
©
 2

00
2

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

6. Synthesis: An Overview
CI-97

Lexical analysis

Syntactic analysis

Semantic analysis

Transformation

Optimization (DFA)

Code generation

Peephole optimization

Assembly

Source program

Token sequence

Abstract program tree

Intermediate language

Abstract

Target program

Analysis (frontend)

Synthesis (backend)

machine program

program analysis

code & storage mapping

code selection

register allocation

automatic parallelization

optimizing transformation

Lecture Compiler I WS 2001/2002 / Slide 97

Objectives:

Relate synthesis topics to compiler structure

In the lecture:

• This chapter addresses only a selection of synthesis topics.

• Only a rough idea is given for each topic.

• The topics are treated completely in the lecture "Compiler II".

©
 2

00
2

be
i P

ro
f.

 D
r.

 U
w

e
K

as
te

ns

Optimization

Objective: Reduce run-time and/or code size of the program, without changing its effect.
Eliminate redundant computations, simplify computations.

Input: Program in intermediate language
Task: Analysis (find redundancies), apply transformations
Output: Improved program in intermediate language

Program analysis:
static properties of program structure and execution
safe, pessimistic assumptions where input and dynamic execution paths are not known

Context of analysis:
Expression local optimization
Basic block local optimization
Control flow graph (procedure) global intra-procedural optimization
Control flow graph, call graph global inter-procedural optimization

CI-98

Lecture Compiler I WS 2001/2002 / Slide 98

Objectives:

Overview over optimization

In the lecture:

• Program analysis computes safe assumptions at compile time about execution of the program.

• The larger the analysis context, the better the information.

• Conventionally this phase is called "Optimization", although in most cases a formal optimum can not be defined or
achieved with practical effort.

Suggested reading:

Kastens / Übersetzerbau, Section 8

©
 2

00
2

be
i P

ro
f.

 D
r.

 U
w

e
K

as
te

ns

Optimizing Transformations

Name of transformation: Example for its application:

• Algebraic simplification of expressions 2*3.14 x+0 x*2 x**2

• Constant propagation (dt. Konstantenweitergabe) x = 2; ... y = x * 5;

• Common subexpressions (Gemeinsame Teilausdrücke) x=a*(b+c);...y=(b+c)/2;

• Dead variables (Überflüssige Zuweisungen) x = a + b; ... x = 5;

• Copy propagation (Überflüssige Kopieranweisungen) x = y; ... ; z = x;

• Dead code (nicht erreichbarer Code) b = true;...if (b) x = 5; else y = 7;

• Code motion (Code-Verschiebung) if (c) x = (a+b)*2; else x = (a+b)/2;

• Function inlining (Einsetzen von Aufrufen) int Sqr (int i) { return i * i; }

• Loop invariant code while (b) {.. . x = 5; ...}

• Induction variables in loops
i = 1; while (b) { k = i*3; f(k); i = i+1;}

Analysis checks preconditions for safe application of each transformation;
more applications, if preconditions are analysed in larger contexts.

Interdependences:
Application of a transformation may enable or inhibit another application of a transformation.

Order of transformations is relevant.

CI-99

Lecture Compiler I WS 2001/2002 / Slide 99

Objectives:

Get an idea of important transformations

In the lecture:

• Some transformations are explained.

• The preconditions are discussed for some of them.

Suggested reading:

Kastens / Übersetzerbau, Section 8.1

Assignments:

• Apply some transformations in a given example program.

Questions:

• Which of the transformations need to analyze pathes through the program?

• Give an example for a pair of transformations, such that an application of the first one enables an application of the
second.

©
 2

00
2

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Analysis in Compilers
CI-100

Lexical analysis

Syntactic analysis

Semantic analysis

Transformation

Optimization (DFA)

Code generation

Peephole optimization

Assembly

Source program

Token sequence

Abstract program tree

Intermediate language

Abstract

Target program

Analysis (frontend)

Synthesis (backend)

machine program

syntactic structure

program entities
properties
relations

control-flow graph

use-def relations

data dependency graph

dominator tree, loops

call graph

data-flow information

Lecture Compiler I WS 2001/2002 / Slide 100

Objectives:

See some methods of program analysis

In the lecture:

Give brief explanations of the methods

©
 2

00
2

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Example for a Control-flow Graph

Intermediate code with basic blocks: Control-flow graph:
[Muchnick, p. 172]

CI-101

1 receive m
2 f0 <- 0
3 f1 <- 1
4 if m <= 1 goto L3

5 i <- 2

6 L1: if i <= m goto L2

7 return f2

B1

B3

B4

B5

8 L2: f2 <- f0 + f1
9 f0 <- f1

10 f1 <- f2
11 i <- i + 1
12 goto L1

13 L3: return m

B6

B2

entry

B1

B2 B3

B4

B6B5

exit

Lecture Compiler I WS 2001/2002 / Slide 101

Objectives:

Example for a control-flow graph

In the lecture:

• The control-flow graph represents the basic blocks and their branches.

• See Lecture "Modellierung", Mod-4.27 ("Programmablaufgraphen")

©
 2

00
6

be
i P

ro
f.

 D
r.

 U
w

e
K

as
te

ns

Data-Flow Analysis

Data-flow analysis (DFA) provides information about how the execution of a program may
manipulate its data.

Many different problems can be formulated as data-flow problems, for example:

• Which assignments to variable v may influence a use of v at a certain program position?

• Is a variable v used on any path from a program position p to the exit node?

• The values of which expressions are available at program position p?

Data-flow problems are stated in terms of

• paths through the control-flow graph and

• properties of basic blocks.

Data-flow analysis provides information for global optimization.

Data-flow analysis does not know

• input values provided at run-time,

• branches taken at run-time.

Its results are to be interpreted pessimistic.

CI-102

Lecture Compiler I WS 2001/2002 / Slide 102

Objectives:

Goals and ability of data-flow analysis

In the lecture:

• The topics on the slide are explained.

• Examples for the use of DFA information are given.

• Examples for pessimistic information are given.

Suggested reading:

Kastens / Übersetzerbau, Section 8.2.4

Questions:

• What’s wrong about optimistic information?

• Why can pessimistic information be useful?

©
 2

00
6

be
i P

ro
f.

 D
r.

 U
w

e
K

as
te

ns

Specification of a DFA Problem

Specification of reaching definitions:

• Description:
A definiton d of a variable v reaches the begin of a block B
if there is a path from d to B on which v is not assigned again.

• It is a forward problem.

• The meet operator is union.

• The analysis information in the sets are
assignments at certain program positions.

• Gen (B):
contains all definitions d: v = e; in B,
such that v is not defined after d in B.

• Kill (B):
if v is assigned in B, then Kill(B)
contains all definitions d: v = e;
in blocks different from B,
such that B has a definition of v.

CI-103

In (B) = Out (h)

Out (B) = Gen (B) (In (B) - Kill (B))∪
 Θ

h ∈pred(B)

pred (B) (In - Kill) ∪ Gen = Out

B

.

.

.

.

.

.

2 equations for each basic block:

Lecture Compiler I WS 2001/2002 / Slide 103

Objectives:

Get an idea of DFA problems

In the lecture:

Explain how DFA problems are specified by a set of equations.

©
 2

00
2

be
i P

ro
f.

 D
r.

 U
w

e
K

as
te

ns

Call Graphs for object-oriented programs
CI-104

The call graph is reduced to a set of reachable methods using the
class hierarchy and the static type of the receiver expression in the call:

If a method F-p is reachable and
if it contains a dynamically bound call v.m(...) and
T is the static type of v,

then every method m that is inherited by T or by a subtype of T
is also reachable, and arcs go from F-p to them.

class A
method m
method p

class C
method m

class B
method m

class D
...

class E
method m

class F
method p

class G
method m

...

A-m A-p

B-m C-m

E-m
F-p

G-m

Call graph for F-p containing v.m(...)
static type: F v;

eliminated

Lecture Compiler I WS 2001/2002 / Slide 104

Objectives:

See a typical object-oriented analysis

In the lecture:

• Dynamically bound method calls contribute significantly to the cost of object-oriented programs.

• Static resolution as far as possible is very effective.

©
 2

00
2

be
i P

ro
f.

 D
r.

 U
w

e
K

as
te

ns

Code Generation

Input: Program in intermediate language

Tasks:
Storage mapping properties of program objects (size, address) in the definition module
Code selection generate instruction sequence, optimizing selection
Register allocation use of registers for intermediate results and for variables

Output: abstract machine program, stored in a data structure

Design of code generation:

• analyze properties of the target processor

• plan storage mapping

• design at least one instruction sequence for each operation of the intermediate language

Implementation of code generation:

• Storage mapping:
a traversal through the program and the definition module computes
sizes and addresses of storage objects

• Code selection: use a generator for pattern matching in trees

• Register allocation:
methods for expression trees, basic blocks, and for CFGs

CI-105

Lecture Compiler I WS 2001/2002 / Slide 105

Objectives:

Overview on design and implementation

In the lecture:

• Identify the 3 main tasks.

• Emphasize the role of design.

Suggested reading:

Kastens / Übersetzerbau, Section 7

©
 2

00
2

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Storage Mapping

Objective:
for each storable program object compute storage class, relative address, size

Implementation:
use properties in the definition module, travers defined program objects

Design the use of storage areas:

code storage progam code

global data to be linked for all compilation units

run-time stack activation records for function calls

heap storage for dynamically allocated objects, garbage collection

registers for addressing of storage areas (e. g. stack pointer)
function results, arguments
local variables, intermediate results (register allocation)

Design the type mapping ... C-29

CI-106

Lecture Compiler I WS 2001/2002 / Slide 106

Objectives:

Design the mapping of the program state onto the machine state

In the lecture:

Explain storage classes and their use

Suggested reading:

Kastens / Übersetzerbau, Section 7.2

©
 2

00
6

be
i P

ro
f.

 D
r.

 U
w

e
K

as
te

ns

Run-Time Stack

Run-time stack contains one activation record for each active function call.
Activation record provides storage local data of a function call. (see C-31)

Nested functions (nested classes and objects): static predecessor chain
links the accessible activation records, closure of a function

Requirement: The closure of a function is still on the run-time stack when the function is called.

Languages without recursive functions (FORTRAN) do not use a run-time stack.

Optimization: activation records of non-recursive functions may be allocated statically.

Parallel processes, threads, coroutines need a separate run-time stack each.

CI-107

q
int i;

r

b=i+1;

if(..) q();
r();

q();

h float a;

int b;

nested
h

q

q

q

r

q:

i:
r:

i:
r:

i:
r:

b=i+1;

a:

b:

static
links

push, pop

functions

Lecture Compiler I WS 2001/2002 / Slide 107

Objectives:

Understand the concept of run-time stacks

In the lecture:

The topics on the slide are explained. Examples are given.

• Explain static and dynamic links.

• Explain nesting and closures.

• Different language restrictions to ensure that necessary closures are on the run-time stack.

Questions:

• How do C, Pascal, and Modula-2 obey the requirement on stack discipline?

• Why do threads need a separate run-time stack?

©
 2

00
6

be
i P

ro
f.

 D
r.

 U
w

e
K

as
te

ns

Code Sequences for Control Statements

A code sequence defines how a control statement is transformed into jumps and labels.

Several variants of code sequences may be defined for one statement.

Example:

while (Condition) Body M1: Code (Condition, false, M2)
Code (Body)
goto M1

M2:

variant:

goto M2
M1: Code (Body)
M2: Code (Condition, true, M1)

Meaning of the Code constructs:

Code (S): generate code for statements S

Code (C, true, M) generate code for condition C such that
it branches to M if C is true,
otherwise control continues without branching

CI-108

Lecture Compiler I WS 2001/2002 / Slide 108

Objectives:

Concept of code sequences for control structures

In the lecture:

• Explain the code sequence for while statements.

• Explain the transformation of conditions.

• Discuss the two variants.

• Develop a code sequence for for statements.

Questions:

• What are the advantages of each alternative?

• Give a code sequence for do-while statements.

©
 2

00
2

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Example for Code Selection
CI-109

cont

addradd

addradd
R2,12

R6,12
addr
R6,12

add
R1

cont

const
6

load R6,8
addr
R6,8

(R2,18)

R2,18

6

load (R6,8), R1
add R6,R1,R2
store (R2,18),...

cost: 3 instructions

 R5
cont

load

addradd
R4,12

addradd
R2,12

R6,12
addr
R6,12

add R1
cont

add R3
const load6

load
R6,8addr

R6,8

load (R6,8), R1
add R6,R1,R2
load 6,R3
add R2,R3,R4
load (R4,12),R5
store R5, ...
cost: 6 instructions

tree for assignment ... = a[i].s;

Lecture Compiler I WS 2001/2002 / Slide 109

Objectives:

Get an idea of code selection by tree patterns

In the lecture:

• Show application of patterns.

• Explain code costs.

©
 2

00
2

be
i P

ro
f.

 D
r.

 U
w

e
K

as
te

ns

Register Allocation

Use of registers:

intermediate results of expression evaluation

reused results of expression evaluation (CSE)

contents of frequently used variables

parameters of functions, function result (cf. register windowing)

stack pointer, frame pointer, heap pointer, ...

Number of registers is limited - for each register class: address, integer, floting point

register allocation aims at ruduction of

• number of memory accesses
• spill code, i. e. instructions that store and reload the contents of registers

specific allocation methods for different context ranges:

• expression trees (Sethi, Ullman)
• basic blocks (Belady)
• control flow graphs (graph coloring)

useful technique: defer register allocation until a later phase,
use an unbound set of symbolic registers instead

CI-110

Lecture Compiler I WS 2001/2002 / Slide 110

Objectives:

Overview on register allocation

In the lecture:

Explain the use of registers for different purposes.

Suggested reading:

Kastens / Übersetzerbau, Section 7.5

©
 2

00
6

be
i P

ro
f.

 D
r.

 U
w

e
K

as
te

ns

Example for Graph Coloring
CI-111

a :=
c :=
f :=

B1

a
b :=

B2
a
b :=
c

B3

d :=
a
b

B4
d
e :=

 :=
B5

b
d

B6

CFG with definitions and uses of variables

d2 d1 d3
f a d

c b e
d3 d2 d1

interference graph

Lecture Compiler I WS 2001/2002 / Slide 111

Objectives:

Get an idea of register allocation by graph coloring

In the lecture:

• Explain the example.

• Refer to lecture "Modellierung" Mod-4.21

Suggested reading:

Kastens / Übersetzerbau, Section 7.5.4, Fig. 7.5-6

Assignments:

• Apply the technique for another example.

Questions:

• Why is variable b in block B5 alive?

©
 2

00
6

be
i P

ro
f.

 D
r.

 U
w

e
K

as
te

ns

Code Parallelization

Target processor executes several instructions in parallel.
Compiler arranges instruction sequence for shortest execution time: instruction scheduling

Principles of parallelism in processors:

CI-112

Parallel functional units (FU)
super scalar, VLIW:

FU1 FU2 FU3

parallelized
instruction
sequence

Data parallel processor

all FUs execute the same instruction
on individual data (SIMD)

vector processor

FU0 FU31...

do c[i] := a[i] + b [i];
for i := 0 to 31

is one instruction!

Analyze and transform loops

S3 S2 S1

sequential code scheduled for pipelining

Pipeline processor

Lecture Compiler I WS 2001/2002 / Slide 112

Objectives:

3 abstractions of processor parallism

In the lecture:

• Explain the abstract models,

• relate them to real processors,

• explain the instruction scheduling tasks.

Suggested reading:

Kastens / Übersetzerbau, Section 8.5

Questions:

• What has to be known about instruction execution in order to solve the instruction scheduling problem in the compiler?

©
 2

00
6

be
i P

ro
f.

 D
r.

 U
w

e
K

as
te

ns

Software Pipelining

Technique for parallelization of loops.

A single loop body does not exhibit enough parallelism => sparse schedule.

Idea of software pipelining:
transformed loop body executes several loop iterations in parallel,
iterations are shifted in time => compact schedule

Prologue, epilogue: initiation and finalization code

Technique:

1. DDG for loop body
with dependencies into
later iterations

2. Find a schedule such that
iterations can begin with
a short initiation interval II

3. Construct new loop,
prologue, and epilogue

CI-113

with software pipeliningwithout

II: Initiation Interval

prologue

epilogue

loopII

II

II

transformed

Lecture Compiler I WS 2001/2002 / Slide 113

Objectives:

Increase parallelism in loops

In the lecture:

• Explain the underlying idea

Questions:

Explain:

• The shorter the initiation interval is, the greater is the parallelism, and the compacter is the schedule.

• The transformed loop contains each instruction of the loop body exactly once.

©
 2

00
6

be
i P

ro
f.

 D
r.

 U
w

e
K

as
te

ns

Loop Parallelization
CI-114

Compilation steps:

• nested loops operating on arrays,
sequentiell execution of iteration space

• analyze data dependencies
data-flow: definition and use of array elements

• transform loops
keep data dependencies intact

• parallelize inner loop(s)
map onto field or vector of processors

• map arrays onto processors
such that many acceses are local,
transform index spaces

DECLARE B[0..N,0..N+1]

FOR I := 1 ..N
FOR J := 1 .. I

B[I,J] :=
B[I-1,J]+B[I-1,J-1]

END FOR
END FOR

N1

1

N

i

j

1-N

1 N

-1

i
j

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

1

N

1

-N

-1

i

N

j

Lecture Compiler I WS 2001/2002 / Slide 114

Objectives:

Overview on regular loop parallelization

In the lecture:

Explain

• Application area: scientific computations,

• goals: execute inner loops in parallel with efficient data access,

• transformation steps.

