
Compilation Methods SS 2013 - Assignment 1
Kastens, Pfahler, 17.04.2013

Exercise 1 (Different forms of intermediate code)

The following intermediate code fragments are given in 2-address-form (Team 1), 0-address-form/stack-form
(Team 2), and tree representation (Team 3).

Note: Both instruction sequences initialize the variables a, b, and c. Those assignments are omitted in the tree
representation.

mov local-4, 10 # a
mov local-8, 20 # b,
mov local-12, -30 # c,
mov %eax, local-12 # c, c
add %eax, local-8 # tmp59, b
imul %eax, local-4 # tmp61, a
mov local-16, %eax # x, tmp61
mov %eax, local-12 # c, c
mov %edx, local-8 # tmp62, b
add %edx, %eax # tmp62, c
mov %eax, %edx # tmp64, tmp62
sal %eax, 2 # tmp64,
add %eax, %edx # tmp64, tmp62
sal %eax # tmp65
mov local-20, %eax # y, tmp65

 0: bipush 10
 2: istore_0
 3: bipush 20
 5: istore_1
 6: bipush -30
 8: istore_2
 9: iload_0
 10: iload_1
 11: iload_2
 12: iadd
 13: imul
 14: istore_3
 15: iload_1
 16: iload_2
 17: iadd
 18: bipush 10
 20: imul
 21: istore_4

Reconstruct a sequence of Java (or C) assignments that could be compiled to this intermediate code and prepare to
explain the relationship to the other teams. Do you find optimization opportunities (Slide 202) in your intermediate
code representation?

Exercise 2 (Translating statements to intermediate code)

Convert the following assignment statement to intermediate code in 0-address-form, 2-address-form, and an
abstract syntax tree-representation. Assume that all variables are declared with type int.

 c = (a + b) * (a + b) - 1;

The subexpression a+b appears twice. How could you avoid duplicate computation of the sum in each of the three
forms of intermediate code?

Exercise 3 (Optimizations of Java Bytecode)

Which optimizations of Slide 202 are applied by the Java compiler? Which optimizations could have been applied
additionally?

public class Optimization {

 public static int deadVariables() { public static int deadVariables();
 int a = 50; 0: bipush 50
 int b = 60; 2: istore_0
 3: bipush 60
 int x = a + b; 5: istore_1
 x = 5; 6: iload_0
 7: iload_1
 return x; 8: iadd
 } 9: istore_2
 10: iconst_5
 11: istore_2
 12: iload_2
 13: ireturn

 public static int algebraicSimplification() { public static int algebraicSimplification();
 int p = 50; 0: bipush 50
 double i = 2 * 3.14; 2: istore_0
 int j = p + 0; 3: ldc2_w #2; //double 6.28d
 int k = p * 2; 6: dstore_1
 return j + k; 7: iload_0
 } 8: iconst_0
 9: iadd
 10: istore_3
 11: iload_0
 12: iconst_2
 13: imul
 14: istore 4
 16: iload_3
 17: iload 4
 19: iadd
 20: ireturn
 public static boolean bool;
 public static int constantPropagation() { public static int constantPropagation();
 int x = 2; 0: iconst_2
 if (bool) { 1: istore_0
 int z = 42; 2: getstatic #4; //bool
 } 5: ifeq 11
 int y = x * 5; 8: bipush 42
 10: istore_1
 return y; 11: iload_0
 } 12: iconst_5
 13: imul
 14: istore_1
 15: iload_1
 16: ireturn

 public static int copyPropagation() { public static int copyPropagation();
 int p = 40; 0: bipush 40
 2: istore_0
 int x = p; 3: iload_0
 int z = x; 4: istore_1
 5: iload_1
 return z; 6: istore_2
 } 7: iload_2
} 8: ireturn

Exercise 4 (HOMEWORK: Manually modifying Java bytecode)

The Java classfile CountDown.class contains an important Java program that has been developed for
upcoming NASA Mars missions. Unfortunately the source code has been lost. All that is left is a bytecode listing of
class CountDown in file CountDown.j. This file has been generated from the the classfile.

Use the Java interpreter to execute the supplied classfile. What is wrong with the program (from the NASA’s
point of view)?

Modify the assembler source code in file CountDown.j so that the countdown works as expected.

Use the command ~compiler/bin/Jasmin CountDown.j to assemble a new classfile, when you have
fixed the assembler source code. Invoke the resulting classfile with the bytecode verifier enabled:
java -verify CountDown

Hints: You can find an overview on Java Bytecode instructions at
http://en.wikipedia.org/wiki/Java_bytecode_instruction_listings.

http://en.wikipedia.org/wiki/Java_bytecode_instruction_listings

	Compilation Methods SS 2013 - Assignment 1
	Exercise 1 (Different forms of intermediate code)
	Exercise 2 (Translating statements to intermediate code)
	Exercise 3 (Optimizations of Java Bytecode)
	Exercise 4 (HOMEWORK: Manually modifying Java bytecode)

