
©
 2

00
2

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Data-Flow Analysis
C-2.18

Data-flow analysis (DFA) provides information about
how the execution of a program may manipulate its data .

Many different problems can be formulated as data-flow problems , for example:

• Which assignments to variable v may influence a use of v at a certain program
position?

• Is a variable v used on any path from a program position p to the exit node?

• The values of which expressions are available at program position p?

Data-flow problems are stated in terms of

• paths through the control-flow graph and

• properties of basic blocks .

Data-flow analysis provides information for global optimization.

Data-flow analysis does not know

• which input values are provided at run-time,

• which branches are taken at run-time.

Its results are to be interpreted pessimistic

©
 2

00
6

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Data-Flow Equations

A data-flow problem is stated as a system of equations for a control-flow graph.

System of Equations for forward problems (propagate information along control-flow edges):

In, Out, Gen, Kill represent
analysis information :

sets of statements,
sets of variables,
sets of expressions

depending on the analysis problem

In, Out variables of the system of equations for each block

Gen, Kill a pair of constant sets that characterize a block w.r.t. the DFA problem

Θ meet operator; e. g. Θ = ∪ for „reaching definitions“, Θ = ∩ for „available expressions“

C-2.19

In (B) = Out (h)

Out (B) = fB (In (B))

 Θ
h ∈pred(B)

pred (B) (In - Kill) ∪ Gen = Out

B

.

.

.

.

.

.

2 equations for each basic block:

= Gen (B) ∪ (In (B) - Kill (B))

Example Reaching definitions:
A definiton d of a variable v reaches
the begin of a block B if
there is a path from d to B on which
v is not assigned again.

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Specification of a DFA Problem

Specification of reaching definitions:

1. Description :
A definiton d of a variable v reaches the begin of a block B
if there is a path from d to B on which v is not assigned again.

2. It is a forward problem .

3. The meet operator is union.

4. The analysis information in the sets are
assignments at certain program positions.

5. Gen (B) :
contains all definitions d: v = e; in B,
such that v is not defined after d in B.

6. Kill (B) :
if v is assigned in B, then Kill(B)
contains all definitions d: v = e;
of blocks different from B.

C-2.20

In (B) = Out (h)

Out (B) = fB (In (B))

 Θ
h ∈pred(B)

pred (B) (In - Kill) ∪ Gen = Out

B

.

.

.

.

.

.

2 equations for each basic block:

= Gen (B) ∪ (In (B) - Kill (B))

©
 2

00
4

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Variants of DFA Problems

• forward problem:
DFA information flows along the control flow
In(B) is determined by Out(h) of the predecessor blocks

backward problem (see C-2.23):
DFA information flows against the control flow
Out(B) is determined by In(h) of the successor blocks

• union problem:
problem description: „there is a path“;
meet operator is Θ = ∪
solution: minimal sets that solve the equations

intersect problem:
problem description: „for all paths“
meet operator is Θ = ∩
solution: maximal sets that solve the equations

• optimization information : sets of certain statements, of variables, of expressions.

Further classes of DFA problems over general lattices instead of sets are not considered here.

C-2.21

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Example Reaching Definitions

Gen (B) :
contains all definitions d: v = e;
in B, such that v is not defined
after d in B.

Kill (B) :
contains all definitions d: v = e;
in blocks different from B,
such that B has a definition of v.

C-2.22

d1 : a :=
d2 : b :=
d3 : c :=

d4 : b := d5 : c :=

d6 : b :=
d7 : c :=

d8 : a :=

B1

B2
B3

B4

B5

entry

exit

Description of DFA-Problem DFA-Solution
Gen Kill In Out

B1 d1, d2, d3 d4, d5, d6, d7, d8 ∅ d1, d2, d3

B2 d4 d2, d6 d1, d2, d3 d1, d3, d4

B3 d5 d3, d7 d1, d2, d3, d6, d7 d1, d2, d5, d6

B4 d6, d7 d2, d3, d4, d5 d1, d2, d5, d6 d1, d6, d7

B5 d8 d1 d1, d2, d3, d4, d5, d6 d2, d3, d4, d5, d6, d8

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Iterative Solution of Data-Flow Equations

Input: the CFG; the sets Gen(B) and Kill(B) for each basic block B
Output: the sets In(B) and Out(B)

Complexity: O(n3) with n number of basic blocks
O(n2) if pred (B)  ≤ k << n for all B

Algorithm:
repeat

stable := true;

for all B ≠ entry {*}

do begin

for all V ∈ pred(B) do

In(B):= In(B) Θ Out(V);

oldout:= Out(B);

Out(B):= Gen(B) ∪ (In(B)-Kill(B));

stable:= stable and Out(B)=oldout

end

until stable

Initialization
Union: empty sets
for all B do
begin

In(B):= ∅;
Out(B):=Gen(B)

end;

Intersect: full sets
for all B do
begin

In(B) := U;
Out(B):=

Gen(B) ∪
(U - Kill(B))

end;

C-2.22b

©
 2

00
6

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Backward Problems

System of Equations for backward problems
propagate information against control-flow edges:

2 equations for each basic block:

Example Live variables:

1. Description: Is variable v alive at a given
point p in the program, i. e. is there a path
from p to the exit where v is used but
not defined before the use?

2. backward problem

3. optimization information: sets of variables

4. meet operator: Θ = ∪ union

5. Gen (B): variables that are used in B, but not defined before they are used there.

6. Kill (B): variables that are defined in B, but not used before they are defined there.

C-2.23

Out (B) = In (h)

In (B) = fB (Out (B))

 Θ
h ∈succ(B)

succ (B)In = Gen ∪ (Out - Kill)

B

.

.

.

.

.

.

control-flow

optimization information

= Gen (B) ∪ (Out (B) - Kill (B))

©
 2

00
4

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Important Data-Flow Problems

1. Reaching definitions: A definiton d of a variable v reaches the beginning of a block B if
there is a path from d to B on which v is not assigned again.
DFA variant: forward; union; set of assignments
Transformations: use-def-chains, constant propagation, loop invariant computations

2. Live variables: Is variable v alive at a given point p in the program, i. e. there is a path from
p to the exit where v is used but not defined before the use.
DFA variant: backward; union; set of variables
Transformations: eliminate redundant assignments

3. Available expressions: Is expression e computed on every path from the entry to a
program position p and none of its variables is defined after the last computation before p.
DFA variant: forward; intersect; set of expressions
Transformations: eliminate redundant computations

4. Copy propagation: Is a copy assignment c: x = y redundant, i.e. on every path from c to
a use of x there is no assignment to y?
DFA variant: forward; intersect; set of copy assignments
Transformations: remove copy assignments and rename use

5. Constant propagation: Has variable x at position p a known value, i.e. on every path from
the entry to p the last definition of x is an assignment of the same known value.
DFA variant: forward; combine function; vector of values
Transformations: substitution of variable uses by constants

C-2.24

©
 2

00
6

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Algebraic Foundation of DFA
C-2.24a

DFA performs computations on a lattice (dt. Verband) of values,
e. g. bit-vectors representing finite sets. It guarantees termination of
computation and well-defined solutions. see [Muchnick, pp 223-228]

A lattice L is a set of values with two operations: ∩ meet and ∪ join

Required properties:

1. closure : x, y ∈ L implies x ∩ y ∈ L , x ∪ y ∈ L

2. commutativity :x ∩ y = y ∩ x and x ∪ y = y ∪ x

3. associativity : (x ∩ y) ∩ z = x ∩ (y ∩ z) and (x ∪ y) ∪ z = x ∪ (y ∪ z)

4. absorption : x ∩ (x ∪ y) = x = x ∪ (x ∩ y)

5. unique elements bottom ⊥, top T:
x ∩ ⊥ = ⊥ and x ∪ T = T

In most DFA problems only a semilattice is used with L, ∩, ⊥ or L, ∪, T

Partial order defined by meet, defined by join:
x ⊆ y: x ∩ y = x x ⊇ y: x ∪ y = x
(transitive, antisymmetric, reflexive)

©
 2

00
6

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Some DFA Lattices
C-2.24b

Bool

∩ = and
∪ = or

T = true

⊥ = false

Bit-Vector BVn=3

∩ = bitwise and
∪ = bitwise or

111

110 101 011

100 010 001

000
Variable usage

{defined, used}

{defined} {used}

{}

ICP Integer Constant Propagation Lattice
T

⊥

0 1-1false true... ...

n ∩ ⊥ = ⊥ n ∩ n = n n ∩ m = ⊥ if n ≠ m
n ∪ T = T n ∪ n = n n ∪ m = T if n ≠ m

Range Lattice: [lo, hi] ∈ (Z ∪ {-∞, ∞})2

⊥ = [] empty range, T = [-∞, ∞],
x ⊆ y : x is contained in y

∩: [l1, h1] ∩ [l2, h2] = x
let l = max (l1, l2),
h = min (h1, h2),
x = if h < l then ⊥ else [l, h]

∪: [l1, h1] ∪ [l2, h2] =
[min(l1, l2), max(h1, h2)]

12

3 4

5

Semilattice of types

∪: x ∪ y = smallest
common supertype

Object

of x and y

A B

C D
E F

6

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Monotone Functions Over Lattices
C-2.24c

The effects of program constructs on DFA information are described by
functions over a suitable lattice,

e. g. the function for basic block B3 on C-2.22:

f3(<x1 x2 x3 x4 x5 x6 x7 x8>) = <x1 x2 0 x4 1 x6 0 x8> ∈ BV8

Gen-Kill pair encoded as function

f: L → L is a monotone function over the lattice L if
∀ x, y ∈ L: x ⊆ y ⇒ f(x) ⊆ f(y)

Finite height of the lattice and monotonicity of the functions
guarantee termination of the algorithms.

Fixed points z of the function f, with f(z) = z, is a solution of the set of DFA equations.

MOP: Meet over all paths solution is desired, i. e. the „best“ with respect to L

MFP: Maximum fixed point is computed by algorithms, if functions are monotone

If the functions f are additionally distributive , then MFP = MOP.
f: L → L is a distributive function over the lattice L if

∀ x, y ∈ L: f(x ∩ y) = f(x) ∩ f(y)

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Variants of DFA Algorithms

Heuristic improvement:

Goal: propagate changes in the In and Out sets as fast as possible.
Technique: visit CFG nodes in topological order in the outer for-loop {*}.
Then the number of iterations of the outer repeat-loop is only determined
by back edges in the CFG

Algorithm for backward problems:

Exchange In and Out sets symmetrically in the algorithm of C-2.22b.
The nodes should be visited in topological order as if the directions of edges were flipped.

Hierarchical algorithms, interval analysis:

Regions of the CFG are considered nodes of a CFG on a higher level.
That abstraction is recursively applied until a single root node is reached.
The Gen, Kill sets are combined in upward direction;
the In, Out sets are refined downward.

C-2.26

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Program Analysis: Call Graph (context-insensitive)
C-2.27

Nodes : defined functions

Arc g -> h: function g contains a call h(),
i. e. a call g() may cause the execution of a call h()

a

b c

d e

f

void a () {...b()...c()...f()...}

void b () {...d()...c()...}

void c() {...e()...}

void d() {...}

void e() {...v++;...b()...}

void f() {...d()...}

Analysis of structure :
b, c, e are recursive;
a, d, f are non-recursive

Propagation of properties :
assume a call e() may modify a global variable v
then calls a(), b(), c() may indirectly cause modification of v

v = f(); cnt = 0; while(...){...b(); cnt += v;}

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Program Analysis: Call Graph (context-sensitive)
C-2.27a

Nodes : defined functions and calls (bipartite)

Arc g -> h: function g contains a call h(),i.e a call g() may cause the
execution of a call h()
or call g() leads to function g

a

c
d

e

f
b()

c()

f()

d() c()

e()

b()

d()

b

void a () {...b()...c()...f()...}

void b () {...d()...c()...}

void c() {...e()...}

void d() {...}

void e() {...v++;...b()...}

void f() {...d()...}

Calls of the same function in different contexts are distinguished by
different nodes , e.g. the call of c in a and in b.

Analysis can be more precise in that aspect.

©
 2

00
6

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Calls Using Function Variables
C-2.28

Contents of function variables is assigned at run-time .

Static analysis does not know (precisely) which function is called.

Call graph has to assume that any function may be called .

void a()
{...(* h)(0.3, 27)...}

a
.
.
.

function

f
s

m
g

any

Analysis for a better approximation
of potential callees:

only those functions which

1. fit to the type of h

2. are assigned somewhere in the
program

3. can be derived from the
reaching definitions at the call

void m (int j) {...}

void g (float x, int i) {...}

...k = m;... f(g); ...

void a()
{ void (* h)(float,int) = g ;

...
if(...) h = s ;

...(* h)(0.3, 27)...
}

©
 2

00
4

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Analysis of Object-Oriented Programs
C-2.29

Aspects specific for object-oriented analysis:

1. hierarchy of classes and interfaces
specifies a complex system of subtypes

2. hierarchy of classes and interfaces
specifies inheritance and overriding relation for methods

3. dynamic method binding
for method calls v.m(...) the callee is determined at run-time
good object-oriented style relies on that feature

4. many small methods are typical object-oriented style

5. library use and reuse of modules
complete program contains many unused classes and methods

Static predictions for dynamically bound method calls
are essential for most analyses

©
 2

00
4

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Class Hierarchy Graph
C-2.30

Node : class or interface

Arc a -> b : a is subclass of b or a implements interface b

class A
method m
method p

class C extends A
method m

class B extends A
method m

class D extends B
...

class E extends C
method m

class F extends C
method p

class G extends F
method m

...

©
 2

00
2

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Object-Oriented Call Graph
C-2.31

Node : implemented method ,
identified by class name, method name: X-a

Arc X-a -> Y-b : method X-a contains a call v.b(...) that
may be bound to Y-b

class A
method m
method p

class C
method m

class B
method m

class D
...

class E
method m

class F
method p

class G
method m

...

A-m A-p

B-m C-m

E-m
F-p

G-m

Call graph for F-p containing v.m(...)

Call graph: any method m may be bound to that call in F-p
(compare to function variables)
analysis yields better approximations

©
 2

00
2

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Call Graphs Constructed by Class Hierarchy Analysis (CHA)
C-2.32

The call graph is reduced to a set of reachable methods using the
class hierarchy and the static type of the receiver expression in the call:

If a method F-p is reachable and
if it contains a dynamically bound call v.m(...) and
T is the static type of v ,

then every method m that is inherited by T or by a subtype of T
is also reachable , and arcs go from F-p to them.

class A
method m
method p

class C
method m

class B
method m

class D
...

class E
method m

class F
method p

class G
method m

...

A-m A-p

B-m C-m

E-m
F-p

G-m

Call graph for F-p containing v.m(...)
static type: F v;

eliminated

©
 2

00
4

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Refined Approximations for Call Graph Construction
C-2.33

Class Hierarchy Analysis (CHA): (see C-2.32)

Rapid Type Analysis (RTA):

As CHA, but only methods of those classes C are considered
which are instantiated (new C()) in a reachable method.

Reaching Type Analysis:

Approximations of run-time types is propagated through a graph:
nodes represent variables, arcs represent copy assignments.

Declared Type Analysis :
one node T represents all variables declared to have type T

Variable Type Analysis :
one node V represents a single variable

Points-to Analysis:

Information on object identities is
propagated through the control-flow graph

©
 2

00
2

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Results of Analysis of Dynamically Bound Calls
C-2.34

0

50

100

150

200

250

300

Methodensignatur (inkl. statischer Empf�ngertyp)

in
sg

es
am

tg
ef

u
n

d
en

e
K

an
d

id
at

en
im

p
le

m
en

ti
er

u
n

ge
n

Referenzziel-Analyse
Klassenhierarchie-Analyse

©
 2

00
2

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Modules of a Toolset for Program Analysis
C-2.35

. .

analysis module purpose category

ClassMemberVisibility examines visibility levels of declarations

visualization

MethodSizeStatistics examines length of method implementations in bytecode operations and
frequency of different bytecode operations

ExternalEntities histogram of references to program entities that reside outside a group of
classes

InheritanceBoundary histogram of lowest superclass outside a group of classes

SimpleSetterGetter recognizes simple access methods with bytecode patterns

MethodInspector decomposes the raw bytecode array of a method implementation into a list
of instruction objects auxiliary analysis

ControlFlow builds a control flow graph for method implementations

fundamental analyses

Dominator constructs the dominator tree for a control flow graph

Loop uses the dominator tree to augment the control flow graph with loop and
loop nesting information

InstrDefUse models operand accesses for each bytecode instruction

LocalDefUse builds intraprocedural def/use chains

LifeSpan analyzes lifeness of local variables and stack locations

DefUseTypeInfo infers type information for operand accesses

analysis of
incomplete
programs

Hierarchy class hierarchy analysis based on a horizontal slice of the hierarchy

PreciseCallGraph builds call graph based on inferred type information, copes with
incomplete class hierarchy

ParamEscape transitively traces propagation of actual parameters in a method call
(escape = leaves analyzed library)

ReadWriteFields transitive liveness and access analysis for instance fields accessed by a
method call

Table 0-1. Analysis plug-ins in our framework

[Michael Thies: Combining Static Analysis of Java Libraries with Dynamic Optimization, Dissertation,
Shaker Verlag, April 2001]

