Compilation Methods SS 2013 - Assignment 1
Kastens, Pfahler, 17.04.2013
Exercise 1 (Different formsof intermediate code)

The following intermediate code fragments are given in 2-address-form (Team 1), O-address-form/stack-form
(Team 2), and tree representation (Team 3).

Note: Both instruction sequences initialize the variables a, b, and c. Those assignments are omitted in the tree
representation.

0: bi push 10
nmov | ocal -4, 10 # a g_ Lftagﬁ—go
mov |ocal -8, 20 # b, S o

5: istore_1
nmov | ocal -12, -30 # c, ; -

6: bi push -30
nmov %ax, local-12 # c, ¢ 8 istore 2
add %eax, local-8 # tnp59, b T -

. 9: iload_0O
i mul %ax, local-4 # tmp6l, a L =

10: iload_1
nmov | ocal -16, %ax # x, tnp6l D —

11: iload_2
mov %ax, local-12 # c, ¢ 12: iadd
nmov %edx, |ocal-8 # tnp62, b 13: U
add %edx, %ax # tnp62, c D

14: istore_3
nmov %ax, %edx # tnp64, tnp62 Lo -

15: iload_1
sal %ax, 2 # tnpb64, 16+ iload 2
add Y%eax, %edx # tnp64, tnp62 D -

17: iadd
sal %ax # tnp65 .

18: bi push 10
nmov | ocal - 20, %ax # y, tnp65 20 imu

21: istore 4

Assglist
A
| ng | Assglist
|x | |BinExpr
| a | * | |BinExpr| BinITxpr
BinExpr " 10
b [[+] Lc]

Reconstruct a sequence of Java (or C) assignments that could be compiled to this intermediate code and prepat
explain the relationship to the other teams. Do you find optimization opportunities (Slide 202) in your intermediat
code representation?

Exercise 2 (Trandating statementsto intermediate code)

Convert the following assignment statement to intermediate code in 0-address-form, 2-address-form, and an
abstract syntax tree-representation. Assume that all variables are declared wittt type

c=(a+b)* (a+b - 1

The subexpressioat+b appears twice. How could you avoid duplicate computation of the sum in each of the three
forms of intermediate code?

Exercise 3 (Optimizations of Java Bytecode)

Which optimizations of Slide 202 are applied by the Java compiler? Which optimizations could have been applie
additionally?

public class Optimzation {

public static int deadVariables() { public static int deadVariabl es();
int a = 50; 0: bi push 50
int b = 60; 2: istore_0
3: bi push 60
int x = a + b; 5: istore_1
x = 5; 6: iload_O
7: iload 1
return x; 8: i add
} 9: istore_2
10: iconst_5
11: istore_2
12: iload_2
13: ireturn
public static int algebraicSinplification() { public static int algebraicSinplification();
int p = 50; 0: bi push 50
double i =2 * 3.14; 2: istore_0
int j =p + 0; 3: ldc2_w #2; //double 6.28d
int kK=p* 2 6: dstore_1
return j + k; 7: iload_O
} 8: iconst_0O
9: i add
10: istore_3
11: iload_O
12: i const _2
13: i mul
14: istore 4
16: iload_3
17: il oad 4
19: i add
20: ireturn
public static bool ean bool
public static int constantPropagation() { public static int constantPropagation();
int x = 2; 0: iconst_2
if (bool) { 1 istore_0
int z = 42; 2: getstatic #4; |/ boo
} 5: i feq 11
int y=x?*H5; 8: bi push 42
10: istore_1
return vy, 11: iload_O
} 12: iconst_5
13: i mul
14: istore_1
15: iload_1
16: ireturn
public static int copyPropagation() { public static int copyPropagation();
int p = 40; 0: bi push 40
2: istore_0
int x = p; 3: iload_0O
int z = x; 4. istore_1
5: iload_1
return z; 6: istore_2
} 7: iload_2
} 8: ireturn

Exercise4 (HOMEWORK: Manually modifying Java bytecode)

The Java classfil€ount Down. cl ass contains an important Java program that has been developed for
upcoming NASA Mars missions. Unfortunately the source code has been lost. All that is left is a bytecode listing
classCount Down in file Count Down. j . This file has been generated from the the classfile.

C

® Use the Java interpreter to execute the supplied classfile. What is wrong with the program (from the NASA's
point of view)?

® Modify the assembler source code in fleunt Down. j so that the countdown works as expected.

Use the commandconpi | er/ bi n/ Jasm n Count Down. j to assemble a new classfile, when you have
fixed the assembler source code. Invoke the resulting classfile with the bytecode verifier enabled:
java -verify Count Down

Hints: You can find an overview on Java Bytecode instructions at
lhttp://en. w ki pedi a. org/ wi ki / Java bytecode instruction |istings|

http://en.wikipedia.org/wiki/Java_bytecode_instruction_listings

	Compilation Methods SS 2013 - Assignment 1
	Exercise 1 (Different forms of intermediate code)
	Exercise 2 (Translating statements to intermediate code)
	Exercise 3 (Optimizations of Java Bytecode)
	Exercise 4 (HOMEWORK: Manually modifying Java bytecode)

