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1 Introduction

Objectives

The students are going to learn

• what the main tasks of the synthesis part of optimizing compilers  are,

• how data structures and algorithms  solve these tasks systematically,

• what can be achieved by program analysis and optimizing transformations ,

Prerequisites

• Constructs and properties of programming languages

• What does a compiler know about a program?

• How is that information represented?

• Algorithms and data structures of the analysis parts of compilers (frontends)

Main aspects of the lecture Programming Languages and Compilers  (PLaC, BSc program)
http://ag-kastens.upb.de/lehre/material/plac

C-1.2
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Syllabus
Week Chapter Topic

1 1 Introduction Compiler structure

2 Optimization Overview: Data structures, program transformations

2 Control-flow analysis

3 Loop optimization

4, 5 Data-flow analysis

6 Object oriented program analysis

7 3 Code generation Storage mapping

Run-time stack, calling sequence

8 Translation of control structures

9 Code selection by tree pattern matching

10, 11 4 Register allocation Expression trees (Sethi/Ullman)

Basic blocks (Belady)

Control flow graphs (graph coloring)

12 5 Code Parallelization Data dependence graph

13 Instruction Scheduling

14 Loop parallelization

15 Summary

C-1.4
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Course Material in the Web: HomePage
C-1.6
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Course Material in the Web: Organization
C-1.6a
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Compiler Structure and Interfaces

Lexical analysis

Syntactic analysis

Semantic analysis

Transformation

Optimization

Code generation

Peephole optimization

Assembly

Source program

Token sequence

Abstract program tree

Intermediate language

Abstract

Target program

Analysis (frontend)

Synthesis (backend)

machine program

C-1.7
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2 Optimization
C-2.1

Objective :
Reduce run-time and / or code size of the program,
without changing its observable effects .
Eliminate redundant computations, simplify computations.

Input: Program in intermediate language

Task: find redundancies (analysis )
improve the code (optimizing transformations )

Output: Improved program in intermediate language

Transformation

Optimization

Code generation

Intermediate language

Analysis (frontend)

Synthesis (backend)
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Overview on Optimizing Transformations

Name of transformation: Example for its application:

1. Algebraic simplification  of expressions
2*3.14 => 6.28 x+0 => x x*2 => shift left x**2 => x*x

2. Constant propagation  (dt. Konstantenweitergabe)
constant values of variables propagated to uses: x = 2 ; ... y = x * 5;

3. Common subexpressions  (gemeinsame Teilausdrücke)
avoid re-evaluation, if values are unchanged x = a*( b+c );...y = ( b+c )/2;

4. Dead variables  (überflüssige Zuweisungen)
eliminate redundant assignments x = a + b ; ... x =  5;

5. Copy propagation  (überflüssige Kopieranweisungen)
substitute use of x by y x = y ; ... ; z = x;

6. Dead code  (nicht erreichbarer Code)
eliminate code, that is never executed b = true ;... if (b)  x = 5; else y = 7;

C-2.2



©
 2

00
9 

be
i P

ro
f. 

D
r.

 U
w

e 
K

as
te

ns

Overview on Optimizing Transformations (continued)

Name of transformation: Example for its application:

7. Code motion  (Code-Verschiebung)
move computations to cheaper places if (c) x = ( a+b)*2; else x = ( a+b)/2;

8. Function inlining  (Einsetzen von Aufrufen)
substitute call of small function by a int Sqr (int i) { return i * i ; }
computation over the arguments x = Sqr (b*3)

9. Loop invariant code
move invariant code before the loop while (b) {... x = 5;  ...}

10.Induction variables in loops
transform multiplication into i = 1; while (b) { k = i*3 ; f(k); i = i+1 ;}
incrementation

C-2.2a
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Program Analysis for Optimization
C-2.3

Static analysis :
static properties  of program structure and of every execution ;
safe, pessimistic assumptions
where input and dynamic execution paths are not known

Context of analysis  - the larger the more information:

Expression local optimization

Basic block local optimization

procedure (control flow graph) global   intra-procedural optimization

program module (call graph) global   inter-procedural optimization
separate compilation

complete program optimization at link-time or at run-time

Analysis and Transformation:
Analysis provides preconditions for applicability of transformations

Transformation may change analysed properties,
may inhibit or enable  other transformations

Order  of analyses and transformations is relevant
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Program Analysis in General

Program text is systematically analyzed to exhibit
structures  of the program,
properties  of program entities,
relations  between program entities.

C-2.4

Software engineering tools:

• program understanding

• software maintenance

• evaluation of software qualities

• reengineering, refactoring

Compiler:

• Code improvement

• automatic parallelization

• automatic allocation of threads

Objectives :

Methods  for program analysis stem from compiler construction
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Overview on Program Analysis in Compilers
C-2.5

Lexical analysis

Syntactic analysis

Semantic analysis

Transformation

Optimization (DFA)

Code generation

Peephole optimization

Assembly

Source program

Token sequence

Abstract program tree

Intermediate language

Abstract

Target program

Analysis (frontend)

Synthesis (backend)

machine program

syntactic structure

program entities
properties
relations

control-flow graph

use-def relations

data dependency graph

dominator tree, loops

call graph

data-flow information



©
 2

01
3 

be
i P

ro
f. 

D
r.

 U
w

e 
K

as
te

ns

Basic Blocks
C-2.6

Basic Block (dt. Grundblock):
Maximal sequence of instructions that can be
entered only at the first of them and
exited only from the last of them.

Begin of a basic block:

• procedure entry

• target of a branch

• instruction after a branch or return
(must have a label)

Function calls
are usually not considered as a branch,
but as operations that have effects

Local optimization
considers the context of one single basic block
(or part of it) at a time.

Global optimization :
Basic blocks are the nodes of control-flow graphs.

call
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Example for Basic Blocks

A C function that computes Fibonacci numbers: Intermediate code with basic blocks:
[Muchnick, p. 170]

C-2.7

int fib (int m)
{ int f0 = 0, f1 = 1, f2, i;

if (m <= 1)
return m;

else
{ for(i=2; i<=m; i++)

{ f2 = f0 + f1;
f0 = f1;
f1 = f2;

}
return f2;

} }

1 receive m
2 f0 <- 0
3 f1 <- 1
4 if m <= 1  goto L3

5 i <- 2

6 L1: if i <= m  goto L2

7 return f2

B1

B3

B4

B5

8 L2: f2 <- f0 + f1
9 f0 <- f1

10 f1 <- f2
11 i <- i + 1
12 goto L1

13 L3: return m

B6

B2
if-condition belongs to the
preceding basic block

while-condition does not belong
to the preceding basic block
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Control-Flow Graph (CFG)
C-2.8

A control-flow graph, CFG (dt. Ablaufgraph)
represents the control structure of a function

Nodes : basic blocks  and 2 unique nodes entry  and exit .

Edge a -> b : control may flow  from the end of a to the begin of b

a

b

Fundamental data structure  for

• control flow analysis

• structural transformations

• code motion

• data-flow analysis (DFA)
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Example for a Control-flow Graph

Intermediate code with basic blocks: Control-flow graph:
[Muchnick, p. 172]

C-2.9

1 receive m
2 f0 <- 0
3 f1 <- 1
4 if m <= 1 goto L3

5 i <- 2

6 L1: if i <= m goto L2

7 return f2

B1

B3

B4

B5

8 L2: f2 <- f0 + f1
9 f0 <- f1

10 f1 <- f2
11 i <- i + 1
12 goto L1

13 L3: return m

B6

B2

entry

B1

B2 B3

B4

B6B5

exit
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Control-Flow Analysis

Compute properties on the control-flow  based on the CFG:

• dominator relations :
properties of paths through the CFG

• loop recognition :
recognize loops - independent of the source language construct

• hierarchical reduction of the CFG :
a region with a unique entry node on the one level is a node of the next level graph

Apply transformations  based on control-flow information:

• dead code elimination :
eliminate unreachable subgraphs of the CFG

• code motion :
move instructions to better suitable places

• loop optimization :
loop invariant code, strength reduction, induction variables

C-2.10
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Dominator Relation on CFG

Relation over nodes of a CFG, characterizes paths through CFG,
used for loop recognition, code motion

a dominates b  (a dom b ):
a is on every path from the entry node to b (reflexive, transitive, antisymmetric)

a is immediate dominator of b (a idom b) :
a dom b and a ≠ b, and there is no c such that c ≠ a, c ≠ b, a dom c, c dom b.

C-2.11

entry

B1

B2 B3

B4

B6B5

exit

control-flow graph

entry

B1

B2 B3

B4

B5 B6

exit

Tree of (immediate) dominators
(dom is transitive closure of the tree)
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Immediate Dominator Relation is a Tree
C-2.11a

Every node has a unique immediate dominator.

The dominators of a node are linearly ordered by the idom
relation.

Proof by contradiction:
Assume:
a ≠ b, a dom n, b dom n and
not (a dom b) and not (b dom a)

Then there are pathes in the CFG

• p1: from entry to a not touching b, since not (b dom a)

• p2: from entry to b not touching a, since not (a dom b)

• q1: from a to n not touching b, since a dom n and
not (a dom b)

• q2: from b to n not touching a, since b dom n and
not (b dom a)

Hence, there is a path p1-q1 from
entry via a to n not touching b.
That is a contradiction to the assumption b dom n.
Hence, n has a unique immediate dominator, either a or b.

entry

a b

n

p1 p2

q1 q2

CFG
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Dominator Computation
C-2.12

for each n ∈N do Domin(n) = N;
Domin(entry) = {entry};

repeat
for each n ∈N-{entry} do

T = N;
for each p ∈pred(n) do

T = T ∩ Domin(p);
Domin(n) = {n} ∪ Τ;

until Domin is unchanged

Algorithm computes the sets of dominators
Domin(n) for all nodes n∈N of a CFG:

Symmetric relation for backward analysis:

a postdominates b (a pdom b) :
a is on every path from b to the exit node (reflexive, transitive, antisymmetric)
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Loop Recognition: Structured Loops
C-2.13

while (c) stmt; do stmt; while (c); do s1; if ( )break; s2; while (true);

stmt

stmt

c

c

if ( )break

s1

s2
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Loop Recognition: Natural Loops

Back edge t->h  in a CFG: head h dominates tail t (h dom t).

Natural loop of a back edge t->h :
set S of nodes such that S contains h, t and
all nodes from which t can be reached without passing through h.
h is the loop header .

Iterative computation  of the natural loop for t->h:
add predecessors of nodes in S according to the formula:

S =  {h, t} ∪ { p ∃ a (a ∈ S \ {h} ∧ p ∈ pred(a)) }

C-2.13a

entry

a

b c

exit

entry

a

b

c

exit

DFS back edge

no
back edge

a DFS classification of edges:
tree, forward, back

This definition of back edges  is stronger than that of DFS back edges :
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Example for Loop Recognition

back edge: natural loop:

4 -> 3 S1 =  {3,4}

6 -> 2 S2 =   {2, 3, 4, 5, 6}

7 -> 2 S3 =   {2, 3, 4, 5, 7}

6 -> 6 S4 =   {6}

loops are

• disjoint S1 ∩ S4 = ∅

• nested S1 ⊂ S2

• non-nested, S2, S3
but have the same loop header,
are comprised into one loop

C-2.14

1

2

3

4

5

6                           7

8                          9
10

back
edge
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Loop Optimization

• Introduce a preheader  for a loop, as a place for loop invariant computations:
a new, empty basic block that lies on every path to the loop header, but is not iterated:

• move loop invariant computations  to the preheader:
check use-def-chains: if an expression E contains no variables that are defined in the loop,
then replace E by a temporary variable t, and compute t = E; in the preheader.

• eliminate redundant bounds-checks :
propagate value intervals using the same technique as for constant propagation (see DFA)
Example in Pascal:

var a: array [1..10] of integer;
i: integer;

for i := 1 to 10 do a[i] := i;

• induction variables , strength reduction : see next slide

C-2.15

header
header

preheader

loop
loop

condition

body

while-loop:

preheader

condition

body

condition
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Loop Induction Variables

Induction variables may occur in any loop - not only in for  loops.

Induction variable i :
i is incremented (decremented) by a constant value c on every iteration.

Basic induction variable i :
There is exactly one definition i = i + c;  or i = i - c;
that is executed on every path through the loop.

Dependent induction variable j :
j depends on induction variable i by a
linear function i * a + b
represented by (i, a, b).

C-2.16

j=i*3+2;

...

i=i+1;

i=0;
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Transformation of Induction Variables

Transformation  of dependent induction variables:

1. For each (i, a, b) create a temporary variable s.

2. Initialize s = i * a + b;  in the preheader.

3. Replace i * a + b  in the loop by s.

4. Add s = s + c*a;  behind the increment of i

Strength reduction :
Replace a costly operation (multiplication) by a
cheaper one (addition).

Linear increment of array address computation (next slide)

C-2.17

j= i*3+2 ;

...

i=i+1;

i=0; i=0;
s=2;

j= s;

...

i=i+1;
s=s+3;

j: (i, 3, 2)
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Examples for Transformations of Induction Variable
C-2.17a

do
k = i*3+1;

f ( 5*k );

/* x = a[i]; compiled: */

x = cont( start+i*elsize );

i = i + 2;

while (E k)

basic induction variable:

i: c = 2

dependent induction variables:

k: (i, 3, 1)

arg: (k, 5, 0)

ind: (i, elsize, start)

sk = i*3+1;

sarg = sk*5;

sind = start + i*elsize;

do

k = sk;

f ( sarg );

x = cont ( sind );

i = i + 2;

sk = sk + 6;

sarg = sarg + 30;

sind = sind + 2*elsize;

while (E k)
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Data-Flow Analysis
C-2.18

Data-flow analysis (DFA) provides information about
how the execution of a program may manipulate its data .

Many different problems can be formulated as data-flow problems , for example:

• Which assignments to variable v may influence a use of v at a certain program
position?

• Is a variable v  used on any path from a program position p to the exit node?

• The values of which expressions are available at program position p?

Data-flow problems are stated in terms of

• paths through the control-flow graph  and

• properties of basic blocks .

Data-flow analysis provides information for global optimization.

Data-flow analysis does not know

• which input values are provided at run-time,

• which branches are taken at run-time.

Its results are to be interpreted pessimistic
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Data-Flow Equations

A data-flow problem is stated as a system of equations  for a control-flow graph.

System of Equations for forward problems  (propagate information along control-flow edges):

In, Out, Gen, Kill represent
analysis information :

sets of statements,
sets of variables,
sets of expressions

depending on the analysis problem

In, Out variables  of the system of equations for each block

Gen, Kill a pair of constant sets  that characterize a block w.r.t. the DFA problem

Θ meet operator; e. g. Θ = ∪ for „reaching definitions“, Θ = ∩ for „available expressions“

C-2.19

In   (B)  =                      Out (h)

Out (B) = fB (In (B))

    Θ
h ∈pred(B)

pred (B) (In - Kill) ∪ Gen = Out

B

.

.

.

.

.

.

2 equations for each basic block:

= Gen (B) ∪ (In (B) - Kill (B))

Example Reaching definitions:
A definiton d of a variable v reaches
the begin of a block B if
there is a path from d to B on which
v  is not assigned again.
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Specification of a DFA Problem

Specification of reaching definitions:

1. Description :
A definiton d of a variable v  reaches the begin of a block B
if there is a path  from d to B on which v  is not assigned again.

2. It is a forward problem .

3. The meet operator  is union.

4. The analysis information  in the sets are
assignments at certain program positions.

5. Gen (B) :
contains all definitions d: v = e;  in B,
such that v  is not defined after d in B.

6. Kill (B) :
if v  is assigned in B, then Kill(B)
contains all definitions d: v = e;
of blocks different from B.

C-2.20

In   (B)  =                      Out (h)

Out (B) = fB (In (B))

    Θ
h ∈pred(B)

pred (B) (In - Kill) ∪ Gen = Out

B

.

.

.

.

.

.

2 equations for each basic block:

= Gen (B) ∪ (In (B) - Kill (B))
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Variants of DFA Problems

• forward  problem:
DFA information flows along the control flow
In(B) is determined by Out(h) of the predecessor blocks

backward  problem (see C-2.23):
DFA information flows against the control flow
Out(B) is determined by In(h) of the successor blocks

• union  problem:
problem description: „there is a path“;
meet operator is Θ = ∪
solution: minimal sets that solve the equations

intersect  problem:
problem description: „for all paths“
meet operator is Θ = ∩
solution: maximal sets that solve the equations

• optimization information : sets of  certain statements, of variables, of expressions.

Further classes of DFA problems over general lattices instead of sets are not considered here.

C-2.21
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Example Reaching Definitions

Gen (B) :
contains all definitions d: v = e;
in B, such that v  is not defined
after d in B.

Kill (B) :
contains all definitions d: v = e;
in blocks different from B,
such that B has a definition of v.

C-2.22

d1 : a :=
d2 : b :=
d3 : c :=

d4 : b := d5 : c :=

d6 : b :=
d7 : c :=

d8 : a :=

B1

B2
B3

B4

B5

entry

exit

Description of DFA-Problem DFA-Solution
Gen Kill In Out

B1 d1, d2, d3 d4, d5, d6, d7, d8 ∅ d1, d2, d3

B2 d4 d2, d6 d1, d2, d3 d1, d3, d4

B3 d5 d3, d7 d1, d2, d3, d6, d7 d1, d2, d5, d6

B4 d6, d7 d2, d3, d4, d5 d1, d2, d5, d6 d1, d6, d7

B5 d8 d1 d1, d2, d3, d4, d5, d6 d2, d3, d4, d5, d6, d8
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Iterative Solution of Data-Flow Equations

Input: the CFG; the sets Gen(B) and Kill(B) for each basic block B
Output: the sets In(B) and Out(B)

Complexity: O(n3) with n number of basic blocks
O(n2) if pred (B)  ≤ k << n  for all B

Algorithm:
repeat

stable := true;

for all B ≠ entry {*}

do begin

for all V ∈ pred(B) do

In(B):= In(B) Θ Out(V);

oldout:= Out(B);

Out(B):= Gen(B) ∪ (In(B)-Kill(B));

stable:= stable and Out(B)=oldout

end

until stable

Initialization
Union: empty sets
for all B do
begin

In(B):= ∅;
Out(B):=Gen(B)

end;

Intersect: full sets
for all B do
begin

In(B) := U;
Out(B):=

Gen(B) ∪
(U - Kill(B))

end;

C-2.22b
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Backward Problems

System of Equations for backward problems
propagate information against control-flow edges:

2 equations for each basic block:

Example Live variables:

1. Description: Is variable v  alive at a given
point p in the program, i. e. is there a path
from p  to the exit where v  is used but
not defined before the use?

2. backward problem

3. optimization information: sets of variables

4. meet operator: Θ = ∪ union

5. Gen (B): variables that are used in B, but not defined before they are used there.

6. Kill (B): variables that are defined in B, but not used before they are defined there.

C-2.23

Out (B)  =                      In (h)

In (B) = fB (Out (B))

    Θ
h ∈succ(B)

succ (B)In = Gen ∪ (Out - Kill)

B

.

.

.

.

.

.

control-flow

optimization information

= Gen (B) ∪ (Out (B) - Kill (B))
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Important Data-Flow Problems

1. Reaching definitions:  A definiton d of a variable v  reaches the beginning of a block B if
there is a path from d to B on which v  is not assigned again.
DFA variant:  forward; union; set of assignments
Transformations:  use-def-chains, constant propagation, loop invariant computations

2. Live variables: Is variable v alive at a given point p in the program, i. e. there is a path from
p to the exit where v  is used but not defined before the use.
DFA variant:  backward; union; set of variables
Transformations:  eliminate redundant assignments

3. Available expressions:  Is expression e computed on every path from the entry to a
program position p and none of its variables is defined after the last computation before p.
DFA variant:  forward; intersect; set of expressions
Transformations:  eliminate redundant computations

4. Copy propagation: Is a copy assignment c: x = y redundant, i.e. on every path from c to
a use of x  there is no assignment to y?
DFA variant:  forward; intersect; set of copy assignments
Transformations:  remove copy assignments and rename use

5. Constant propagation:  Has variable x  at position p a known value, i.e. on every path from
the entry to p the last definition of x  is an assignment of the same known value.
DFA variant:  forward; combine function; vector of values
Transformations:  substitution of variable uses by constants

C-2.24
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Algebraic Foundation of DFA
C-2.24a

DFA performs computations on a lattice (dt. Verband)  of values,
e. g. bit-vectors representing finite sets. It guarantees termination of
computation and well-defined solutions. see [Muchnick, pp 223-228]

A lattice L  is a set of values with two operations: ∩ meet  and ∪ join

Required properties:

1. closure : x, y ∈ L implies x ∩ y ∈ L , x ∪ y ∈ L

2. commutativity :x ∩ y = y ∩ x and x ∪ y = y ∪ x

3. associativity : (x ∩ y) ∩ z = x ∩ (y ∩ z) and (x ∪ y) ∪ z = x ∪ (y ∪ z)

4. absorption : x ∩ (x ∪ y) = x = x ∪ (x ∩ y)

5. unique elements bottom ⊥, top  T:
x ∩ ⊥ = ⊥ and x ∪ T = T

In most DFA problems only a semilattice  is used with L, ∩, ⊥ or L, ∪, T

Partial order defined by meet, defined by join:
x ⊆ y: x ∩ y = x x ⊇ y: x ∪ y = x
(transitive, antisymmetric, reflexive)
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Some DFA Lattices
C-2.24b

Bool

∩ = and
∪ = or

T = true

⊥ = false

Bit-Vector BVn=3

∩ = bitwise and
∪ = bitwise or

111

110 101 011

100 010 001

000
Variable usage

{defined, used}

{defined} {used}

{}

ICP Integer Constant Propagation Lattice
T

⊥

0 1-1false true... ...

n ∩ ⊥ = ⊥ n ∩ n = n n ∩ m = ⊥  if n ≠ m
n ∪ T = T n ∪ n = n n ∪ m = T  if n ≠ m

Range Lattice: [lo, hi] ∈ (Z ∪ {-∞, ∞})2

⊥ = [ ] empty range, T = [-∞, ∞],
x ⊆ y : x is contained in y

∩: [l1, h1] ∩ [l2, h2] = x
let l = max (l1, l2),
h = min (h1, h2),
x = if h < l then ⊥ else [l, h]

∪: [l1, h1] ∪ [l2, h2] =
[min(l1, l2), max(h1, h2)]

12

3 4

5

Semilattice of types

∪: x ∪ y = smallest
common supertype

Object

of x and y

A B

C D
E F

6
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Monotone Functions Over Lattices
C-2.24c

The effects of program constructs on DFA information  are described by
functions over a suitable lattice,

e. g. the function for basic block B3 on C-2.22:

f3(<x1 x2 x3 x4 x5 x6 x7 x8>) = <x1 x2 0 x4 1 x6 0 x8> ∈ BV8

Gen-Kill pair encoded as function

f: L → L is a monotone function  over the lattice L if
∀ x, y ∈ L: x ⊆ y ⇒ f(x) ⊆ f(y)

Finite height  of the lattice and monotonicity  of the functions
guarantee termination  of the algorithms.

Fixed points  z of the function f, with f(z) = z, is a solution of the set of DFA equations.

MOP: Meet over all paths  solution is desired, i. e. the „best“ with respect to L

MFP: Maximum fixed point  is computed by algorithms, if functions are monotone

If the functions f are additionally distributive , then MFP = MOP.
f: L → L is a distributive function  over the lattice L if

∀ x, y ∈ L: f(x ∩ y) = f(x) ∩ f(y)
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Variants of DFA Algorithms

Heuristic improvement:

Goal: propagate changes in the In and Out sets as fast as possible.
Technique: visit CFG nodes in topological order in the outer for-loop {*}.
Then the number of iterations of the outer repeat-loop is only determined
by back edges in the CFG

Algorithm for backward problems:

Exchange In and Out sets symmetrically in the algorithm of C-2.22b.
The nodes should be visited in topological order as if the directions of edges were flipped.

Hierarchical algorithms, interval analysis:

Regions of the CFG are considered nodes of a CFG on a higher level.
That abstraction is recursively applied until a single root node is reached.
The Gen, Kill sets are combined in upward direction;
the In, Out sets are refined downward.

C-2.26
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Program Analysis: Call Graph (context-insensitive)
C-2.27

Nodes : defined functions

Arc  g -> h: function g contains a call h(),
i. e. a call g() may  cause the execution of a call h()

a

b c

d e

f

void a () {...b()...c()...f()...}

void b () {...d()...c()...}

void c() {...e()...}

void d() {...}

void e() {...v++;...b()...}

void f() {...d()...}

Analysis of structure :
b, c, e are recursive;
a, d, f are non-recursive

Propagation of properties :
assume a call e() may modify a global variable  v
then calls a(), b(), c() may indirectly cause modification of v

v = f(); cnt = 0; while(...){...b(); cnt += v;}
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Program Analysis: Call Graph (context-sensitive)
C-2.27a

Nodes : defined functions and calls (bipartite)

Arc  g -> h: function g contains a call h(),i.e a call g() may  cause the
execution of a call h()
or call g() leads to function g

a

c
d

e

f
b()

c()

f()

d() c()

e()

b()

d()

b

void a () {...b()...c()...f()...}

void b () {...d()...c()...}

void c() {...e()...}

void d() {...}

void e() {...v++;...b()...}

void f() {...d()...}

Calls of the same function in different contexts are distinguished by
different nodes , e.g. the call of c in a and in b.

Analysis can be more precise  in that aspect.
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Calls Using Function Variables
C-2.28

Contents of function variables is assigned at run-time .

Static analysis does not know (precisely) which function is called.

Call graph  has to assume that any function may be called .

void a()
{...(* h)(0.3, 27)...}

a
.
.
.

function

f
s

m
g

any

Analysis for a better approximation
of potential callees:

only those functions which

1. fit to the type  of h

2. are assigned  somewhere in the
program

3. can be derived from the
reaching definitions  at the call

void m (int j) {...}

void g (float x, int i)  {...}

...k = m;... f( g); ...

void a()
{ void (* h)(float,int) = g ;

...
if(...) h = s ;

...(* h)(0.3, 27)...
}
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Analysis of Object-Oriented Programs
C-2.29

Aspects specific for object-oriented analysis:

1. hierarchy of classes and interfaces
specifies a complex system of subtypes

2. hierarchy of classes and interfaces
specifies inheritance and overriding  relation for methods

3. dynamic method binding
for method calls v.m(...)  the callee is determined at run-time
good object-oriented style relies on that feature

4. many small methods  are typical object-oriented style

5. library use and reuse of modules
complete program contains many unused classes and methods

Static predictions for dynamically bound method calls
are essential for most analyses
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Class Hierarchy Graph
C-2.30

Node : class or interface

Arc a -> b : a is subclass of  b or a implements interface  b

class A
method m
method p

class C extends A
method m

class B extends A
method m

class D extends B
...

class E extends C
method m

class F extends C
method p

class G extends F
method m

...
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Object-Oriented Call Graph
C-2.31

Node : implemented method ,
identified by class name, method name: X-a

Arc X-a -> Y-b : method X-a contains a call  v.b(...) that
may be bound to Y-b

class A
method m
method p

class C
method m

class B
method m

class D
...

class E
method m

class F
method p

class G
method m

...

A-m A-p

B-m C-m

E-m
F-p

G-m

Call graph for F-p containing v.m(...)

Call graph: any method m  may be bound to that call in F-p
(compare to function variables)
analysis yields better approximations
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Call Graphs Constructed by Class Hierarchy Analysis (CHA)
C-2.32

The call graph is reduced to a set of reachable methods  using the
class hierarchy  and the static type of the receiver  expression in the call:

If a method F-p is reachable and
if it contains a dynamically bound call v.m(...)  and
T is the static type of v ,

then every method m that is inherited by T or by a subtype of T
is also reachable , and arcs go from F-p to them.

class A
method m
method p

class C
method m

class B
method m

class D
...

class E
method m

class F
method p

class G
method m

...

A-m A-p

B-m C-m

E-m
F-p

G-m

Call graph for F-p containing v.m(...)
static type: F v;

eliminated
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Refined Approximations for Call Graph Construction
C-2.33

Class Hierarchy Analysis (CHA): (see C-2.32)

Rapid Type Analysis (RTA):

As CHA, but only methods of those classes C are considered
which are instantiated (new C() ) in a reachable method.

Reaching Type Analysis:

Approximations of run-time types is propagated through a graph:
nodes represent variables, arcs represent copy assignments.

Declared Type Analysis :
one node T represents all variables declared to have type T

Variable Type Analysis :
one node V represents a single variable

Points-to Analysis:

Information on object identities is
propagated through the control-flow graph
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Results of Analysis of Dynamically Bound Calls
C-2.34
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Modules of a Toolset for Program Analysis
C-2.35

. .

analysis module purpose category

ClassMemberVisibility examines visibility levels of declarations

visualization

MethodSizeStatistics examines length of method implementations in bytecode operations and
frequency of different bytecode operations

ExternalEntities histogram of references to program entities that reside outside a group of
classes

InheritanceBoundary histogram of lowest superclass outside a group of classes

SimpleSetterGetter recognizes simple access methods with bytecode patterns

MethodInspector decomposes the raw bytecode array of a method implementation into a list
of instruction objects auxiliary analysis

ControlFlow builds a control flow graph for method implementations

fundamental analyses

Dominator constructs the dominator tree for a control flow graph

Loop uses the dominator tree to augment the control flow graph with loop and
loop nesting information

InstrDefUse models operand accesses for each bytecode instruction

LocalDefUse builds intraprocedural def/use chains

LifeSpan analyzes lifeness of local variables and stack locations

DefUseTypeInfo infers type information for operand accesses

analysis of
incomplete
programs

Hierarchy class hierarchy analysis based on a horizontal slice of the hierarchy

PreciseCallGraph builds call graph based on inferred type information, copes with
incomplete class hierarchy

ParamEscape transitively traces propagation of actual parameters in a method call
(escape = leaves analyzed library)

ReadWriteFields transitive liveness and access analysis for instance fields accessed by a
method call

Table 0-1. Analysis plug-ins in our framework

[ Michael Thies: Combining Static Analysis of Java Libraries with Dynamic Optimization, Dissertation,
Shaker Verlag, April 2001]
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3. Code Generation
C-3.1

Implementation of code generation:

• Storage mapping:
a traversal through the program and the
definition module computes
sizes and addresses of storage objects

• Code selection: use a generator for
pattern matching in trees

• Register allocation:
methods for expression trees, basic
blocks, and for CFGs

Design of code generation:

• analyze properties of the target
processor

• plan storage mapping

• design at least one instruction
sequence  for each operation of the
intermediate language

Input:  Program in intermediate language

Tasks:
Storage mapping properties of program objects (size, address)

in the definition module
Code selection generate instruction sequence, optimizing selection
Register allocation use of registers for intermediate results and for variables

Output:  abstract machine program, stored in a data structure
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3.1 Storage Mapping

Objective:
for each storable program object compute storage class, relative address, size

Implementation:
use properties in the definition module, traverse defined program objects

Design the use of storage areas:

code storage progam code

global data to be linked for all compilation units

run-time stack activation records for function calls

heap storage for dynamically allocated objects, garbage collection

registers for addressing of storage areas (e. g. stack pointer)
function results, arguments
local variables, intermediate results (register allocation )

Design the mapping of data types (next slides)
Design activation records and translation of function calls (next section)

C-3.2
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Storage Mapping for Data Types
C-3.3

Basic types

arithmetic, boolean, character types

match language requirements and machine properties:
data format, available instructions,
size and alignment in memory

Structured types

for each type representation in memory and
code sequences for operations,
e. g. assignment, selection, ...

record relative address and
alignment of components;
reorder components for optimization

union storage overlay,
tag field for discriminated union

set bit vectors, set operations

for arrays  and functions  see next slides
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Array Implementation: Pointer Trees

...

...

l3

u3

l3

u3

l2

u2

l1

u1

10

5

4

C-3.4

An n-dimensional array

a: array[l1..u1, l2..u2, ..., ln..un] of real;

is implemented by a tree of linear arrays ;
n-1 levels of pointer arrays and data arrays on the n-th level

Each single array can be allocated separately, dynamically; scattered in memory

In Java arrays  are implemented this way.
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Array Implementation: Contiguous Storage

10

5

4

store[start] ... store[start + elno*elsz - 1]
start

C-3.5

An n-dimensional array

a: array[l1..u1, l2..u2, ..., ln..un] of real;

is mapped to one contiguous storage area
linearized in row-major order :

linear storage map of array a onto byte-array store  from index start :
number of elements elno = st1 * st2 * ... * stn
i-th index stride sti = ui - li + 1
element size in bytes elsz

Index map of a[i1, i2, ..., in] :

store[start+ (..((i1-l1)*st2 + (i2-l2))*st3 +..)*stn + (in-ln))*elsz]

store[const + (..(i1*st2 + i2)*st3 +..)*stn + in)*elsz]



©
 2

00
2 

be
i P

ro
f. 

D
r.

 U
w

e 
K

as
te

ns

Functions as Data Objects
C-3.6

Functions may occur as data objects :

• variables

• parameters

• function results

• lambda expressions
(in functional languages)

Functions that are defined on the
outermost program level (non-nested)

can be implemented by just the
address of the code .

Functions that are defined in nested structures  have to be
implemented by a pair: (closure, code)

The closure contains all bindings of names to variables or values that
are valid when the function definition is executed .

In run-time stack  implementations the
closure is a sequence of activation records on the static
predecessor chain.
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3.2 Run-Time Stack
Activation Records

Run-time stack  contains one activation record  for each active function call.

Activation record:
provides storage for the data of a function call.

dynamic link:
link from callee to caller,
to the preceding record on the stack

static link:
link from callee c to the record s where c is defined

s is a call of a function which contains the definition
of the function, the call of which created c.

Variables of surrounding functions  are
accessed via the static predecessor chain.

Only relevant for languages which allow
nested functions , classes, objects.

closure of a function call:
the activation records on the static predecessor chain

C-3.7

parameters

static link

return address

dynamic link

local variables

register save area

activation record:
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Example for a Run-Time Stack

Run-time stack :
A call creates an activation record and pushes it onto the stack.
It is popped on termination of the call.

The static link  points to the activation record where the called function is defined, e. g. r3 in q3

Optimization: activation records of non-recursive functions  may be allocated statically.

Languages without recursive functions (FORTRAN) do not need a run-time stack.

Parallel processes, threads, and coroutines need a separate run-time stack  each.

C-3.8

q
int i;

r

b=i+1;

if(..) q();
r();

q();

h float a;

int b;

nested
h

q1

q2

q3

r

q:

i:
r 1:

i:
r 2:

i:
r 3:

b=i+1;

a:

b:

static
links

push, pop

functions
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Not-Most-Recent Property

The static link  of an activation record c for a function r
points to an activation record d for a function q where r is defined in.
If there are activation records for q on the stack, that are more recently created than d,
the static link to d is not-most-recent .

That effect can be achieved by using functional parameters or variables.
Example:

C-3.9

q(funct f)
int i;

r

b=i+1;

if(..) q(r);

*f();

q(q);

h float a;

int b;

nested
h

q3

r 2

q:

i:
r 3:

b=i+1;

a:

b:

static
links

functions

f: r 2

q2
i:
r 2:

f: r 1

q1
i:
r 1:

f: q

not-most-
recent
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Closures on Run-Time Stacks

Function calls can be implemented by a run-time stack if the

closure of a function is still on the run-time stack when the function is called .

Language conditions  to guarantee run-time stack discipline:

Pascal: functions not allowed as function results, or variables

C: no nested functions

Modula-2: nested functions not allowed as values of variables

Functional languages  maintain activation records on the heap instead of the run-time stack

C-3.10

q
int i;

r

b=i+1;

return r;

*(q()) ();

h float a;

int b;

h

r

q:

b=i+1;

a:

b:q1 i:
r 1:

h
q:
a:

?

during the
call of q

the closure
for the call of r
is missing

Example for violation:
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Activation Records and Call Code
C-3.11

result
parameters
static link
return address
dynamic link
local variables

register save area

activation record:

- +

+ -

base
address

0

call code function code

push parameter values
push static link
subroutine jump

pop static link
pop parameter area
use and pop result

push dynamic link
stack register := top of stack
increment top of stack
for local variables
save registers
...
function body
...
restore registers
deallocate local variables
pop stack register
return jump
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3.3 Code Sequences for Control Statements

A code sequence  defines how a control statement  is transformed into jumps and labels.

Notation  of the Code constructs:

Code (S) generate code for statements S

Code (C, true, M) generate code for condition C such that
it branches to M if C is true,
otherwise control continues without branching

Code (A, Ri) generate code for expression A such that the
result is in register Ri

C-3.12

Code sequence for if-else statement:

if (cond) ST; else SE;:

Code (cond, false, M1)
Code (ST)
goto M2

M1: Code (SE)
M2:
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Short Circuit Translation of Boolean Expressions

Boolean expressions  are translated into sequences of conditional branches .
Operands are evaluated from left to right until the result is determined.

2 code sequences for each operator; applied to condition tree on a top-down traversal:

C-3.13

if a or b and c then ST else SE

true

false

Code (A and B, true, M) : Code (A, false, N)
Code (B, true, M)
N:

Code (A and B, false, M) : Code (A, false, M)
Code (B, false, M)

Code (A or B, true, M) : Code (A, true, M)
Code (B, true M)

Code (A or B, false, M) : Code (A, true, N)
Code (B, false, M)
N:

Code (not A, X, M) : Code (A, not X, M)

Code (A < B, true, M) : Code (A, Ri);
Code (B, Rj)
cmp Ri, Rj
braLt M

Code (A < B, false, M) : Code (A, Ri);
Code (B, Rj)
cmp Ri, Rj
braGe M

Code for a leaf: conditional jump



©
 2

00
2 

be
i P

ro
f. 

D
r.

 U
w

e 
K

as
te

ns

Example for Short Circuit Translation
C-3.14

if a or b and c then ST else SE

true

false

if-stmt

ST goto M2; M1: SE; M2:
or

a and

b c

condition target

f M1

t N f M1

f M1 f M1

N:

load a, R1
braNe N

load b, R1
braEq M1

load c, R1
braEq M1

code

1

2 3

4

5 6

3

inherited
attributes

then-part else-part
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Code Sequences for Loops
C-3.15

While-loop variant 1:

while (Condition) Body

M1: Code (Condition, false, M2)
Code (Body)
goto M1

M2:

While-loop variant 2:

while (Condition) Body

goto M2
M1: Code (Body)
M2: Code (Condition, true, M1)

Pascal for-loop unsafe variant:

for i:= Init to Final do Body

i = Init
L: if (i>Final) goto M

Code (Body)
i++
goto L

M:

Pascal for-loop safe variant :

for i:= Init to Final do Body

if (Init==minint) goto L
i = Init - 1
goto N

L: Code (Body)
N: if (i>= Final) goto M

i++
goto L

M:
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3.4 Code Selection
C-3.16

cont

addradd

addradd
R2,12

R6,12
addr
R6,12

add
R1

cont

const
6

load R6,8
addr
R6,8

(R2,18)

R2,18

6

load (R6,8), R1
add R6,R1,R2
store (R2,18),...

cost: 3 instructions

a

ix

s

assign
void

...

store   R5
cont

load

addradd
R4,12

addradd
R2,12

R6,12
addr
R6,12

add R1
cont

add R3
constmove6

load
R6,8addr

R6,8load (R6,8), R1
add R6,R1,R2
move 6,R3
add R2,R3,R4
load (R4,12),R5
store R5, ...

cost: 6 instructions

a

ix

s

assign
void

...
store

• Given: target tree in intermediate language.

• Optimizing selection: Select patterns that translate single nodes or small subtrees
into machine instructions; cover the whole tree with as few instructions as possible.

• Method: Tree pattern matching, several techniques

Example: assignment
... = a[i].s;

assumed:
R6: points to current activation record
relative address of a is 12
induct. var. i is substituted by ix, rel. adr 8
record elem. s has rel. adr. 6
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Selection Technique: Value Descriptors

alternative translation patterns  to be selected context dependend:

addradd

Ri, c1 c2

Ri, c1 + c2

addradd

Ri Rj

Rk

addradd Ri, c1 c2 -> Ri, c1 + c2 ./. addradd Ri Rj -> Rk add Ri, Rj, Rk

Value descriptors  state how/where the
value of a tree node is represented, e. g.

Ri value in register Ri
c constant value c

Ri,c address Ri + c

(adr) contents at the address adr

C-3.17

Intermediate language tree node operators ;
e.g.:

addr address of variable
const constant value
cont load contents of address
addradd address + value
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Example for a Set of Translation Patterns
C-3.18

# operator operands result code
1 addr Ri, c -> Ri,c ./.

2 const c -> c ./.
3 const c -> Ri move c, Ri

4 cont Ri, c -> (Ri, c) ./.
5 cont Ri -> (Ri) ./.
6 cont Ri, c -> Rj load (Ri, c), Rj
7 cont Ri -> Rj load (Ri), Rj

8 addradd Ri c -> Ri, c ./.
9 addradd Ri, c1 c2 -> Ri, c1 + c2 ./.
10 addradd Ri Rj -> Rk add Ri, Rj, Rk
11 addradd Ri, c Rj -> Rk, c add Ri, Rj, Rk

12 assign Ri Rj -> void store Rj, Ri
13 assign Ri (Rj, c) -> void store (Rj,c), Ri
14 assign Ri,c Rj -> void store Rj, Ri,c
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Tree Covered with Translation Patterns
C-3.19

cont

addradd

addradd
R2,12

R6,12
addr
R6,12

add
R1

cont

const
6

load
R6,8
addr
R6,8

(R2,18)

R2,18

6

load (R6,8), R1
add R6,R1,R2
store (R2,18),...

cost: 3 instructions

1

1

11

6

4

2

9

assign
void

...

13

store   R5
cont

load

addradd
R4,12

addradd
R2,12

R6,12
addr
R6,12

add R1
cont

add
R3

constmove6

loadR6,8
addr
R6,8

load (R6,8), R1
add R6,R1,R2
move 6,R3
add R2,R3,R4
load (R4,12),R5
store R5, ...
cost: 6 instructions

1

1

6

11

11

3
6

assign
void

...

12

store

tree for assignment
... = a[i].s;

6

application of pattern #6
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Pattern Selection
C-3.20

cont

addradd

addradd

addr cont

const

addr

load (R6,8), R1
add R6,R1,R2
store (R2,18),...

cost: 3 instructions

{(void,lhscost+3)}

{((Ri+c),2), (Ri,3)}

{(Ri+c,2), (Ri+c,4)}

{(Ri+c,2)}

{(Ri+c,0)} {((Ri+c),0), (Ri,1)}

{(Ri+c,0)}

{(c,0), (Ri,1)}

4 6

9 11

11

1 4 6

1

2 3

assign

... 13

Pass 1 bottom-up:

Annotate the nodes with sets of pairs
{ (v, c) | v is a kind of value descriptor that an

applicable pattern yields,
c are the accumulated subtree costs}

If (v, c1), (v, c2) keep only the cheaper pair.

Pass 2 top-down:

Select for each node the cheapest pattern,
that fits to the selection made above.

Pass 3 bottom-up:

Emit code.

Improved technique:

relative costs per sets =>
finite number of potential sets
integer encoding of the sets at generation time
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Pattern Matching in Trees: Bottom-up Rewrite
C-3.21

Bottom-up Rewrite Systems (BURS) :
a general approach of the pattern matching method:

Specification in form of tree patterns, similar to C-3.18 - C-3.20

Set of patterns is analyzed at generation time.

Generator produces a tree automaton with a finite set of states.

On the bottom-up traversal it annotates each tree node with
a set of states:
those selection decisions which may lead to an optimal solution.

Decisions are made on the base of the costs of subtrees
rather than costs of nodes.

Generator: BURG
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Tree Pattern Matching by Parsing

The tree is represented in prefix form.

Translation patterns are specified by tuples (CFG production, code, cost),
Value descriptors are the nonterminals of the grammar, e. g.

8 RegConst ::= addradd Reg   Const nop 0

11 RegConst ::= addradd RegConst Reg add Ri, Rj, Rk 1

Deeper patterns allow for more effective optimization:

Void ::= assign RegConst addradd Reg  Const store (Ri, c1),(Rj, c2) 1

Parsing for an ambiguous CFG:
application of a production is decided on the base of the production costs
rather than the accumulated subtree costs!

Technique „Graham, Glanville“
Generators: GG, GGSS

C-3.22
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4 Register Allocation
C-4.1

Use of registers:

1. intermediate results of expression evaluation

2. reused results of expression evaluation (CSE)

3. contents of frequently used variables

4. parameters  of functions, function result
(cf. register windowing)

5. stack pointer, frame pointer , heap pointer, ...

Number of registers is limited  - for each
register class: address, integer, floating point

Register allocation aims at reduction of

• number of memory accesses
• spill code, i. e. instructions that store and

reload the contents of registers

Specific allocation methods
for different context ranges:

• 4.1 expression trees (Sethi, Ullman)

• 4.2 basic blocks (Belady)

• 4.3 control flow graphs (graph coloring)

Symbolic registers: allocate a new symbolic register
to each value assignment (single assignment, no re-writing);
defer allocation of real registers to a later phase.
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Register Windowing
C-4.2

r31
...
r26

r25
...
r16

r15
...
r10

r31
...
r26

r25
...
r16

r15
...
r10

r31
...
r26

r25
...
r16

r15
...
r10

parameters in
overlapping
registers

shift on call

Berkley Risc:

22 regs in window
16 shifted

6 overlapped

Register windowing:

• Fast storage of the processor is accessed
through a window.

• The n elements of the window are used as
registers in instructions.

• On a call the window is shifted by m<n
registers.

• Overlapping registers can be used under
different names from both the caller and the
callee.

• Parameters are passed without copying.

• Storage is organized in a ring;
4-8 windows; saved and restored as needed

Typical for Risc processors,
e.g. Berkley RISC, SPARC
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Activation Records in Register Windows
C-4.3

shift on call

parameters

static link

return address

dynamic link

local variables

register area

call area parameters

static link

return address

dynamic link

local variables

register area

call area

• Parameters are passed in overlap
area without copying .

• Registers need not be saved
explicitly.

• If window is too small  for an
activation record, the remainder is
allocated on the run-time stack ;
pointer to it in window.
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4.1 Register Allocation for Expression Trees
C-4.4

b
op

bl

eval. order needed registers b =

Tl   Tr  op           max (bl, br + 1)

Tr    Tl  op           max (br, bl + 1)
minimize

assume the results of Tl and Tr are in registers

 Tl Tr

br

number of available registers (regmax)
is upper limit for needed registers

Problem:
Generate code for expression  evaluation.
Intermediate results  are stored in registers.
Not enough registers:

spill code  saves and restores.

Goal :
Minimize amount of spillcode.
see C-4.5a for optimality condition

Basic idea (Sethi, Ullman):
For each subtree minimize the
number of needed registes :

evaluate first the subtree that
needs most  registers
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Expression Tree Attribution
Implementation by attribution of trees:

Phase 1 bottom-up:
needed registers, evaluation order
Phase 2 top-down:
allocate registers
Phase 3 bottom-up:
compose code in evaluation order

C-4.5

regmax
op

regmax

 Tl Tr

regmax

Spill code needed:

Code (Tr)
store R r, h
Code (Tl)
load h, R r
op  Rr, Rl

need first res avail3 r 0 0,1,2

3 l 1 0,1,23 l 0 0,1,2

2 r 1 1,2 2 l 0 0,22 l 1 0,1,2

2 l 2 1,2

1 l 1 1

1 l 1 1,2

1 l 0 0,1,2

2 l 0 0,1,2

1 l 1 11 l 2 1,2

1 l 1 0,1,2 1 l 0 0,2

1 l 2  21 l 0 0,2

Example
spill

regmax = 3

load h, Rr is not needed if h can be a
memory operand in    op  h, Rl
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Contiguous code vs. optimal code
C-4.5a

 Ta Tb

add_i

toFloat

add_f

(3, 3) (0, 3)

(3, 3)

(3, 3)

spill float

sub_f

The method assumes that the code for every subtree is contiguous .
(I.e. there is no interleaving between the code of any two disjoint subtrees.)

The method is optimal  for a certain configuration of registers and operations , iff
every optimal evaluation code  can be arranged to be contiguous .

Counter example :

Registers: 3 int  and 3 float
Register need: (i, f) from (0, 0) to (3, 3)

Operations: int - and float - arithmetic,
toFloat  (widening)

register use: (3, 3) (1, 0) (0, 1) (0, 0) (0, 3) (0, 1) (0, 2) (0, 1)

contiguous : Ta add_i toFloat store_f Tb sub_f load_f add_f

optimal : Ta add_i T b sub_f toFloat  add_f

register use: (3, 3) (1, 0) (1, 3) (1, 1)  (1, 2)  (0, 1)



©
 2

01
1 

be
i P

ro
f. 

D
r.

 U
w

e 
K

as
te

ns

4.2 Register Allocation for Basic Blocks by Life-Time Analysis

Lifetimes of values in a basic block  are used to minimize the number of registers needed.

1st Pass :

2nd Pass:

The technique has been presented originally 1966 by
Belady  as a paging technique for storage allocation .

C-4.6

Determine the life-times  of values: from the definition to the last use
(there may be several uses!).

Life-times are represented by intervals in a graph

cut of the graph  = number of registers needed  at that point

at the end of 1st pass:
maximal cut = number of register needed for the basic block

allocate registers in the graph :

In case of shortage of registers: select values to be spilled ; criteria :

- a value that is already in memory  - store instruction is saved

- the value that is latest used again

allocate registers in the instructions ; evaluation order remains unchanged
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Example for Belady‘s Technique
C-4.7

(a)

(b)
(c)

d1 d2 d2 d3 d3 d4 d3 d3 d3
d2
d1d1*

d2*

register allocations

* spilled: reloaded from x

4 regs
3 regs
3 regs

d1 d2 d3 d3 d3 d3
d3
d3

d3d3d3d3d2d2

* spilled: store;...; load

a b c d e f g h i

a := x

b := y

b + a
c :=

d := z

d * c
e :=

f :=  s
e / f

g :=

g + a
h :=

h * c
i :=

.

.

.

.

. .

.

.

.

. .

.
.
. .

. .
.

.

Life-times of values in a basic block

maximal register need



©
 2

01
1 

be
i P

ro
f. 

D
r.

 U
w

e 
K

as
te

ns

4.3 Register Allocation by Graph Coloring

Definitions and uses of variables in control-flow graphs for function bodies are analyzed (DFA).
Conflicting life-times are modelled. Presented by Chaitin .

Construct an interference graph:

Nodes: Variables that are candidates for being kept in registers

Edge {a, b}: Life-times of variables a and b overlap
=> a, b have to be kept in different registers

Life-times for CFGs are determined by data-flow analysis .

Graph is „colored“ with register numbers.

NP complete problem; heuristic technique  for coloring with k colors (registers):

eliminate nodes of degree < k (and its edges)

 if the graph is finally empty:
graph can be colored with k colors
assign colors to nodes in reverse order of elimination

else
graph can not be colored this way
select a node for spilling
repeat the algorithm without that node

C-4.8
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Example for Graph Coloring
C-4.9

a := x
c := y
f := z

B1

b := a+1B2 b := f+a B3

d := c
e := a+bB4

e := b
d := a B5

z := b+d
y := e

B6

CFG with definitions and uses of variables

b, d, e b, d, e
b, d, e

a, b, c

a, b, c
a, b, c

a, b

a, c, f

a, c, f
a, c

f a

c

f a

c b

a

c b

a d

b e

d

b e

d

b e

a
c

d2                    d1                       d3
f                        a                         d

c                       b                          e
d3                    d2                        d1

interference graph

variables in memory: x, y, z

variables considered for register alloc.:
a, b, c, d, e, f

results of live variable analysis:
b, d, e

f a

c

contribution to
interference graphB1
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5 Code Parallelization

Processor with instruction level parallelism (ILP)
executes several instructions in parallel.

Classes of processors and parallelism:
VLIW, super scalar
Pipelined processors
Data parallel processors

Compiler analyzes sequential programs  to
exhibit potential parallelism
on instruction level;

model dependences
between computations

Compiler arranges instructions for
shortest execution time:
instruction scheduling

Compiler analyzes loops
to execute them in parallel
loop transformation
array transformation

C-5.1

Parallel functional units, VLIW
super scalarFU1 FU2 FU3

parallelized
instruction
sequence

Data parallel processor, SIMD

FU0 FU31...

do c[i]  := a[i] + b [i];
for i := 0 to 31

is one instruction!

S3 S2 S1

sequential code scheduled for pipelining

Pipeline processor
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5.1 Instruction Scheduling
Data Dependence Graph

Exhibit potential fine-grained parallelism  among operations.
Sequential code is over-specified!

Data dependence graph (DDG)  for a basic block:
Node : operation;
Edge  a -> b: operation b uses the result of operation a

C-5.2

Example for a basic block:
1: t1 := a
 2: t2 := b
 3: t3 := t1 + t2
 4: x := t3
 5: t4 := c
 6: t5 := t3 + t4
 7: y := t5
 8: t6 := d
 9: t7 := e
10: t8 := t6 + t7
11: z := t8

1 2

3

4

5

6

7

8 9

10

11x
y z

t1 t2

t3

t4

t5

t6 t7

t8

t3

data dependence graph

ti are symbolic registers , store intermediate
results, obey single assignment rule
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List Scheduling

Input : data dependence graph
Output : a schedule of at most k operations per cycle ,

such that all dependences point forward; DDG arranged in levels

Algorithm : A ready list  contains all operations that are not yet scheduled ,
but whose predecessors are scheduled
Iterate: select  from the ready list up to k operations for the next cycle (heuristic),

update  the ready list

C-5.3

1 2

3

4

5

6

7

8 9

10

11

cycle
1

2

3

4

• Algorithm is optimal  only for trees .

• Heuristic : Keep ready list sorted by
distance to an end node, e. g.

(1 2 5) (8 9 3) (6 10 4) (7 11)

without this heuristic:
(1 8 9) (2 5 10) (3 11) (6 4) (7)

( ) operations in one cycle

Critical paths  determine minimal schedule length: e. g. 1 -> 3 -> 6 -> 7
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Variants and Restrictions for List Scheduling
C-5.4

1 2

3

4

5

6

7

8 9

10

11

3

4

2

cut widthcycle
1

2

3

4

one value is used twice

Scheduled DDG models
number of needed registers :

• arc represents the use of an
intermediate result

• cut width  through a level
gives the number of
registers needed

The tighter the schedule the
more registers are needed
(register pressure).

• Allocate as soon as possible , ASAP (C-5.3); as late  as possible, ALAP

• Operations have unit execution time  (C-5.3); different execution times:
selection avoids conflicts with already allocated operations

• Operations only on specific functional units  (e. g. 2 int FUs, 2 float FUs)

• Resource restrictions  between operations, e. g. <= 1 load or store per cycle
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Instruction Scheduling for Pipelining
C-5.5

I4 I5 nop I6 I7 ...
3 2 1 instruction sequence

nop

without scheduling:
 1: t1 := a
 2: t2 := b

nop
 3: t3 := t1 + t2

nop
 4: x := t3
 5: t4 := c

nop
 6: t5 := t3 + t4

nop
 7: y := t5
 8: t6 := d
 9: t7 := e

nop
10: t8 := t6 + t7

nop
11: z := t8

1: t1 := a
2: t2 := b
5: t4 := c
3: t3 := t1 + t2 with
8: t6 := d scheduling
9: t7 := e
6: t5 := t3 + t4 no delays
10: t8 := t6 + t7
4: x := t3
7: y := t5
11: z := t8

Instruction pipeline
with 3 stages:

Dependent instructions  may not
follow one another immediately.

Schedule rearranges the operation sequence,
to minimize the number of delays:
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Instruction Scheduling Algorithm for Pipelining
C-5.6

1: t1 := a
2: t2 := b
5: t4 := c
3: t3 := t1 + t2 with
8: t6 := d scheduling
9: t7 := e
6: t5 := t3 + t4
10: t8 := t6 + t7
4: x := t3
7: y := t5
11: z := t8

cycle
1
2
3
4
5
6
7
8
9
10
11

Algorithm : modified list scheduling:

Select from the ready list such that the
selected operation

• has a sufficient distance to all
predecessors  in DDG

• has many successors  (heuristic)

• has a long path to the end  node (heuristic)

Insert an empty operation if none is selectable.

Ready list with additional information:

opr. 1 2 5 8 9 3 6 4 10 7 11

succ # 1 1 1 1 1 2 1 0 1 0 0

to end 3 3 2 2 2 2 1 1 1 0 0

sched.
cycle

1 2 3 5 6 4 7 9 8 10 11

1 2

3

4

5

6

7

8 9

10

11x
y z

t1 t2

t3

t4

t5

t6 t7

t8

t3

data dependence graph
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Reused registers: anti- and output-dependences
C-5.6b

1 2

3

4

5

6

7

8 9

10

11x
y z

t1 t2

t3

t4

t5

t6 t7

t8

t3

DDG with symbolic registers ti
flow-dependences only

1 2

3

4

5

6

7

8 9

10

11x
y z

t1 t2

t3

t2

t5

t1 t7

t8

t3

DDG with reused registers ti
flow, anti-, and output-dependences

o
o

a a

au v anti-dependence :
u uses a value
before v overwrites it

u v

u v

flow-dependence :
u writes before v uses

output-dependence :
u writes before v overwrites

o
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DDG with Loop Carried Dependences

Factorial computation:

program: seq. machine code:

i = 0; f = 1;

while ( i != n) L: beq  r1, r2 : exit

{ i = i + 1; add  r1, 1  : r1

f = f * i; mul  r5, r1 : r5

add  r8, 4  : r8

m[i] = f; sto   r5 : m[r8]

} bra  L

C-5.6d

beq r1, r2 : exit

add r1, 1 : r1

mul r5, r1 : r5

bra L

add r8, 4: r8

sto r5 : m [r8]

a

a
a

Data dependence graph:

r5
r8

r1 r1

r8
r1

r5 r8

a

c

c

au v

flow-dependence  into

anti-dependence :
u uses a value

subsequent iteration

before v overwrites it

u

u

v

v

u v

flow-dependence :
u writes before v uses

output-dependence :
u writes before v overwrites

o
u vc control-dependence :

u has to be executed before v
(u or v may branch)
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Loop unrolling
C-5.6u

sequential
loop

parallel schedule
for single body

unrolled loop
for unrolled loop
parallel schedule

Prologue and epilogue needed to take
care of iteration numbers that are not
multiples of the unroll factor

(3 times)

Loop unrolling: A technique for parallelization of loops.

A single loop body does not exhibit enough parallelism => sparse schedule.
Schedule the code (copies) of several adjacent iterations together

=> more compact schedule
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Software Pipelining
C-5.7

software pipelined
sequential

prologue

epilogue

loopII

II

II

pipelined

done

to be
done

Software Pipelining: A technique for parallelization of loops.

A single loop body does not exhibit enough parallelism => sparse schedule.
Overlap the execution of several adjacent iterations => compact schedule

The pipelined loop body

has each operation  of the original sequential body,
they belong to several iterations ,
they are tightly scheduled,
its length is the initiation interval II ,
is shorter  than the original body.

Prologue, epilogue : initiation and finalization code
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Transform Loops by Software Pipelining

0
1

0
1

0
1

0
1

2
3

4
5

11

12
13 14

15

Modulo schedule for a loop body
cycle

11

12
13 14

15

21

22
23 24

25

31

32
33 34

35

loop length II

done

to be
done

C-5.8

Technique :

1. Data dependence graph  for the loop body,
include loop carried dependences .

2. Chose a small initiation interval II  -
not smaller than #instructions / #FUs

3. Make a „Modulo Schedule“  s for the loop body:
Two instructions can not be scheduled on the same FU, i1
in cycle c1 and i2 in cycle c2, if c1 mod II = c2 mod II

4. If (3) does not succeed without conflict, increase II and
repeat from 3

5. Allocate the instructions of s in the new loop of length II:
ij scheduled in cycle cj is allocated to cj mod II

6. Construct prologue and epilogue.

... = t1;

t1 = ...;
...
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Result of Software Pipelining

t tm ADD MUL MEM CTR

0 0 L: beq r1, r2:exit

1 1 add r1, 1: r1

2 0 add r8, 4 : r8 mul r5, r1 : r5

3 1 ... mul

4 0 sto  r5 : m r8

5 1 ... sto

6 0

7 1 bra L

t tm ADD MUL MEM CTR

0 0 beq r1;r2:exit

1 1 add r1, 1 : r1

2 0 add r8, 4 : r8 mul r5, r1 : r5 beq r1; r2 : ex

3 1 add r1, 1 : r1 ... mul

4 0 L: add r8, 4 : r8 mul r5, r1 : r5 sto  r5 : m r8 beq r1; r2 : ex

5 1 add r1, 1 : r1 ... mul ... sto bra L

6 1 ex: ... mul ... sto

7 0 sto  r5 : m r8

8 1 ... sto

9 0 bra exit

C-5.10

4 dedicated FUs
schedule of the
loop body for II = 2

mul and sto need 2 cycles

add and sto in tm=0,
sto reads r8 before
add writes it

bra not in cycle 6,
it collides with beq: tm=0

prologue

software pipline
with II = 2

epilogue
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5.2 / 6. Data Parallelism: Loop Parallelization
C-5.11 / PPJ-50

Development steps (automated by compilers):

• nested loops  operating on arrays ,
sequential execution of iteration space

• analyze data dependences
data-flow: definition and use of array elements

• transform loops
keep data dependences forward in time

• parallelize inner loop(s)
map to field or vector of processors

• map arrays to processors
such that many accesses are local,
transform index spaces

DECLARE B[0..N,0..N+1]

FOR I := 1 ..N
FOR J := 1 .. I

B[I,J] :=
B[I-1,J]+B[I-1,J-1]

END FOR
END FOR

N1

1

N

i

j

1-N

1 N

-1

i
j

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

1

N

1

-N

-1

i

N

j

Regular loops  on orthogonal data structures - parallelized for data parallel  processors
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Iteration space of loop nests

Iteration space of a loop nest of depth n:

• n-dimensional space of integral points (polytope)

• each point (i1, ..., in) represents an execution of the innermost loop body

• loop bounds are in general not known before run-time

• iteration need not have orthogonal borders

• iteration is elaborated sequentially

C-5.12 / PPJ-51

DECLARE B[-1..N,-1..N]

FOR I := 0 .. N
FOR J := 0 .. I

B[I,J] :=
B[I-1,J]+B[I-1,J-1]

END FOR
END FOR

example:
computation of Pascal’s triangle

J

IN

N
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Examples for Iteration spaces of loop nests
C-5.12a / PPJ-51a

J

IN

N

FOR I := 0 .. N
FOR J := 0 .. I

J

IN

N

FOR I := 0..N BY 2
FOR J := 0 .. I

J

IN

N

FOR I := 0 .. N
FOR J := 0..I BY 2

J

I

FOR I := 0 .. N
FOR J := I..I+M

M = 3, N = 4

M

N

J

I

FOR I := 0 .. M+N
FOR J := max(0, I-M)..

min (I, N)

M

N

M+N
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Data Dependences in Iteration Spaces

Data dependence from iteration point i1 to i2 :

• Iteration i1 computes a value that is
used in iteration i2 (flow dependence)

• relative dependence vector
d = i2 - i1  = (i21 - i11, ..., i2n - i1n)
holds for all iteration points except at the border

• Flow-dependences can not be directed against
the execution order , can not point backward in time:
each dependence vector must be lexicographically
positive , i. e. d = (0, ..., 0, di, ...), di > 0

C-5.13 / PPJ-52

DECLARE B[-1..N,-1..N]

FOR I := 0 .. N
FOR J := 0 .. I

B[I,J] :=
B[I-1,J]+B[I-1,J-1]

END FOR
END FOR

Example:
Computation of Pascal´s triangle

(0,1)

(1,0)

(0,-1)

forward

backward (1,-5)

J

IN

N
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Loop Transformation
C-5.14 / PPJ-53

non-linear transformations , e. g.

• Scaling : stretch the iteration space  in
one dimension, causes gaps

• Tiling : introduce additional inner loops
that cover tiles  of fixed size

linear basic transformations:

• Skewing : add iteration count of an
outer loop to that of an inner one

• Reversal : flip execution order
for one dimension

• Permutation : exchange two loops
of the loop nest

SRP transformations  (next slides)

The iteration space  of a loop nest is
transformed to new coordinates . Goals:

• execute innermost loop(s) in parallel

• improve locality  of data accesses;
in space : use storage of executing processor,
in time : reuse values stored in cache

• systolic  computation and communication scheme

Data dependences must point forward in time , i.e.
lexicographically positive  and
not within parallel dimensions

scaling

tiling



C-5.14a / PPJ-54

Transformations
of

data

loop nests

convex polytope



©
 2

00
9 

be
i P

ro
f. 

D
r.

 U
w

e 
K

as
te

ns

Transformations defined by matrices

Transformation matrices: systematic transformation, check dependence vectors

C-5.14b / PPJ-55

( ) ((( ) ) )* = =
1

-1
0

0
i
j

i
-j

i’
j’

Reversal

( ) ((( ) ) )* = =
1

1
0

f
i
j

i
f* i+j

i’
j’

Skewing

( ) ((( ) ) )* = =
0

0
1

1
i
j

j
i

i’
j’

Permutation
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Reversal

Iteration count of one loop is negated , that dimension is enumerated backward

C-5.15 / PPJ-55a

( ) ((( ) ) )* = =
1

-1
0

0
i
j

i
-j

ir
jr

loop variables
old new( )1

1
-1

1
1

...

... 0

0

2-dimensional:

for i = 0 to M
for j = 0 to N

...

for ir = 0 to M
for jr = -N to 0

...

j

iM

N
jr ir

M

-N

original

transformed

general transformation matrix
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Skewing

The iteration count of an outer loop is added to the count of an inner loop;
iteration space is shifted; execution order  of iteration points remains unchanged

( ) ((( ) ) )* = =
1

1
0

f
i
j

i
f*i+j

is
js

loop variables
old new( )1

1
1

1
1

...

... 0

0

2-dimensional:

for i = 0 to M
for j = 0 to N

...

for is = 0 to M
for js = f*is to N+f*is

...

j

iM

N

original

transformed

general transformation matrix:

f

js

isM

N

N+M

C-5.16 / PPJ-55b
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Permutation

Two loops of the loop nest are interchanged ; the iteration space is flipped;
the execution order  of iteration points changes; new dependence vectors must be legal.

( ) ((( ) ) )* = =
0

0
1

1
i
j

j
i

ip
jp

loop variables
old new( )1

1
0
1

1
...

0 0

0

2-dimensional:

for i = 0 to M
for j = 0 to N

... for ip = 0 to N
for jp = 0 to M

...j

iM

N

original

transformed

general transformation matrix:

1

jp

ipN

M

1i

i

j

j

C-5.17 / PPJ-55c



©
 2

00
9 

be
i P

ro
f. 

D
r.

 U
w

e 
K

as
te

ns

Use of Transformation Matrices

• Transformation matrix T defines new iteration counts  in terms of the old ones: T *  i = i´

• Transformation matrix T transforms old dependence vectors  into new ones: T *  d = d´

• inverse Transformation matrix T -1 defines old iteration counts  in terms of new ones,
for transformation of index expressions in the loop body: T - 1 *  i´ = i

• concatenation of transformations  first T1 then T2 : T2 * T1 = T

C-5.18 / PPJ-56

( ) ((( ) ) )* = =
1

-1
0

0
i
j

i
-j

i’
j’

e. g. Reversal

( ) (( ) )* =
1

-1
0

0
1
1

1
-1

e. g.

( ) (( ) )* =
1

-1
0

0
e. g.

i’
j’

i’
-j’ ( )=

i
j

( )1
-1
0

0
e. g. ( *

0
0
1

1 ) = ( 0
0
-1

1 )
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Inequalities Describe Loop Bounds

The bounds of a loop nest are described by a set of linear inequalities .
Each inequality separates the space  in „inside and outside of the iteration space“:

positive  factors represent upper  bounds
negative  factors represent lower  bounds

C-5.19 / PPJ-56a

( )( () )≤*

-1
1
0
0

0
0

-1
1

i
j

0
M
0
N

B * i ≤ c

1 -i ≤ 0

2 i ≤ Μ

3 -j ≤ 0

4 j ≤ Ν

1 2

3

4

( )( () )*

-1
1
0
0

1
0

-1
1

i
j

0
M
0
N

1 -i +j ≤ 0

N

M

1 2

3

4
N

M

example 1

example 2

≤
2 i ≤ Μ

3 -j ≤ 0

4 j ≤ Ν

transformed

1, 4: j ≤ min (i, N)

3: 0 ≤ j

1+ 3: 0 ≤ i

2: i ≤ M
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Transformation of Loop Bounds

The inverse of a transformation matrix T - 1 transforms a set of inequalities: B * T - 1 i’ ≤ c

C-5.20 / PPJ-56b

)( ( )*
i’
j’

0
M
0
N

1 -i´ ≤ 0

2 i´ ≤ Μ

3 i´ - j´ ≤ 0

4 -i´ + j´ ≤ Ν

)( 1
1

0

1 )( 1
-1

0

1

skewing inverse

( )-1
1
0
0

0
0

-1
1

* )( 1
-1

0

1 ( )-1
1
1
-1

0
0

-1
1

( )-1
1
1
-1

0
0

-1
1

B T - 1 B * T - 1

B * T - 1 i’ c

example 1

1

2

3

4

N

M

new bounds:

=

≤
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Example for Transformation and Parallelization of a Loop

for i = 0 to N
for j = 0 to M

a[i, j] = (a[i, j-1] + a[i-1, j]) / 2;

Parallelize the above loop.

1. Draw the iteration space.

2. Compute the dependence vectors and draw examples of them into the iteration space.
Why can the inner loop not be executed in parallel?

3. Apply a skewing transformation and draw the iteration space.

4. Apply a permutation transformation and draw the iteration space.
Explain why the inner loop now can be executed in parallel.

5. Compute the matrix of the composed transformation and
use it to transform the dependence vectors.

6. Compute the inverse of the transformation matrix and
use it to transform the index expressions.

7. Specify the loop bounds by inequalities and
transform them by the inverse of the transformation matrix.

8. Write the complete loops with new loop variables ip and jp and new loop bounds.

C-5.21 / PPJ-56c
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Solution of the Transformation and Parallelization Example

1 -jp ≤ 0
2 jp ≤ Ν
3 -ip+jp ≤ 0
4  ip - jp ≤ Μ

( )0
0

-1
1

-1
1
1

-1

B * T - 1

( )0N0
M

( )-1
1
0
0

0
0
-1
1

B
1, 3 => 0 ≤ ip

2, 4 => ip  ≤ M+N

1, 4 => max (0, ip-M)  ≤ jp

2, 3 => jp  ≤ min (ip, N)

c7. Bounds:
new:orig.:

C-5.22 / PPJ-56d

M=4

N=7

M=4

M=4 M+N

N=7

M+N

N=7

( )1 1
1 0 ( )0

1 ( )1
0

= ( )1 1
1 0 ( )1

0 ( )1
1

=

i

j

jp

ip

( )0 1
1 -1

Inverse

1., 2.: 3.: 4.:

5.: 6.:

8. for ip = 0 to M+N
for jp = max (0, ip-M) to min (ip, N)

a[jp, ip-jp] = (a[jp, ip-jp-1] + a[jp-1, ip-jp]) / 2;



Transformation and Parallelization
C-5.23 / PPJ-57

Iteration space
original

DECLARE B[-1..N,-1..N]

FOR IS := 0.. N
FOR JS := -IS .. 0

B[IS,JS+IS] :=
B[IS-1,JS+IS]+B[IS-1,JS-1+IS]

END FOR
END FOR

J

IN

N

DECLARE B[-1..N,-1..N]

FOR I := 0 .. N
FOR J := 0 .. I

B[I,J] :=
B[I-1,J]+B[I-1,J-1]

END FOR
END FOR

N

-N

IS
JS

parallel processor map
JS mod 2

transformed
(I, J) -> (I, J-I) = (IS, JS)

sequential time IS
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Data Mapping
C-5.24 / PPJ-58

Goal :
Distribute array elements  over processors, such that
as many accesses as possible are local.

Index space of an array:
n-dimensional space of integral index points (polytope)

• same properties as iteration space

• same mathematical model

• same transformations  are applicable
(Skewing, Reversal, Permutation, ...)

• no restrictions  by data dependences



Data distribution for parallel loops
C-5.25 / PPJ-59

DECLARE B[-1..N,-N..N]
...

B[IS,JS] :=
B[IS-1,JS-1]+B[IS-1,JS-1]

index space of B
original transformed

skewing f=-1
(i,j) -> (i,j-i)

J

IN

N

Data on P0

P0 
writ

es
 B

[I,
J]

50% local
100%local

N

-N

I

J

N

DECLARE B[-1..N,-1..N]

FOR IS := 0.. N
FOR JS := -IS .. 0

B[IS,JS+IS] :=
B[IS-1,JS+IS]+B[IS-1,JS-1+IS]

END FOR
END FOR
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Check Your Knowledge (1)

Optimization, CFA:

1. Explain graphs that are used in program analysis.

2. Which optimizing transformations need analysis of execution pathes?

3. Which optimizing transformations do not need analysis of execution pathes?

4. Give an example for a pair of transformations such that one enables the other.

5. Define the control-flow graph. Describe transformations on the CFG.

6. Define the dominator relation. What is it used for?

7. Describe an algorithm for computing dominator sets.

8. Define natural loops.

9. What is the role of the loop header and of the pre-header.

10. Show a graph that has a cycle but no natural loop.

11. Define induction variables, and explain the transformation technique.

C-6.1
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Check Your Knowledge (2)

Optimization, DFA:

12. Describe the schema for DFA equations for the four problem categories.

13. Explain the relation of the meet operator, the paths in the graph, and the DFA solutions.

14. Describe the DFA problem reaching definitions.

15. Describe the DFA problem live variables.

16. Describe the DFA problem available expressions.

17. Describe the DFA problem copy propagation.

18. Describe the DFA problem constant propagation.

19. Describe the iterative DFA algorithm; its termination; its complexity.

20. Describe an heuristic improvement of the iterative DFA algorithm.

21. Extend constant propagation to interval propagation for bounds checks.
Explain the interval lattice.

22. What is the role of lattices in DFA?

23. Describe lattices that are common for DFA.

C-6.2
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Check Your Knowledge (3)

Object Oriented Program Analysis:

24. Describe techniques to reduce the number of arcs in call graphs.

25.Describe call graphs for object oriented programs.

26.Describe techniques to reduce the number of arcs in object oriented call graphs.

Code Generation, Storage mapping:

27. Explain the notions of storage classes, relative addresses, alignment, overlay.

28. Compare storage mapping of arrays by pointer trees to mapping on contiguous storage.

29. Explain storage mapping of arrays for C. What is different for C, for Fortran?

30. For what purpose are array descriptors needed? What do they contain?

31. What is the closure of a function? In which situation is it needed?

32. Why must a functional parameter in Pascal be represented by a pair of pointers?

33. What does an activation record contain?

34. Explain static links in the run-time stack. What is the not-most-recent property?

35. How do C, Pascal, and Modula-2 ensure that the run-time stack discipline is obeyed?

36. Why do threads need a separate run-time stack each?

C-6.3
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Check Your Knowledge (4)

37. Explain the code for function calls in relation to the structure of activation records.

38. Explain addressing relative to activation records.

39. Explain sequences for loops.

40. Explain the translation of short circuit evaluation of boolean expressions.
Which attributes are used?

41. Explain code selection by covering trees with translation patterns.

42. Explain a technique for tree pattern selection using 3 passes.

43. Explain code selection using parsing. What is the role of the grammar?

Register Allocation

44. How is register windowing used for implementation of function calls?

45. Which allocation technique is applied for which program context?

46. Explain register allocation for expression trees. Which attributes are used?

47. How is spill code minimized for expression trees?

48. Explain register allocation for basic blocks? Relate the spill criteria to paging techniques.

49. Explain register allocation by graph coloring. What does the interference graph represent?

50. Explain why DFA life-time analysis is needed for register allocation by graph coloring.

C-6.4
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Check Your Knowledge (5)

Instruction Scheduling

51. What does instruction scheduling mean for VLIW, pipeline, and vector processors?

52. Explain the kinds of arcs of DDGs (flow, anti, output).

53. What are loop carried dependences?

54. Explain list scheduling for parallel FUs. How is the register need modelled?
Compare it to Belady’s register allocation technique.

55.How is list scheduling applied for arranging instructions for pipeline processors?

56. Explain the basic idea of software pipelining. What does the initiation interval mean?

Loop Parallelization

57. Explain dependence vectors in an iteration space.
What are the admissible directions for sequential and for parallelized innermost loops?

58. What is tiling, what is scaling?

59. Explain SRP transformations.

60. How are the transformation matrices used?

61. How are loop bounds transformed?

62. Parallelize the inner loop of a nest that has dependence vectors (1,0) and (0, 1)?

C-6.5


