X ::= w

u, v, w ∈ V*
X ∈ N does not occur in the

original grammar

A ::= A u A ::= v X
A ::= v X ::= u X

X ::=

Lecture Compiler I WS 2001/2002 / Slide 43

Objectives:

Understand transformations and their need

In the lecture:

• Argue why strong LL(1) grammars can not have such productions.

• Show why the transformations remove those problems.

• Replacing left-recursion by right recursion would usually distort the structure.

• There are more general rules for indirect recursion.

• Show EBNF productions in recursive descent parsers.

Questions:

• Apply recursion elimination for expression grammars.

• Write a strong LL(1) expression grammar using EBNF.
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Comparison: top-down vs. bottom-up

Information a stack automata has when it decides to apply production  A ::= x :

top-down, predictive bottom-up
leftmost derivation rightmost derivation backwards

A bottom-up parser has seen more of the input when it decides to apply a production.

Consequence: bottom-up  parsers and their grammar classes are more powerful .

CI-44

A

x
u v

contents of
the stack

input

k
lookahead

accepted

A

x
u

input
k

lookahead
accepted

direction of
tree construction
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Objectives:

Understand the decision basis of the automata

In the lecture:

Explain the meaning of the graphics:

• role of the stack: contains states of the automaton,

• accepted input: will not be considered again,

• lookahead: the next k symbols, not yet accepted

• leftmost derivation: leftmost non-terminal is derived next; rightmost correspondingly,

• consequences for the direction of tree construction,

Abbreviations

• LL: (L)eft-to-right, (L)eftmost derivation,

• LR: (L)eft-to-right, (R)ightmost derivation,

• LALR: (L)ook(A)head LR

Suggested reading:

Kastens / Übersetzerbau, Section Text zu Abb. 4.2-1, 4.3-1

Questions:

Use the graphics to explain why a bottom-up parser without lookahead (k=0) is reasonable, but a top-down parser is not.
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LR(1) automata

LR(k) grammars introduced 1965 by Donald Knuth; non-practical until subclasses were defined.

LR parsers construct the derivation tree bottom-up, a right-derivation backwards.

LR(k) grammar condition  can not be checked directly, but
a context-free grammar is LR(k), iff the (canonical) LR(k) automaton is deterministic .

We consider only 1 token lookahead: LR(1).

The stacks  of LR(k) (and LL(k)) automata contain states .
The construction of LR and LL states is based on the notion of items  (also called situations):

An item  represents the progress of analysis with respect to one production:

[  A  ::=  u .  v     R  ] z. B.   [ B ::= ( . D ; S )  {#}]
. position of analysis R  expected right context,  i. e. a set of terminals which

may follow after the application of the complete production.
(for general k: R contains terminal sequences not longer than k)

Reduce item:

[  A  ::=  u v .   R  ] z. B.   [ B ::= (  D ; S ) .   {#}]

characterizes a reduction using this production if the next input token is in R.

Each state  of an automaton represents LL: one item LR: a set of items

CI-45
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Objectives:

Fundamental notions of LR automata

In the lecture:

Explain

• meaning of an item,

• lookahead in the input and right context in the automaton.

• There is no right context set in case of an LR(0) automaton.

Suggested reading:

Kastens / Übersetzerbau, Section 4.3

Questions:

• What contains the right context set in case of a LR(3) automaton?
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LR(1) states and operations

A state of an LR automaton represents a set of items
Each item represents a way in which analysis may
proceed from that state.

A shift transition  is made under
a token read  from input or
a non-terminal  symbol

obtained from a preceding reduction.
The state is pushed.

A reduction  is made according to a reduce item.
n states are popped for a production of length n.

Operations: shift read and push the next state on the stack
reduce reduce with a certain production, pop n states from the stack
error error recognized, report it, recover
stop input accepted

CI-46

B ::= ( . D ; S ) {#}

D ::= . D ; a {;}

D ::= . a {;}

2

B ::= ( D . ; S ) {#}
D ::= D . ; a {;}

D
4

D ::= a . {;}

a

red. p33
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Objectives:

Understand LR(1) states and operations

In the lecture:

Explain

• Sets of items,

• shift transitions,

• reductions.

Suggested reading:

Kastens / Übersetzerbau, Section 4.3

Questions:

• Explain: A state is encoded by a number. A state represents complex information which is important for construction
of the automaton.



©
 2

00
6 

be
i P

ro
f.

 D
r.

 U
w

e 
K

as
te

ns

Example for a LR(1) automaton
CI-47

B ::= . ( D ; S ) {#}

B ::= ( . D ; S ) {#}
D ::= . D ; a {;}
D ::= . a {;}

B ::= ( D . ; S ) {#}
D ::= D . ; a {;}

B ::= ( D ; . S ) {#}
D ::= D ; . a {;}
S ::= . b ; S {)}
S ::= . b {)}

B ::= ( D ; S . ) {#}

B ::= ( D ; S ) . {#}

D ::= a . {;}

D ::= D ; a . {;}

S ::= b . ; S {)}
S ::= b . {)}

S ::= b ; . S {)}
S ::= . b ; S {)}
S ::= . b {)}

S ::= b ; S . {)}

(

D

;

S

)

a

a

b

b

;

S

1

2
3

4

5

6

7

8

9

10

11

red. p1, stop

red. p3

red. p2

red. p5

red. p4

Grammar:
p1 B ::= ( D ; S )
p2 D ::= D ; a
p3 D ::= a
p4 S ::= b ; S
p5 S ::= b
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Objectives:

Example for states, transitions, and automaton construction

In the lecture:

Use the example to explain

• the start state,

• the creation of new states,

• transitions into successor states,

• transitive closure of item set,

• push and pop of states,

• consequences of left-recursive and right-recursive productions,

• use of right context to decide upon a reduction,

erläutern.

Suggested reading:

Kastens / Übersetzerbau, Section 4.3

Questions:

• Describe the subgraphs for left-recursive and right-recursive productions. How do they differ?

• How does a LR(0) automaton decide upon reductions?
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B ::= ( . D ; S ) {#}
D ::= . D ; a {;}
D ::= . a {;}

B ::= ( D . ; S ) {#}
D ::= D . ; a {;} D ::= a . {;}

D a

2

34

Construction of LR(1) automata

Create the start state; create transitions and states as long as new ones can be created.

Transitive closure  is to be applied to each state:
If [ A ::= u  .  B  v   R ]    is in state q,
with the analysis position before a non-terminal B,
then for each production B ::= w

[ B ::=  .  w    First (v R) ]
has to be added to state q.

Start state :
Closure of [ S ::=  . u   {#} ]
S ::= u   is the unique start production ,
# is an artificial end symbol  (eof)

Successor states :
For each symbol x  (terminal or non-terminal), which
occurs in some items after the analysis position ,
a transition  is created to a successor state . That
contains a corresponding item with the analysis position
advanced behind the x  occurrence.

CI-48

B ::= ( . D ; S ) {#}

B ::= ( . D ; S ) {#}
D ::= . D ; a {;}
D ::= . a {;}

2

before:

after:

B ::= . ( D ; S ) {#}1
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Objectives:

Understand the method

In the lecture:

Explain using the example on CI-47:

• transitive closure,

• computation of the right context sets,

• relation between the items of a state and those of one of its successor

Suggested reading:

Kastens / Übersetzerbau, Section 4.3

Questions:

• Explain the role of the right context.

• Explain its computation.
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Operations of the LR(1) automaton
shift x (terminal or non-terminal):

from current state q
under x into thesuccessor state q‘ ,
push q‘

reduce p:
apply production p  B ::= u ,
pop as many  states,
as there are symbols in u, from the
new current state make a shift with B

error:
the current state has no transition
under the next input token,
issue a message and recover

stop:
recuce start production,
see # in the input

CI-49

Example:

stack input reduction

1 ( a ; a ; b ; b ) #
1 2 a ; a ; b ; b ) #
1 2 3 ; a ; b ; b ) # p3
1 2 ; a ; b ; b ) #
1 2 4 ; a ; b ; b ) #
1 2 4 5 a ; b ; b ) #
1 2 4 5 6 ; b ; b ) # p2
1 2 ; b ; b ) #
1 2 4 ; b ; b ) #
1 2 4 5 b ; b ) #
1 2 4 5 7 ; b ) #
1 2 4 5 7 8 b ) #
1 2 4 5 7 8 7 ) # p5
1 2 4 5 7 8 ) #
1 2 4 5 7 8 9 ) # p4
1 2 4 5 ) #
1 2 4 5 10 ) #
1 2 3 5 10 11 # p1
1 #
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Objectives:

Understand how the automaton works

In the lecture:

Explain operations

Questions:

• Why does the automaton behave differently on a-sequences and b-sequences?

• Which behaviour is better?
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LR conflicts

An LR(1) automaton that has conflicts is not deterministic . Its grammar is not LR(1) ;
correspondingly defined for any other LR class.

2 kinds of conflicts:

reduce-reduce conflict:
A state contains two reduce items, the
right context sets  of which are not disjoint :

shift-reduce conflict :
 A state contains
a shift item  with the analysis position in front of a  t  and
a reduce item with t in its right context set .

CI-50

...
A ::= u .   R1
B ::= v .   R2
...

R1, R2
not
disjoint

...
A ::= u .t v   R1
B ::= w .      R2
...

t ∈ R2
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Objectives:

Understand LR conflicts

In the lecture:

Explain: In certain situations the given input token t can not determine

• Reduce-reduce: which reduction is to be taken;

• Shift-reduce: whether the next token is to be shifted, a reduction is to be made.

Suggested reading:

Kastens / Übersetzerbau, Section 4.3

Questions:

• Why can a shift-shift conflict not exist?

• In LR(0) automata items do not have a right-context set. Explain why a state with a reduce item may not contain any
other item.
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Shift-reduce conflict for „dangling else“ ambiguity
CI-51

S ::= . Stmt {#}
Stmt ::= . if ... then Stmt {#}
Stmt ::= . if ... then Stmt else Stmt {#}
Stmt ::= . a {#}

Stmt ::= if ... then . Stmt {#}
Stmt ::= if ... then . Stmt else Stmt {#}
Stmt ::= . if ... then Stmt {# else}
Stmt ::= . if ... then Stmt else Stmt {# else}
Stmt ::= . a {# else}

Stmt ::= if ... then Stmt . {# else}
Stmt ::= if ... then Stmt . else Stmt {# else}

Stmt ::= if ... then . Stmt {# else}
Stmt ::= if ... then . Stmt else Stmt {# else}
Stmt ::= . if ... then Stmt {# else}
Stmt ::= . if ... then Stmt else Stmt {# else}
Stmt ::= . a {# else}

if
then...

if
then...

Stmt

1

3

5

6

Stmt

a

Stmt

a

if

a

else

shift-reduce conflict
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Objectives:

See a conflict in an automaton

In the lecture:

Explain

• the construction

• a solution of the conflict: The automaton can be modified such that in state 6, if an else is the next input token, it is
shifted rather than a reduction is made. In that case the ambiguity is solved such that the else part is bound to the inner
if. That is the structure required in Pascal and C. Some parser generators can be instructed to resolve conflicts in this
way.

Suggested reading:

Kastens / Übersetzerbau, Section 4.3
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context-free

unambiguous

LR(k)

LR(1)

LALR(1)

SLR(1)

LR(0)

LL(k)

strong LL(1) = LL(1)

Grammar hierarchy:
(strict inclusions)

Simplified LR grammar classes

LR(1):
too many states for practical use
Reason : right-contexts distinguish many states
Strategy:  simplify right-contexts sets,

fewer states, grammar classes are less powerful

LR(0):
all items without right-context
Consequence: reduce items only in

singleton sets

SLR(1):
LR(0) states ; in reduce items
use larger right-context sets for decision:

[ A ::= u .  Follow (A) ]

LALR(1):
identify LR(1) states if their items differ only
in their right-context sets, unite the sets for those items;
yields the states of the LR(0) automaton
augmented by the "exact“ LR(1) right-context.
State-of-the-art parser generators accept LALR(1)

CI-52
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Objectives:

Understand relations between LR classes

In the lecture:

Explain:

• LALR(1), SLR(1), LR(0) automata have the same number of states,

• compare their states,

• discuss the grammar classes for the example on slide CI-47.

Suggested reading:

Kastens / Übersetzerbau, Section 4.3

Questions:

• Assume that the LALR(1) contruction for a given grammar yields conflicts. Classify the potential reasons using the LR
hierarchy.
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Implementation of LR automata

Table-driven:

Compress tables :

• merge rows or columns  that differ only in irrelevant entries; method: graph coloring

• extract a separate error matrix  (bit matrix); increases the chances for merging

• normalize the values of rows or columns ; yields smaller domain; supports merging

• eliminate LR(0) reduce states ; new operation in predecessor state: shift-reduce
eliminates about 30% of the states in practical cases

About 10-20% of the original table sizes  can be achieved!

Directly programmed  LR-automata are possible - but usually too large.

CI-53

sq: shift into
state q

rp: reduce
production p

e: error
~: never reached

terminals nonterminals

states

sq

rp

e ~

sq

~
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Objectives:

Implementation of LR tables

In the lecture:

Explanation of

• pair of tables and their entries,

• unreachable entries,

• compression techniques, derived from general table compression,

• Singleton reduction states yield an effective optimization.

Questions:

• Why are there no error entries in the nonterminal part?

• Why are there unreachable entries?

• Why does a parser need a shift-reduce operation if the optimization of LR(0)-reduction states is applied?
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Error handling: general criteria
CI-54

• recognize error as early as possible
LL and LR can do that

• report the symptom in terms of the source text

• continue parsing short after the error position

• avoid avalanche errors

• build a tree that has a correct structure

• do not backtrack, do not undo actions

• no runtime penalty for correct programs
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Objectives:

Accept strong requirements

In the lecture:

• The reasons for and the consequences of the requirements are discussed.

• Some of the requirements hold for error handling in general - not only that of the syntactic analysis.
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Error position

Error recovery : Means that are taken by the parser after recognition of a syntactic error
in order to continue parsing

Correct prefix : The token sequence w ∈T* is a correct prefix in the language L(G),
if there is an u ∈T* such that w u ∈L(G); i. e. w can be extended to a sentence in L(G).

Error position : t is the (first) error position in the input w t x  , where t ∈T and w, x ∈T*,
if w is a correct prefix  in L(G) and w t is not a correct prefix .

LL and LR parsers recognize an error at the error position;
they can not accept t in the current state.

CI-55

int compute (int i) { a = i * / c; return i;}

w t

Example:
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Objectives:

Error position from the view of the parser

In the lecture:

Explain the notions with respect to parser actions using the examples.

Questions:

Assume the programmer omitted an opening parenthesis.

• Where is the error position?

• What is the symptom the parser recognizes?
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Error recovery

Continuation point :
The token d at or behind the error position t such that
parsing of the input continues at d .

Error repair
with respect to a consistent derivation - regardless the intension of the programmer!

Let the input be w t x with the error position at t and let w t x = w y d z,
then the recovery (conceptually) deletes y  and inserts v ,
such that w v d is a correct prefix  in L(G), with d ∈T and w, y, v, z ∈T*.

CI-56

a = i * / c;...

a = i * c;...
a = i * / c;...
a = i *e/ c;...

a = i * / c;...

a = i * e ;...

w y d z w y zd w y zd

delete / insert  error id. e delete / c

Examples:

and insert  error id. e
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Objectives:

Understand error recovery

In the lecture:

Explain the notions with respect to parser actions using the examples.

Questions:

Assume the programmer omitted an opening parenthesis.

• What could be a suitable repair?



©
 2

00
1 

be
i P

ro
f. 

D
r.

 U
w

e 
K

as
te

ns

Recovery method: simulated continuation

Problem : Determine a continuation point close to the error position and reach it.

Idea: Use parse stack to determine a set of tokens as potential continuation points.

Steps of the method:

1. Save the contents of the parse stack  when an error is recognized. Skip the error token.

2. Compute a set D ⊆ T of tokens that may be used as continuation point  (anchor set )
Let a modified parser run to completion:
Instead of reading a token from input it is inserted into D; (modification given below)

3. Find a continuation point d : Skip input tokens until a token of D is found.

4. Reach the continuation point d :
Restore the saved parser stack as the current stack.
Perform dedicated transitions until d is acceptable.
Instead of reading tokens (conceptually) insert tokens. Thus a correct prefix is constructed.

5. Continue normal parsing .

Augment parser construction for steps 2 and 4 :
For each parser state select a transition and its token,
such that the parser empties its stack and terminates as fast as possible.
This selection can be generated automatically .
The quality of the recovery can be improved by influence on the computation of D.

CI-57
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Objectives:

Error recovery can be generated

In the lecture:

• Explain the idea and the steps of the method.

• The method yields a correct parse for any input!

• Other, less powerful methods determine sets D statically at parser construction time, e. g. semicolon and curly bracket
for errors in statements.

Questions:

• How does this method fit to the general requirements for error handling?
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Parser generators
PGS Univ. Karlsruhe; in Eli LALR(1), table-driven
Cola Univ. Paderborn; in Eli LALR(1), optional: table-driven or directly programmed
Lalr Univ. / GMD Karlsruhe LALR(1), table-driven
Yacc Unix tool LALR(1), table-driven
Bison Gnu LALR(1), table-driven
Llgen Amsterdam Compiler Kit LL(1), recursive descent
Deer Univ. Colorado, Bouder LL(1), recursive descent

Form of grammar specification:
EBNF: Cola, PGS, Lalr; BNF: Yacc, Bison

Error recovery:
simulated continuation, automatically generated: Cola, PGS, Lalr
error productions, hand-specified: Yacc, Bison

Actions:
statements in the implementation language
at the end of productions: Yacc, Bison
anywhere in productions: Cola, PGS, Lalr

Conflict resolution:
modification of states (reduce if ...) Cola, PGS, Lalr
order of productions: Yacc, Bison
rules for precedence and associativity: Yacc, Bison

Implementation languages:
C: Cola, Yacc, Bison C, Pascal, Modula-2, Ada :  PGS, Lalr

CI-58
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Objectives:

Overview over parser generators

In the lecture:

• Explain the significance of properties

Suggested reading:

Kastens / Übersetzerbau, Section 4.5


