© 2013 bei Prof. Dr. Uwe Kastens

2. Constructing Trees - Overview
Check the notation and the structure of the input and represent it as a tree.

Tasks:

Phases:

Interfaces .

Input
representation:

Input processing
Scanning
Symbol coding

Conversion

—
‘ Lexu:al r»
—
analy5|s |
-

Parsing
Tree construction

(Y

Syntactic }74
| analysis
o

GSSs-2.1

Source text | [Symbol sequence | | Structure tree

Customer
(addr: Address;
account: int;

)

(FieldName FieldName)
[1, 1] Ident: 12 (TypeName TypeName)
[2, 3] open
[2, 4] Ident: 13
[2, 8] colon
[2,10] Ident: 14

© 2013 bei Prof. Dr. Uwe Kastens

Eli: Specification of the Tree Construction

Symbol
specification
Concrete
syntax

Mapping
concr - abstr Synt.

~\

Abstract
syntax

Specification

N
Scanner G. @
/ GLA
Parser G. @
PGS, Cola
f I
ol 'E|
o =
L)

Generator

GSS-2.2

— Target text

Lecture Generating Software from Specifications WS 2013/14 / Slide 201

Objectives:
Understand the structuring phase

In the lecture:
= Remember the tasks of GSS-1.15.
= Explain the tasks and representations.

Lecture Generating Software from Specifications WS 2013/14 / Slide 202

Objectives:

Understand how the structuring phase is generated
In the lecture:

Explain

= Roles of the specifications,

= tasks of the generators,
= cooperation between the generators.

© 2013 bei Prof. Dr. Uwe Kastens

.] Gss-2.3 Lecture Generating Software from Specifications WS 2013/14 / Slide 203
Specifications for the Structure Generator

Objectives:
A simple example
Symbol Ident: PASCAL_IDENTIFIER
specifications FileName: C_STRING_LIT In the lecture:
C COMMENT Get an idea of the specifications
Notations of non-literal tokens -
.gla
Concrete Descriptions:(Import / Structure)*.
syntax Structure: StructureName ‘(' Fields ")".
Structure of input, F?ddS: Fi.eld*'
literal tokens Field: FieldName "' TypeName.
.con
is empty if concret and abstract syntax coincide
concr - abstr Synt
.map
RULE: Descriptions LISTOF Import|Structure
COMPUTE ...
SYMBOL FieldName COMPUTE ...
SYMBOL TypeName COMPUTE ...
Sl_tdrucmre of trees Only those symbols and productions, which need
o computations

© 2010 bei Prof. Dr. Uwe Kastens

) Gss-24 Lecture Generating Software from Specifications WS 2013/14 / Slide 204
Calendar Example: Structuring Task
Objectives:
A new example for the specification of the structuring task up to tree construction: Introduce a new example

In the lecture:

Input language: Sequence of calendar entries:
Explain the task using the examples

1.11. 20:00 "Theater"

Thu 14:15 "GSS lecture"

Weekday 12:05 "Dinner in Palmengarten"
Mon, Thu 8:00 "Dean's office"

31.12. 23:59 "Jahresende"

12/31 23:59 "End of year"

© 2012 bei Prof. Dr. Uwe Kastens

GSS-2.4a
Design of a Concrete Syntax

. Develop a set of examples, such that all aspects of the intended

language are covered.

. Develop a context-free grammar using a top-down strategy

(see PLaC-3.4aa), and
update the set of examples correspondingly.

. Apply the design rules of PLaC-3.4c - 3.4f:

- Syntactic structure should reflect semantic structure
- Syntactic restrictions versus semantic conditions

- Eliminate ambiguities

- Avoid unbounded lookahead

. Design notations of non-literal tokens.

GSS-2.5

Concrete Syntax

specifies the structure of the input by a context-free grammar:

Calendar:
Entry:

Date:

DayNum:
MonNum:

DayNames:

DayName:

GeneralPattern:

SimplePattern:

Entry+ . Notation :

Date Event. .
DayNum " MonNum . / « Sequence of productions

MonNum ‘/' DayNum /

DayNames / GeneralPattern « literal terminals between '

Integer. « EBNF constructs:

Integer. / alternative

DayName / () parentheses

DayNames ', DayName. [] option

Day. +, * repetition
SimplePattern / /I repetition with

SimplePattern Modifier.

‘Weekday' / 'Weekend'. separator

© 2013 bei Prof. Dr. Uwe Kastens

Modifier: '+' DayNames / '-' DayNames.
Event: When Description / Description. (for meaning see GPS)
When: Time / Time '-' Time.
. 1.11. 20:00 "Theater"
Example: 1, 14:15 "GSS lecture”
Weekday 12:05 "Dinner in Palmengarten”
Mon, Thu 8:00 "Dean's office"
31.12. 23:59 "Jahresende"
12/31 23:59 "End of year"

Lecture Generating Software from Specifications WS 2013/14 / Slide 204a

Objectives:
Issues of grammar design

In the lecture:
= The strategy is explained.
= Repeat the methods learned in PLaC Sect. 3.2

Lecture Generating Software from Specifications WS 2013/14 / Slide 205

Objectives:
Learn the CFG notation

In the lecture:

= Design of productions,
= notation of productions,
= relate to example input.

© 2012 bei Prof. Dr. Uwe Kastens

GSS-2.6
Literal and Non-Literal Terminals
Calendar: Entry+ .
Definition of notations of Entry: Date Event.
. literal terminal - | Date: DayNum' .'MonNum' .'/
_teha te als (unnamed) MonNum '/ * DayNum /
In the concrete syntax DayNames / GeneralPattern.
« non-literal terminals DayNum: Integer
(named)' MonNum: Integer
in an additional DayNames: DayName /
specification for the , DayNames " , * DayName.
DayName: Day.
scanner generator
GeneralPattern: SimplePattern /
SimplePattern Modifier.
SimplePattern: ' Weekday' /' Weekend'.
Modifier: ! +'DayNames /' - ' DayNames.
Event: When Description / Description
When: Time / Time ' -' Time.
GSS-2.7

Specification of Non-Literal Terminals

The generator GLA generates a scanner from
« notations of literal terminals, extracted from the

concrete syntax by Eli

« specifications of non-literal terminals
in files of type.gla

Form of specifications:

Name:
Day:

Time:

$ regular expression
$ Mon|Tue|Wed|Thu|Fri|Sat|Son
$(([0-9]]1[0-9]|2[0-3]):[0-5][0-9]) [mkTime]

[Coding function]

[mkDay]

© 2013 bei Prof. Dr. Uwe Kastens

Canned specifications:

Description: C_STRING_LIT
Integer: PASCAL_INTEGER

Lecture Generating Software from Specifications WS 2013/14 / Slide 206

Objectives:
Classification of terminals

In the lecture:
Notation of terminals specified in different ways

Lecture Generating Software from Specifications WS 2013/14 / Slide 207

Objectives:
Understand scanner specifications

In the lecture:

Explain

= Notation of regular expressions,

= Task and interface of coding function,
« canned specifications.

© 2013 bei Prof. Dr. Uwe Kastens

© 2013 bei Prof. Dr. Uwe Kastens

GSSs-2.8
Scanner Specification: Regular Expressions
Notation accepted character sequences
c the character c; except characters that have special meaning, see \c
\c space, tab, newline, \".[]"()|?+*{}/$<
"s" the character sequence s
. any single character except newline
[xyz] exactly one character of the set {x, y, z}
["xyz] exactly one character that is not in the set {x, y, z}
[c-d] exactly one character, the ASCII code of which lies between c and d (incl.)
(e) character sequence as specified by e
ef character sequences as specified by e followed by f
e|f character sequence as specified by e or by f
e? character sequence as specified by e or empty sequence
e+ one or more character sequences as specified by e
e* character sequence as specified by e+ or empty
e {m,n} at least m, and at most n character sequences as specified by e
e and f are regular expressions as defined here.
Each regular expression accepts the longest character sequence
that obeys its definition.
Solving ambiguities 1. the longer accepted sequence
2. equal length: the earlier stated rule
GSS-2.9

Scanner Specification: Programmed Scanner

There are situations where the to be accepted character sequences are very difficult to
define by a regular expression. A function may be implemented to accept such sequences.

The begin of the squence is specified by a regular expression, followed by the name of the
function, that will accept the remainder. For example, line comments of Ada:

$-- (auxEOL)

Parameters of the function: a pointer to the first character of the so far accepted
sequence, and its length.
Function result: a pointer to the charater immediately following the complete sequence:

char *Name(char *start, int length)
Some of the available programmed scanners:
auxEOL all characters up to and including the next newline
auxCString a C string literal after the opening "

auxM3Comment a Modula 3 comment after the opening (*, up to and including the
closing *); may contain nested comments paranthesized by (* and *)

Ctext C compound statements after the opening {, up to the closing };
may contain nested statements parenthesized by { and }

Lecture Generating Software from Specifications WS 2013/14 / Slide 208

Objectives:
Notation of regular expressions

In the lecture:
Explain how to apply the definintions

Lecture Generating Software from Specifications WS 2013/14 / Slide 209

Objectives:
Recognize useful applications

In the lecture:
= Explain the principle and examples,
= refer to the list of available functions in the documentation.

© 2013 bei Prof. Dr. Uwe Kastens

© 2013 bei Prof. Dr. Uwe Kastens

GSS-2.10
Scanner Specification: Coding Functions
The accepted character sequence (start , length) is passed to a coding function.

It computes the code of the accepted token (intrinsic)
i.e. an integral number, representing the identity of the token.

For that purpose the function may store and/or convert the character sequence,
if necessary.

All coding functions have the same signature :
void Name (char *start, int length, int *class, int *intrinsic)

The token class (terminal code, parameter class) may be changed by the function call,
if necessary, e.g. to distinguish keywords from identifiers.

Available coding functions:

mkidn enter character sequence into a hash table and encode it bijectively
mkstr store character sequence, return a new code

c_mkstr C string literal, converted into its value, stored, and given a new code
mkint convert a sequences of digits into an integral value and return it value

¢_mkint convert a literal for an integral number in C and return its value

GSS-2.11

Scanner Specification: Canned Specifications

Complete canned specifications (regular expression, a programmed scanner,
and a coding function) can be instantiated by their names:
Identifier: C_IDENTIFIER

For many tokens of several programming languages canned specifications are available
(complete list of descriptions in the documentation):

C_IDENTIFIER, C_INTEGER, C_INT_DENOTATION, C_FLOAT,
C_STRING_LIT, C_CHAR_CONSTANT, C_COMMENT

PASCAL_IDENTIFIER, PASCAL_INTEGER, PASCAL_REAL,
PASCAL_STRING, PASCAL_COMMENT

MODULA2_INTEGER, MODULA2_CHARINT, MODULA2_LITERALDQ,
MODULAZ_LITERALSQ, MODULA2_COMMENT

MODULA3_COMMENT, ADA_IDENTIFIER, ADA_COMMENT, AWK_COMMENT

SPACES, TAB, NEW_LINE
are only used, if some token begins with one of these characters,
but, if these characters still separate tokens.

The used coding functions may be overridden.

Lecture Generating Software from Specifications WS 2013/14 / Slide 210

Objectives:
Recognize the principle and useful applications

In the lecture:
= Explain the interface and examples
= refer to the list of available functions in the documentation

Lecture Generating Software from Specifications WS 2013/14 / Slide 211

Objectives:
Recognize the potential for reuse

In the lecture:
= Explain some of the specifications,
= refer to the documentation

© 2013 bei Prof. Dr. Uwe Kastens

© 2013 bei Prof. Dr. Uwe Kastens

GSS-2.12
Abstract Syntax

specifies the structure trees using a context-free grammar:
RULE pCalendar: Calendar LISTOF Entry END;
RULE pEntry: Entry ::= Date Event END;
RULE pDateNum: Date ::= DayNum MonNum END;
RULE pDatePattern: Date ::= Pattern END;
RULE pDateDays: Date ::= DayNames END;
RULE pDayNum: DayNum ::= Integer END;
RULE pMonth: MonNum ::= Integer END;
RULE pDayNames: DayNames LISTOF DayName END;
RULE pDay: DayName ::= Day END;
RULE pWeekday: Pattern ::= 'Weekday"' END;
RULE pWeekend: Pattern ::= 'Weekend' END;
RULE pModifier: Pattern ::= Pattern Modifier END;
RULE pPlus: Modifier ::= '+' DayNames END;
RULE pMinus: Modifier ::='-' DayNames END;
RULE pTimedEvent: Event ::= When Description END;
RULE pUntimedEvent: Event ::= Description END;
RULE pTime: When ::= Time END;
RULE pTimeRange: When ::= Time '-' Time END;

Notation :

« Language Lido for computations in structure trees

- optionally named productions,

« no EBNF, except LISTOF (possibly empty sequence)

GSS-2.13

Example for a Structure Tree
« Production names are node types

« Values of terminals at leaves unparser generator

pEntry(pDateNum(pDayNum(1),pMonth(11)),
pTimedEvent(pTime(1200),"Theater")),

pEntry(pDateDays(pDay(4)),pTimedEvent(pTime(855),"GSS lecture")),

pEntry(pDatePattern(pWeekday()),
pTimedEvent(pTime(725),"Dinner in Palmengarten")),

pEntry(pDateDays(pDay(1),pDay(4)),pUntimedEvent("Dean's office")),

pEntry(pDateNum(pDayNum(31),pMonth(12)),
pTimedEvent(pTime(1439),"Jahresende")),

pEntry(pDateNum(pDayNum(31),pMonth(12)),
pTimedEvent(pTime(1439),"End of year"))

Tree output produced by Eli’s

Lecture Generating Software from Specifications WS 2013/14 / Slide 212

Objectives:
Learn the notation for abstract syntax

In the lecture:
= Design of productions,
= notation of productions

Lecture Generating Software from Specifications WS 2013/14 / Slide 213

Objectives:
Read tree in notation of named parenthesis

In the lecture:
= Relate to example input,
« relate to abstract syntax.

© 2013 bei Prof. Dr. Uwe Kastens

© 2013 bei Prof. Dr. Uwe Kastens

GSSs-2.14
Graphic Structure Tree
« Names of productions as node types Output produced by
« Values of terminals at leaves Eli's unparser g_enerator,
Tree structure given by
pCaIe‘ndar
pEntry
pDateNum p/‘l’imedEvent
pDayNum pMonth pTime Description
"Theater"
Integer Integer
! 1 Time
1200
GSS-2.15
Symbol Mapping: Concrete - Abstract Syntax
concrete syntax:
SimplePattern 'Weekday' / 'Weekend'.
) simplify to create
GeneralPattern S!mpIePattern / 3 abstract syntax:
SimplePattern Modifier.
Set of nonterminals of the mapping:
concrete syntax mapped to MAPSYM
n= GeneralPattern
one nonterminal of the SimplePattern
abstract syntax:
RULE pWeekday: = 'Weekday" END;
RULE pWeekend: = 'Weekend' END;
RULE pModifier: = Modifier END;

Lecture Generating Software from Specifications WS 2013/14 / Slide 214

Objectives:
Understand the tree representation

In the lecture:
Understand the relation between the abstract syntax (tree grammar) and the textual representation

Lecture Generating Software from Specifications WS 2013/14 / Slide 215

Objectives:
Simplification of the structure tree

In the lecture:
= Explain symbol mapping,
= cf. symbol mapping for expression grammars in (GPS-2-9)

© 2013 bei Prof. Dr. Uwe Kastens

GSS-2.16
Rule Mapping
Concrete Syntax:
Date: S MonNum."/
MonNum/'
Different
productions of the
concrete syntax
Mapping: e
MAPRULE are unified in the
Date: MonNunl.' < $2 >. abstract syntax
Date: MonNumi/' < $2 >,
Abstract syntax:
RULE pDateNum: Date ::= MonNum END;

© 2013 bei Prof. Dr. Uwe Kastens

GSS-2.17

Generate Tree Output

Produce structure trees with node types and values at terminal leaves:

pEntry(pDateNum(pDayNum(1),pMonth(11)),

pTimedEvent(pTime(1200),"Theater")),

Pattern constructor functions are called in tree contexts to produce output.

Specifications are created automatically by Eli’'s unparser generator :

Unparser is generated from
the specification:

Calendar.fw
Calendar.fw:tree

Output of non-literal terminals:

Idem_Day: $int
Idem_Time: $int
Idem_Integer: $ int

Output at grammar root:

SYMBOL ROOTCLASS COMPUTE

BP_Out(THIS.IdemPtg);
END;

Use predefined PTG patterns:
$/Output/PtgCommon.fw

Lecture Generating Software from Specifications WS 2013/14 / Slide 216

Objectives:
Tree simplification

In the lecture:

= Explain rule mapping,

= cf. simplification of expression grammars (GPS-2-9),

= abstract sytax can be genrated from concrete syntax and mapping specification,

= concrete syntax can be generated from abstract syntax and mapping specification,
= Abstract and concrete syntax can be matched, yielding the mapping specification.
= The grammars can be matched piecewise.

Lecture Generating Software from Specifications WS 2013/14 / Slide 217

Objectives:
Learn to use the unparser generator

In the lecture:

Explain the roles of the specification

= Unparser generator generates Eli specifications (ptg and lido)!

= Individual specifications needed for the root and the leaves only.

= Another variant of the unparser generator can reproduce the input text: instead of ":tree" derive ":idem". It may be used
for language extensions.

