Compilation Methods SS 2013 - Assignment 5
Kastens, Pfahler, 13. Juni 2013

Exercise 1 (Storage Mapping for Arrays)

The following declaration appears in a Pascal program:

var rain: array [1..12, 2000..2029] of integer;

a)
b)

Draw the memory layout in row-major order.
Let's assume a target architecture that uses 32 bit integers (4 bytes) and requires integers to be aligned on
byte boundaries.

What is the index map (see Slide 305) for the declared array? Use a Horner scheme with all constant parts
the array descriptor determined at compile time.
Give intermediate code in the style of Slide 316 for the following statement:

rain[month, 2011] := 13;

Compiled code for our target architecture uses regii¢o store the base address of the current activation
record on the run-time stack. Assume that variatmeth is stored at offset 8 and that the array starts at
offset 12. The assignment is represented as a node dddgjgm . Its left subtree must compute the address
of the target location; its right subtree must represent the value to be assigned. Assume compile time
evaluation of all operations on constant operands.

Exercise 2 (Code Sequencesfor Control Statements)

Design code sequences for -loops anddo-while -loops in C. Example sequences for different kinds of loops
appear on Slide 315.

Exercise 3 (Code Selection by Pattern Matchingin Trees)

a)

The following set of translation patterns describes a simple RISC processor:

No.|Operator| Operands | Result Code Costs
1 |iconst const -> |Const ./. 0
2 |iconst const -> |Reg |move #const, IReg 1
3 |var address -> |Reg |addr #adress, IReg 2
4 |iadd IReg;, IReq, |-> IReg; |add IReq, IRew,, IReg; |2
5 |iadd IReg;, IConst -> IReg, |add IReq, #const, IReg | 2
6 |deref IReg; -> |Req, |load IReq, IReg, 3
7 |assign IReqg;, IReg, |-> Stmt |store IReg, IReg, 2

Assume that the following source code

{int v[8];
struct {intx, y; } p;
p.y =V[7] +9;

}

has been translated to the intermediate code tree given below. Use the set of patterns to cover that tree. Ap
two different strategies:

1. Choose locally optimal solutions to cover the tree in a single bottom-up traversal through the tree.

2. Apply the 2-pass-strategy that makes its decisions based on costs of whole subtrees (Slide 320).
Fill out the prepared tree form according to the following examples:

Example for annotation:
pattern 5, cost 2 in 1-pass strategy, or annotation with pairs sel in 2-pass strategy

Fill in the annotations for the 1-pass strategy:

assign

iconst 4 iconst 9

/ var p iconst 28

Fill in the annotations for the 2-pass strategy:

assign

iconst 9

iconst 4

ladd

/ VAr p iconst 28

Is there a difference in the tree covers?

b)
Consider 3 additional tree patterns:

No.|Operator | Operands Result Code Costs
8 |iadd IReg;, IReg |-> RegSun./. 0
9 |deref RegSum ->|Regz |load IReg + IReg, IReg; |3
10 |assign |RegSum, IReg|-> Stmt store IReg + IRe,, IRegz | 2

The new instructions compute a to be accessed memory address as the sum of the contents of two register
Apply both tree cover strategies again. Fill in the annotations for the 1-pass strategy:

assign

iconst 4 \ iconst 9

/ var p iconst 28

Fill in the annotations for the 2-pass strategy:

assign

iconst 4

\ iconst 9

iconst 28

/5.

Is there a difference in the tree covers?

d)

LAB/HOME:

The directoryblatt5/risc contains the above set of translation patterns in a form that is suitable for the
bottom-up rewriting generat®@URG The filerisc.burg contains a specification of the tree patterns and a
test program that computes a cost optimal cover of a given intermediate code tree.

To compute a cost optimal cover of the example treeBUstG0 build a tree automaton:
/burg -l risc.burg > risc.c

Afterwards compile and link the resulting C source code. (Thatille = supports tree construction, it is
included and linked.)

CC -0 risc risc.c

Start the resulting prograrmsc and compare its output with your solution of part (a).

Note: The supplieburg executable works on Linux computers only.

LAB/HOME:

Extend the pattern specification in fiisc.burg with the additional "RegSum" tree patterns described
above. These patterns represent the machine instructions

load IReg 1 +IReg 5 ,IReg 3
and
store IReg 1 tIReg - ,IReg 3

respectively.

Regenerate the tree automaton from the modified specification. What cost optimal tree cover does the new
automaton find?

	Compilation Methods SS 2013 - Assignment 5
	Exercise 1 (Storage Mapping for Arrays)
	Exercise 2 (Code Sequences for Control Statements)
	Exercise 3 (Code Selection by Pattern Matching in Trees)

