
Compilation Methods SS 2013 - Assignment 5
Kastens, Pfahler, 13. Juni 2013

Exercise 1 (Storage Mapping for Arrays)

The following declaration appears in a Pascal program:

 var rain: array [1..12, 2000..2029] of integer;

a) Draw the memory layout in row-major order.
b) Let’s assume a target architecture that uses 32 bit integers (4 bytes) and requires integers to be aligned on 4

byte boundaries.

What is the index map (see Slide 305) for the declared array? Use a Horner scheme with all constant parts of
the array descriptor determined at compile time.

c) Give intermediate code in the style of Slide 316 for the following statement:

 rain[month, 2011] := 13;

Compiled code for our target architecture uses register R6 to store the base address of the current activation
record on the run-time stack. Assume that variable month is stored at offset 8 and that the array starts at
offset 12. The assignment is represented as a node of type assign . Its left subtree must compute the address
of the target location; its right subtree must represent the value to be assigned. Assume compile time
evaluation of all operations on constant operands.

Exercise 2 (Code Sequences for Control Statements)

Design code sequences for for -loops and do-while -loops in C. Example sequences for different kinds of loops
appear on Slide 315.

Exercise 3 (Code Selection by Pattern Matching in Trees)

a) The following set of translation patterns describes a simple RISC processor:

No. Operator Operands Result Code Costs

1 iconst const -> IConst ./. 0

2 iconst const -> IReg move #const, IReg 1

3 var address -> IReg addr #adress, IReg 2

4 iadd IReg1 , IReg2 -> IReg3 add IReg1 , IReg2 , IReg3 2

5 iadd IReg1 , IConst -> IReg2 add IReg1 , #const, IReg2 2

6 deref IReg1 -> IReg2 load IReg1 , IReg2 3

7 assign IReg1 , IReg2 -> Stmt store IReg1 , IReg2 2

Assume that the following source code

 { int v[8];
 struct { int x, y; } p;
 p.y = v[7] + 9;
 }

has been translated to the intermediate code tree given below. Use the set of patterns to cover that tree. Apply
two different strategies:

1. Choose locally optimal solutions to cover the tree in a single bottom-up traversal through the tree.
2. Apply the 2-pass-strategy that makes its decisions based on costs of whole subtrees (Slide 320).

Fill out the prepared tree form according to the following examples:

Fill in the annotations for the 1-pass strategy:

Fill in the annotations for the 2-pass strategy:

Is there a difference in the tree covers?

b)
Consider 3 additional tree patterns:

No. Operator Operands Result Code Costs

8 iadd IReg1 , IReg2 -> RegSum./. 0

9 deref RegSum -> IReg3 load IReg1+ IReg2 , IReg3 3

10 assign RegSum, IReg3 -> Stmt store IReg1+ IReg2 , IReg3 2

The new instructions compute a to be accessed memory address as the sum of the contents of two registers.
Apply both tree cover strategies again. Fill in the annotations for the 1-pass strategy:

Fill in the annotations for the 2-pass strategy:

Is there a difference in the tree covers?

c)
LAB/HOME:

The directory blatt5/risc contains the above set of translation patterns in a form that is suitable for the
bottom-up rewriting generator BURG. The file risc.burg contains a specification of the tree patterns and a
test program that computes a cost optimal cover of a given intermediate code tree.

To compute a cost optimal cover of the example tree, use BURG to build a tree automaton:

 ./burg -I risc.burg > risc.c

Afterwards compile and link the resulting C source code. (The file util.c supports tree construction, it is
included and linked.)

 cc -o risc risc.c

Start the resulting program risc and compare its output with your solution of part (a).

Note: The supplied burg executable works on Linux computers only.

d)
LAB/HOME:

Extend the pattern specification in file risc.burg with the additional "RegSum" tree patterns described
above. These patterns represent the machine instructions

load IReg 1 +IReg 2 ,IReg 3

and

store IReg 1 +IReg 2 ,IReg 3

respectively.

Regenerate the tree automaton from the modified specification. What cost optimal tree cover does the new
automaton find?

	Compilation Methods SS 2013 - Assignment 5
	Exercise 1 (Storage Mapping for Arrays)
	Exercise 2 (Code Sequences for Control Statements)
	Exercise 3 (Code Selection by Pattern Matching in Trees)

