
©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Design of concrete grammars

CI-59

Objectives

The concrete grammars for parsing

• is parsable - fulfills the grammar condition of the chosen
parser generator;

• specifies the intended language - or a small super set of it;

• is provable related to the documented grammar ;

• can be mapped to a suitable abstract grammar .

Lecture Compiler I WS 2001/2002 / Slide 59

Objectives:

Guiding objectives

In the lecture:

The objectives are explained.

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Grammar design for an existing language
CI-60

• Take the grammar of the language specification literally .

• Only conservative modifications for parsability or for mapping to abstract syntax.

• Describe any modification .
(see ANSI C Specification in the Eli system description
http://www.uni-paderborn.de/fachbereich/AG/agkastens/eli/examples/eli_cE.html)

• Java language specification (1996):
Specification grammar is not LALR(1).
5 problems are described and how to solve them.

• Ada language specification (1983):
Specification grammar is LALR(1)
- requirement of the language competition

• ANSI C, C++:
several ambiguities and LALR(1) conflicts, e.g.
„dangling else “,
„typedef problem “:

A (*B);
is a declaration of variable B, if A is a type name,
otherwise it is a call of function A

Lecture Compiler I WS 2001/2002 / Slide 60

Objectives:

Avoid document modifications

In the lecture:

• Explain the conservative strategy.

• Java gives a solution for the dangling else problem.

• Explain the typedef problem.

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Grammar design together with language design

CI-61

Read grammars before writing a new grammar.

Apply grammar patterns systematically (cf. GdP-2.5, GdP-2.8)

• repetitions

• optional constructs

• precedence, associativity of operators

Syntactic structure should reflect semantic structure :

E. g. a range in the sense of scope rules should be represented by a single
subtree of the derivation tree (of the abstract tree).

Violated in Pascal:

functionDeclaration ::= functionHeading block
functionHeading ::= ‘function‘ identifier formalParameters ‘:‘ resultType ‘;‘

formalParameters together with block form a range,
but identifier does not belong to it

Lecture Compiler I WS 2001/2002 / Slide 61

Objectives:

Grammar design rules

In the lecture:

• Refer to GdP slides.

• Explain semantic structure.

• Show violation of the example.

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Syntactic restrictions versus semantic conditions
CI-62

Express a restriction syntactically only if
it can be completely covered with reasonable complexity :

• Restriction can not be decided syntactically :
e.g. type check in expressions:

BoolExpression ::= IntExpression ‘<‘ IntExpression

• Restriction can not always be decided syntactically :
e. g. disallow array type to be used as function result

Type ::= ArrayType | NonArrayType | Identifier
ResultType ::= NonArrayType

If a type identifier may specify an array type,
a semantic condition is needed, anyhow

• Syntactic restriction is unreasonable complex :
e. g. distinction of compile-time expressions from ordinary
expressions requires duplication of the expression syntax.

Lecture Compiler I WS 2001/2002 / Slide 62

Objectives:

How to express restrictions

In the lecture:

• Examples are explained.

• Semantic conditions are formulated with attribute grammar concepts, see next chapter.

Assignments:

Discuss further examples for restrictions.

©
 2

00
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Reasons of LALR(1) conflicts

context-free

unambiguous

LR(k)

LR(1)

LALR(1)

CI-63

ambiguous most cases

unbounded lookahead needed

fixed length lookahead > 1 needed

merge of LR(1) states rare cases
introduces conflicts

Grammar condition does not hold:

LALR(1) parser generator can not distinguish these cases.

Lecture Compiler I WS 2001/2002 / Slide 63

Objectives:

Distinguish cases

In the lecture:

The cases are explained.

©
 2

00
1

be
i P

ro
f.

 D
r.

 U
w

e
K

as
te

ns

Eliminate ambiguities
CI-64

unite syntactic constructs - distinguish them semantically

Examples:

• Java: ClassOrInterfaceType ::= ClassType | InterfaceType
InterfaceType ::= TypeName
ClassType ::= TypeName

replace first production by
ClassOrInterfaceType ::= TypeName
semantic analysis distinguishes between class type and interface type

• Pascal: factor ::= variable | ... | functionDesignator
variable ::= entireVariable | ...
entireVariable ::= variableIdentifier
variableIdentifier ::= identifier (**)
functionDesignator ::= functionIdentifier (*)

| functionIdentifer ’(’ actualParameters ’)’
functionIdentifier ::= identifier

eliminate marked (*) alternative
semantic analysis checks whether (**) is a function identifier

Lecture Compiler I WS 2001/2002 / Slide 64

Objectives:

Typical ambiguities

In the lecture:

• Same notation with different meanings;

• ambiguous, if they occur in the same context.

• Conflicting notations may be separated by several levels of productions (Pascal example)

Questions:

©
 2

00
6

be
i P

ro
f.

 D
r.

 U
w

e
K

as
te

ns
Unbounded lookahead

CI-65

The decision for a reduction is determined by a distinguishing token that may
be arbitrarily far to the right:

Example, forward declarations as could have been defined in Pascal:

functionDeclaration ::=
‘function‘ forwardIdent formalParameters ‘:‘ resultType ‘;‘ ‘forward‘

| ‘function‘ functionIdent formalParameters ‘:‘ resultType ‘;‘ block

The distinction between forwardIdent and functionIdent would require to see the
forward or the begin token.

Replace forwardIdent and functionIdent by the same nonterminal;
distinguish semantically.

Lecture Compiler I WS 2001/2002 / Slide 65

Objectives:

Typical situation

In the lecture:

Explain the problem and the solution using the example

Questions:

©
 2

00
6

be
i P

ro
f.

 D
r.

 U
w

e
K

as
te

ns

LR(1) but not LALR(1)
CI-66

Identification of LR(1) states causes non-disjoint right-context sets.

Artificial example:

Grammar:
Z ::= S
S ::= A a
S ::= B c
S ::= b A c
S ::= b B a
A ::= d.
B ::= d.

Z ::= . S {#}
S ::= . A a {#}
S ::= . B c {#}
S ::= . b A c {#}
S ::= . b B a {#}
A ::= . d {a}
B ::= . d {c}

S ::= b . A c {#}
S ::= b . B a {#}
A ::= . d {c}
B ::= . d {a}

A ::= d . {a}
B ::= d . {c}

A ::= d . {c}
B ::= d . {a}

A ::= d . {a, c}
B ::= d . {a, c}

b

d

d

LR(1) states

LALR(1) state

identified
states

Avoid the distinction between A and B - at least in one of the contexts.

Lecture Compiler I WS 2001/2002 / Slide 66

Objectives:

Understand source of conflicts

In the lecture:

Explain grammar the pattern, and why identification of states causes a conflict.

