CI-79

4.2 Definition module

Central data structure, stores properties of program entities
e. g. type of a variable, element type of an array type

A program entity is identified by the key of its entry in the data structure.

Operations:
NewKey () yields a new key

ResetP (k, v) sets the property P to have the value v for key k

SetP (k, v, d)

GetP (k, d)

as ResetP; but the property is set to d if it has been set before

yields the value of the Property P for the key k;
yields the default-Wert d, if P has not been set

Operations are called as dependent computations in the tree

Implementation: a property list for every key, for example

Generation of the definition module : From specifications of the form

Property name : property type;
ElementNumber: int;

functions ResetElementNumber, SetElementNumber, GetElementNumber are generated.

4.3 Type analysis

Task: Compute and check types of program entities and constructs at compile time

« defined entities (e. g. variables)
have a type property , stored in the definition module

program constructs (e. g. expressions)
have a type attribute, associated to their symbol resp. tree node
special task: resolution of overloaded operators (functions, methods)

types themselves are program entities
represented by keys;
named using type definitions; unnamed in complex type notations

types have properties
e. g. the element type of an array type

type checking for program entities and for program constructs

a type must / may not have certain properties in certain contexts
compare expected and given type; type relations : equal, compatible;
compute type coercion

CI-80

Lecture Compiler | WS 2001/2002 / Slide 79

Objectives:
Properties of program entities

In the lecture:

= Explain the operations,
= explain the generator,
= give examples.

Suggested reading:
Kastens / Ubersetzerbau, Section S. 130 unten

Assignments:
« Use the PDL tool of Eli

Questions:

= Give examples where calls of the operations are specified as computations in tree contexts. Describe how they depend
on each other.

Lecture Compiler | WS 2001/2002 / Slide 80

Objectives:
Learn to categorize the tasks

In the lecture:
= Motivate type analysis tasks with typical properties of strongly typed languages;
= give examples

Suggested reading:
Kastens / Ubersetzerbau, Section 6.1

Questions:

= Give examples for program entities that have a type property and for others which don’t.
« Enumerate at least 5 properties of types in Java, C or Pascal.

= Give an example for a recursively defined type, and show its representation using keys.

Cl-81

Declarations and type notations

operations in the tree for the construct:

a, b: array [1..10] of real;

_ -~ | Declaration | >

create type entry and
set its properties

- Type AN
| Defldent | | Defldent | ,/ Egpgl\lﬁa,tigrl I
Key Key | L/ Type \

\ \
NewKey (),

ResetTypeOf (%) <—k /// ,
\
,/ ResetindexType () & \

ResetElemTyp e (,)\\
\

ResetTypeOf (;] ,
Variables:)/

set their type property

Type

7'D/pej\107ta$igr1 | TypeNotation

3\

Type

Types of expressions required by context

operations in the tree for:
x = ali;

- variable, Bprs |
| Type i Type/ ReqType
\ !
| |
compute | \ '\ compatibl e (,)
type attributes | ! ' !
| Useldent | /| \Variable |
Key Type K Type N
/ \
GetTypeOf () ,/ GetElemType () \\\
/[GetindexType () N
/ N\
 Variable | | Expr > |
Type Type ReqType

Cl-82

check type

compute
type attributes|

Lecture Compiler | WS 2001/2002 / Slide 81

Objectives:
Understand type analysis for declarations

In the lecture:

= Types as properties of program entities,

= types as attributes of program constructs,

= explain attributes and computations in the tree,

« explain the dependencies between the computations.

Suggested reading:
Kastens / Ubersetzerbau, Section 6.1

Lecture Compiler | WS 2001/2002 / Slide 82

Objectives:
Example for computation and check of types

In the lecture:

= Types as properties of program entities,

= types as attributes of program constructs,

= explain attributes and computations in the tree,

« explain the dependencies between the computations.

Suggested reading:
Kastens / Ubersetzerbau, Section 6.1

Assignments:

= Compose the trees of CI-81 and CI-82 into a complete tree. Find an evaluation order for the operations. State for each
operation the weakest precondition with respect to the execution of other operations.

(see also Exercise 24)

© 2002 bei Prof. Dr. Uwe Kastens

Cl-83

Overloading resolution for operators

Overloading : same operator symbol (source operator) is used for several target operators
having different signatures and different meanings , e. g. specified by a table like:

symbol signature meaning
+ int 0 int -> int addition of integral numbers
+ real O real -> real floating point addition
+ set [set -> set union of sets

t 0 t -> boolean comparison for values of type t

Coercion: implicitly applicable type conversion: e. g. int -> real, char -> string, ...

Context of overloaded binary operators: Expr

Type ReqType

)
Coem

Expr y |[[Y____BinOpr| v [| Expr ?

7Type Requipiei LT;ipe Srcfpr TgtOpr R'l’ype Type ReqType
[y

IdentifyOpr (, ,)

given: source operator and operand types
find: target operator

Cl-84

Type analysis for object-oriented languages

Class hierarchy is a type hierarchy: Circle k = new Circle (...);

implicit type coercion: class -> super class GeometricShape f = k;

explicit type cast: class -> subclass)
k = (Circle) f;

Variable of class type may contain
an object (reference) of its subclass

Check signature of overriding methods:

calls must be type safe; Java requires the same signature;
following weaker requirements are sufficient (contra variant parameters, language Sather):

call of dynamically

iable: X x; Aa; P p;
bound method: Variable: X x; Aa; P p

a=x.m (p); Cc: Bb:

classX{Cm (Qq){

!

classY{Bm (Rr1){

super class use of q;...returnc; }}

subclass use of r;... return b; } }

Analyse dynamic methode binding; try to decide it statically:
static analysis tries to further restrict the run-time type:

GeometricShape f;...; f = new Circle(...);...; a = f.area();

Lecture Compiler | WS 2001/2002 / Slide 83

Objectives:
Understand the task of overloading resolution

In the lecture:

Explain

= overloaded operators, functions, and methods,
= attribute computations,

= Elitool OIL

Suggested reading:
Kastens / Ubersetzerbau, Section 6.1

Assignments:
= overloading resolution as in C (Exercise 23)

Lecture Compiler | WS 2001/2002 / Slide 84

Objectives:
Understand classes as types

In the lecture:

Explain

= class hierarchy - type coercion

= type checking for dynamically bound methods calls
« predict the runtime classs of objects

Questions:

= Why would overridden methods not be type safe if they had "covariant" parameters (all 3 arrows between the classes
X and Y would point up)? That is the situation in Eiffel.

© 2001 bei Prof. Dr. Uwe Kastens

© 2002 bei Prof. Dr. Uwe Kastens

Cl-85

Type analysis for functional languages (1)

Static typing and type checking without types in declarations
Type inference : Types of program entities are inferred from the context where they are used

Example in ML:
fun choice (cnt, fct) =
if fct cnt then cnt else cnt - 1;

describe the types of entities using type variables:

cnt: 'a,
fet: 'b->'c,
choice: (‘a* ('b->'c)) ->'d

form equations that describe the uses of typed entities

‘c = bool
b ='a
'd ='a
'‘a =int

solve the system of equations: S))
choice: (int * (int->bool)) -> int

Cl-86

Type analysis for functional languages (2)

Parametrically polymorphic types: types having type parameters

Example in ML:

funmap (I, f) =
if null |
then nil
else (f (hd I)) :: map (tl I,)

polymorphic signature:

map: (‘alist * (‘a -> 'b)) ->'b list

Type inference yields most general type of the function,
such that all uses of entities in operations are correct;

i. e. as many unbound type parameters as possible

calls with different concrete types, consistently substituted for the type parameter:
map([1,2,3], fn i =>i*) ‘a=int,'b =int
map([1,2,3], even) ‘a=int,'b = bool
map([1,2,3], fni =(i,i)) ‘a=int,'b = ('a*a)

Lecture Compiler | WS 2001/2002 / Slide 85

Objectives:
Understand type inference

In the lecture:
Explain how types are computed from the operations without having typed declarations

Questions:
= How would type inference find type errors?

Lecture Compiler | WS 2001/2002 / Slide 86

Objectives:
Understand polymorphic types

In the lecture:
= Explain analysis with polymorphic types.
= Explain the difference of polymorphic types and generic types from the view of type analysis.

