Cl-67

4. Semantic analysis and transformation

Input: abstract program tree
Tasks: Compiler module:
name analysis environment module
properties of program entities definition module
type analysis, operator identification signature module
transformation tree generator
Output: target tree, intermediate code, target program in case of source-to-source

Standard implementations and generators for compiler modules

Operations of the compiler modules are called at nodes of the abstract program tree
Model: dependent computations in trees

Specification: attribute grammars

generated: tree walking algorithm that calls operations
in specified contexts and in an admissable order

Lecture Compiler | WS 2001/2002 / Slide 67

Objectives:
Tasks and methods of semantic analysis

In the lecture:

Explanation of the

= tasks,

= compiler modules,

= principle of dependent computations in trees.

Suggested reading:
Kastens /7 Ubersetzerbau, Section Introduction of Ch. 5 and 6

© 2001 bei Prof. Dr. Uwe Kastens

Cl-68

4.1 Attribute grammars

Attribute grammar (AG) specifies dependent computations in the abstract program tree
declarative : explicit dependencies only; a suitable order of execution is computed

Computations solve the tasks of semantic analysis and transformation

Generator produces a plan for tree walks
that execute calls of the computations,
such that the specified dependencies are obeyed,
computed values are propagated through the tree

Result: attribute evaluator ; applicable for any tree specified by the AG

Example: attribute grammar tree with dependent attributes

RULE Decls ::= Decls Decl COMPUTE evaluated Decls
Decls[1].size =
Add (Decls[2].size, Decl.size);
END;
RULE Decls ::= Decl COMPUTE
Decls.size = Decl.size;

END; Decls
RULE Decl ::= Type Name COMPUTE Slze€ — slze
Decl.size = ...;
! Decl
END: cre L4

Lecture Compiler | WS 2001/2002 / Slide 68

Objectives:
Get an informal idea of attribute grammars

In the lecture:
Explain computations in tree contexts using the example

Suggested reading:
Kastens / Ubersetzerbau, Section 5, 5.1

Questions:
Why is it useful NOT to specify an evaluation order explicitly?

© 2001 bei Prof. Dr. Uwe Kastens

CI-69

Basic concepts of attribute grammars

An AG specifies computations in tree:
expressed by computations associated to productions of the abstract syntax

RULE p: Y =u COMPUTET(...); 9(...); END;
computations f(...) and g(...) are executed in every tree context of type p
An AG specifies dependencies between computations:
expressed by attributes associated to grammar symbols

RULE p: X::=u Y v COMPUTE Xb= f(Y.a);
Y.z_i_: a(...); N
END; post-condition pre-condition
f(Y.a) usestheresultof g(...) ;hence Y.a=g(...) will be executed before f(Y.a)
dependent computations in adjacent contexts:
RULETr: X::=vYw COMPUTE X.b =f(Y.a); END;
RULE p: Y ::=u COMPUTE Y.a =(g(...); END;

attributes may specify dependencies without propagating any value:

X.GotType = ResetTypeOf(...);
Y.Type = GetTypeOf(...) <- X.GotType,;

ResetTypeOf will be called before GetTypeOf

Lecture Compiler | WS 2001/2002 / Slide 69

Objectives:
Get a basic understanding of AGs

In the lecture:

Explain

= the AG notation,

= dependent computations,
= adjacent contexts in trees

Suggested reading:
Kastens /7 Ubersetzerbau, Section 5, 5.1

Assignments:
= Read and modify examples in Lido notation to introduce AGs

© 2001 bei Prof. Dr. Uwe Kastens

Cl-69a
Definition of attribute grammars
An attribute grammar is defined by
a context-free grammar G , (abstract syntax, tree grammar)
for each symbol X of G a set of attributes A(X) , written X.a if a O A(X)
for each production (rule) p of G a set of computations of one of the forms

Xa=f(..Yb..) or g(..Yb..) whereXandY occurinp

Consistency and completeness of an AG:
Each A(X) is partitioned into two disjoint subsets: Al(X) and AS(X)
AI(X): inherited attributes are computed in rules p where X is on the right -hand side of p
AS(X): synthesized attributes are computed in rules p where X is on the left-hand side of p

Each rule p: X ::= ... Y ... has exactly one computation
for all attributes of AS(X), and
for all attributes of Al(Y), for all symbol occurrences on the right-hand side of p

Lecture Compiler | WS 2001/2002 / Slide 69a

Objectives:
Formal view on AGs

In the lecture:
The completeness and consistency rules are explained using the example of CI-69b

© 2001 bei Prof. Dr. Uwe Kastens

AG Example: Compute expression values

The AG specifies: The value of an expression is computed and printed:

ATTR value: int;

RULE: Root ::= Expr COMPUTE
printf ("value is %d\n",
Expr.value);
END;

SYMBOL Opr: left, right: int;

RULE: Opr ::= '+' COMPUTE
Opr.value =

ADD (Opr.left, Opr.right);
END;

RULE: Opr ::= * COMPUTE
Opr.value =
MUL (Opr.left, Opr.right);

TERM Number: int;

RULE: Expr ::= Number COMPUTE
Expr.value = Number;

END;
END;

RULE: Expr ::= Expr Opr Expr
COMPUTE
Expr[1].value = Opr.value;
Opr.left = Expr[2].value;
Opr.right = Expr[3].value;
END;

CI-69b

Lecture Compiler | WS 2001/2002 / Slide 69b

Objectives:
Exercise formal definition

In the lecture:
= Show synthesized, inherited attributes.
= Check consistency and completeness.

Questions:

= Add a computation such that a pair of sets Al(X), AS(X) is no longer disjoint.

= Add a computation such that the AG is inconsistent.

= Which computations can be omitted whithout making the AG incomplete?

= What would the effect be if the order of the three computations on the bottom left of the slide was altered?

© 2001 bei Prof. Dr. Uwe Kastens

CI-70

AG Binary numbers

Attributes: L.v, B.v value
L.lg number of digits in the sequence L
L.s, B.s scaling of B or the least significant digit of L

RULEpl: D:=L'"L COMPUTE
D.v=ADD (L[1].v, L[2].v);

L[1].s = O;
L[2].s = NEG (L[2].19);
END;
RULEp2: L:=LB COMPUTE
L[1].v = ADD (L[2].v, B.v);
B.s = L[1].s;

L[2].s = ADD (L[1].s, 1);
L[1].lg = ADD (L[2].lg, 1);
END;
RULEp3: L:=B COMPUTE
L.v=B.v;
B.s = L.s;
L.lg =1;
END;
RULE p4: B:='0 COMPUTE
B.v=0;
END;
RULE p5: B:="1' COMPUTE
B.v = Power2 (B.s);
END;

Lecture Compiler | WS 2001/2002 / Slide 70

Objectives:
A complete example for an AG

In the lecture:

= Explain the task.

= Explain the role of the attributes.

= Explain the computations in tree contexts.

= Show a tree with attributes and dependencies (CI-71)

© 2001 bei Prof. Dr. Uwe Kastens

Cl-71

An attributed tree for AG Binary numbers

L3 : S L\;}Z dependency
p2
2 |
1
L -1
4 B L
2]] S L 177[0] 25
p2 \ pS p3 05 attributes:
2 1 D
- \Y
4 S
p3) " 0 0 L g v
B
Z S
B
" v
Lecture Compiler | WS 2001/2002 / Slide 71
Objectives:

An attributed tree

In the lecture:

= Show a tree with attributes.

= Show tree contexts specified by grammar rules.
= Relate the dependencies to computations.

= Evaluate the attributes.

Questions:
= Some attributes do not have an incoming arc. Why?
= Show that the attribues of each L node can be evaluated in the order Ig, s, v.

© 2001 bei Prof. Dr. Uwe Kastens

CI-72

Dependency analysis for AGs

2 disjoint sets of attributes for each symbol X:
Al (X) : inherited (dt. erworben), computed in upper contexts of X
AS (X): synthesized (dt. abgeleitet), computed in lower contexts of X.

upper context of X D A
p: Yi=uXyv dependencies
between
attributes
y/ Objective: Partition of

attribute sets, such that

v / \ Al (X, i) is computed

Al (X,1) Al (X,2)

S
AS (X,1 : o
lower context of X (context switch before the |'th VISIt Of X
q:Xi=w / on tree walk AS (X, i) is computed
during the i-th visit of X
S

Necessary precondition for the existence of such a partition:
No node in any tree has direct or indirect dependencies that contradict the evaluation order of
the sequence of sets: Al (X, 1), AS (X, 1), ..., Al (X, k), AS (X, k)

Lecture Compiler | WS 2001/2002 / Slide 72

Objectives:
Understand the concept of attribute partitions

In the lecture:
Explain the concepts

= sets of synthesized and inherited attributes,

= upper and lower context,

« context switch,

= attribute partitions: sequence of disjoint sets which alternate between synthesized and inherited

Suggested reading:
Kastens / Ubersetzerbau, Section 5.2

Assignments:
Construct AGs that are as simple as possible and each exhibits one of the following properties:

= There are some tree that have a dependency cycle, other trees don’t.

= The cycles extend over more than one context.

= There is an X that has a partition with k=2 but not with k=1.

= There is no partition, although no tree exists that has a cycle. (caution: difficult puzzle!)
(Exercise 22)

© 2001 bei Prof. Dr. Uwe Kastens

Dependency graphs for AG Binary numbers

CI-73

D \ // l
pl L .
lg v
/\ p3 p4

Y
L T > L T > B S

\ \ ! v

N /4 . /4 \
_ _ Ny
//H ‘
L |3
p2 9 PALYL
B S
* x
L ‘ S B S p5
Ig \ \Y | \Y;
\\) /‘ L \ A
indirect -7
dependency
Lecture Compiler | WS 2001/2002 / Slide 73
Objectives:

Represent dependencies

In the lecture:

= graph representation of dependencies that are specified by computations,

compose the graphs to yield a tree with dependencies,

explain indirect dependencies
Use the graphs as an example for partitions (CI-72)
Use the graphs as an example for LAG(k) algorithm (CI-77)

© 2002 bei Prof. Dr. Uwe Kastens

Cl-74

Construction of attribute evaluators

For a given attribute grammar an attribute evaluator is constructed:
- It is applicable to any tree that obeys the abstract syntax specified in the rules of the AG.

- It performs a tree walk and
executes computations when visiting a context for which they are specified.

« The execution order obeys the attribute dependencies

Pass-oriented strategies for the tree walk: AG class
k times depth-first left-to-right LAG (k)
k times depth-first alternatingly left-to-right / right-to left ~ AAG (k)
once bottom-up SAG

The attribute dependencies of the AG are checked
whether the desired pass-oriented strategy is applicable; see LAG(k) algorithm.

non-pass-oriented strategies:
visit-sequences OAG
an individual plan for each rule of the abstract syntax

Generator fits the plans to the dependencies.

Lecture Compiler | WS 2001/2002 / Slide 74

Objectives:
Tree walk strategiees

In the lecture:
= Show the relation between tree walk strategies and attribute dependencies.

Suggested reading:
Kastens / Ubersetzerbau, Section 5, 5.1

Questions:
A grammar class is more powerful if it covers AGs with more complex dependencies.

= Arrange the AG classes in a hierarchy according to that property.

© 2001 bei Prof. Dr. Uwe Kastens

Visit-sequences

A visit-sequence (dt. Besuchssequenz) vs, for each production
p: Xg = X1 o Xj oo X

A visit-sequence is a sequence of operations
Ly j-th visit of the i-th subtree
] j-th return to the ancestor node
eval; execution of a computation c associated to p

Example in the tree: visit-sequences
VSl ... 1Cl..1B1..1C2..11
// \ // \\
/ \ / \
/ \ / \
/ \ / \
y N |
VSq: ib1... 11... IE1..12

Implementation:

one procedure for each section of a visit-sequence upto 1
a call with a switch over applicable productions for |

of the tree grammar:

attribute partitions
guaranty
correct interleaving:

Al (X,1) I (X,2)

CI-75

AS (X,l\ AS (X,Z:\

Lecture Compiler | WS 2001/2002 / Slide 75

Objectives:
Understand the concept of visit-sequences

In the lecture:

Explain

= context switch,

= interleaving of visit-sequences for adjacent contexts,
= partitions are "interfaces" for context switches,

= implementation using procedures and calls

Suggested reading:
Kastens / Ubersetzerbau, Section 5.2.2

Assignments:

= Construct a set of visit-sequences for a small tree grammar, such that the tree walk solves a certain task.

= Find the description of the design pattern "Visitor" and relate it to visit-sequences.

Questions:

= Describe visit-sequences which let trees being traversed twice depth-first left-to-right.

© 2001 bei Prof. Dr. Uwe Kastens

Visit-sequences for the AG Binary numbers

vspp:D=LVL

VL[1],1; L[1].s=0; IL[1],2; 1L[2],1; L[2].s=NEG(L[2].lg);

1L[2],2; D.v=ADD(L[1].v, L[2].v); 11
VsSppiLi=L B

tL[2],1; L[1].lg=ADD(L[2].Ig,1); 11

L[2].s=ADD(L[1].s,1); lL[2],2; B.s=L[1].s; |B,1;L[1].v=ADD(L[2].v, B.v);
vspz:Li=B

L.lg=1; 11; B.s=L.s; IB,1; L.v=B.v; 12

VSpg: B =0
B.v=0; 11
VSps: B =1

B.v=Power2(B.s); 11

Implementation :
Procedure vs<i><p> for each section ofavsytoa i

a call with a switch over alternative rules for | X,i

CI-76

12

Lecture Compiler | WS 2001/2002 / Slide 76

Objectives:
Example for visit-sequences (CI-75)

In the lecture:
« Show tree walk

Questions:

= Check that adjacent visit-sequences interleave correctly.

= Check that all dependencies between computations are obeyed.
= Write procedures that implement these visit-sequences.

© 2001 bei Prof. Dr. Uwe Kastens

Cl-76a

Tree walk for AG Binary numbers

-2
2\ |25
5 tree walk
AN
B ?25

attributes:

Pl52s)

pS

p3
1] D
B

Lecture Compiler | WS 2001/2002 / Slide 76a

Objectives:
See a concrete tree walk

In the lecture:
Show that the visit-sequences of CI-76 produce this tree walk for the tree of CI-71.

© 2001 bei Prof. Dr. Uwe Kastens

Cl-77

LAG (K) condition and algorithm

An AG is a LAG(Kk), if: For each symbol X there is an attribute partition A (X,1), ..., A (X, k),
such that the attributes in A (X, i) can be computed in the i-th depth-first left-to-right pass.

Necessary and sufficient condition over dependency graphs - expressed graphically:

A dependency ﬁ A dependency
from right to left at one symbol
yL2al x alb on the right-hand
ol - 0o side
A(X,)) A(Y,1) AKX, D) A(X))
j>i i<

Algorithm: computes A (1), ..., A (k), if the AG is LAG(k), for i=1, 2, ...
A (i) := all attributes that are not yet assigned
remove attributes from A(i) as long as the following rules are applicable:

- remove X.b, if there is a context where it depends on an attribute of A (i) according to the
pattern given above,

« remove Z.c, if it depends on a removed attribute

Finally : all attributes are assigned to a passesi=1, ..., k the AG is LAG(k)
all attributes are removed from A(i) the AG is not LAG(k) for any k

Lecture Compiler | WS 2001/2002 / Slide 77

Objectives:
Understand the LAG condition

In the lecture:

= Explain the LAG(K) condition,

= motivate it by depth-first left-to-right tree walks,
= explain the algorithm using the example of CI-73.

Suggested reading:
Kastens /7 Ubersetzerbau, Section 5.2.3

Assignments:
= Check LAG(K) condition for AGs (Exercise 20)

Questions:
= At the end of each iteration of the i-loop one of three conditions hold. Formulate them.

CI-78

Generators for attribute grammars

LIGA University of Paderborn OAG

FNC-2 INRIA ANCAG (Oberklasse von OAG)
Synthesizer Generator Cornell University OAG, inkrementell

CoCo Universitat Linz LAG(1)

Properties of the generator LIGA

integrated in the Eli system , cooperates with other Eli tools

high level specification language Lido

modular and reusable AG components

object-oriented constructs usable for abstraction of computational patterns
computations are calls of functions implemented outside the AG
side-effect computations can be controlled by dependencies

notations for remote attribute access

visit-sequence controlled attribute evaluators, implemented in C

attribute storage optimization

Lecture Compiler | WS 2001/2002 / Slide 78

Objectives:
See what generators can do

In the lecture:

= Explain the generators

= Explain properties of LIGA

Suggested reading:
Kastens / Ubersetzerbau, Section 5.4

© 2001 bei Prof. Dr. Uwe Kastens

Cl-78a

State attributes without values

RULE: Root ::= Expr COMPUTE
Expr_print = "yes"; The attl’lbuteS pl’int
printf ("\n") <- Expr.printed; and printed do not
END: have a value
RULE: Expr ::= Number COMPUTE They just describe pre-
Expr.printed = and post-conditions of
printf ("%d ", Number) <- Expr.print; computations:
END; .
Expr.print:
RULE: Opr ="'+ COMPUTE postfix Output has
Opr.printed = printf ("+ ") <- Opr.print; been done up to
END; not including this
RULE: Opr ::=" COMPUTE node
Opr..printed = printf ("* ") <- Opr.print; Expr.printed:
END; postfix output has
RULE: Expr ::= Expr Opr Expr COMPUTE been done up to
Expr[2].print = Expr[1].print; including this node
Expr[3].print = Expr[2].printed;
Opr.print = Expr[3].printed,;
Expr[1].printed = Opr.printed;
END;
Lecture Compiler | WS 2001/2002 / Slide 78a
Objectives:

Understand state attributes

In the lecture:

Explain

= attributes without values,

= representing only dependencies between computations.

Questions:
How would the output look like if we had omitted the state attributes and their dependencies?

© 2001 bei Prof. Dr. Uwe Kastens

Dependency pattern CHAIN

CHAIN print: VOID;

RULE: Root ::= Expr COMPUTE
CHAINSTART HEAD.print = "yes";
printf ("\n ") <- TAIL.print;

END;
RULE: Expr ::= Number COMPUTE
Expr.print =
printf ("%d ", Number) <- Expr.print;
END;

RULE: Opr ::='+' COMPUTE
Opr.post = printf ("+") <- Opr.pre;

END;

RULE: Expr ::= Expr Opr Expr COMPUTE
Opr.pre = Expr[3].print;
Expr[1].print = Opr.post;

END;

CI-78b

A CHAIN specifies a
left-to-right depth-first
dependency through a
subtree.

Trivial computations of
the form X.a = Y.b in the
CHAIN order can be
omitted . They are added
as needed.

Lecture Compiler | WS 2001/2002 / Slide 78b

Objectives:
See LIDO construct CHAIN

In the lecture:
= Explain the CHAIN pattern.
= Compare the example with Cl-78a

© 2001 bei Prof. Dr. Uwe Kastens

Cl-78c

Dependency pattern INCLUDING

ATTR depth: int;

RULE: Root ::= Block COMPUTE
Block.depth = 0;

END;
RULE: Statement ::= Block COMPUTE
Block.depth =
ADD (INCLUDING Block.depth, 1);
END;

TERM Ident: int;

RULE: Definition ::= ‘define' Ildent COMPUTE
printf ("%s defined on depth %d\n ",
StringTable (Ident),
INCLUDING Block.depth);
END;

INCLUDING Block.depth
accesses the depth attribut of the next upper node of
type Block .

An attribute at the root of
a subtree is used from
within the subtree .

Propagation through the
contexts in between is
omitted .

Lecture Compiler | WS 2001/2002 / Slide 78c

Objectives:
See LIDO construct INCLUDING

In the lecture:
Explain the use of the INCLUDING construct.

© 2001 bei Prof. Dr. Uwe Kastens

Cl-78d

Dependency pattern CONSTITUENTS

RULE: Block ::='{" Sequence '} COMPUTE
Block.DefDone =
CONSTITUENTS Definition.DefDone;
END;

RULE: Definition ::= 'Define' Ident COMPUTE
Definition.DefDone =
printf ("%s defined in line %d\n",
StringTable(ldent), LINE);
END;

RULE: Usage ::="'use' Ident COMPUTE
printf ("%s used in line %d\n ",
StringTable(ldent), LINE),
<- INCLUDING BLOCK.DefDone;
END;

CONSTITUENTS Definition.DefDone accesses the

DefDone attributes of all Definition nodes in the
subtree below this context

A computation accesses
attributes from the
subtree below its context.

Propagation through the
contexts in between is
omitted .

The shown combination
with INCLUDING is a
common dependency
pattern.

Lecture Compiler | WS 2001/2002 / Slide 78d

Objectives:
See LIDO construct CONSTITUENTS

In the lecture:
Explain the use of the CONSTITUENTS construct.

