
©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
2. Constructing Trees - Overview

GSS-2.1

Lexical
analysis

Source text Symbol sequence Structure tree

Input processing
Scanning

Conversion
Symbol coding Parsing

Tree construction

Syntactic
analysis

[1, 1] Ident: 12
[2, 3] open
[2, 4] Ident: 13
[2, 8] colon
[2,10] Ident: 14

Customer
(addr: Address;
 account: int;
)

Fields

Field Field

FieldName FieldName

TypeName TypeName

Tasks:

Phases:

Interfaces :

Input
representation:

Check the notation and the structure of the input and represent it as a tree.

Lecture Generating Software from Specifications WS 2013/14 / Slide 201

Objectives:

Understand the structuring phase

In the lecture:

• Remember the tasks of GSS-1.15.

• Explain the tasks and representations.

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Eli: Specification of the Tree Construction
GSS-2.2

Specification Generator Target text

Scanner G.
Symbol
specification GLA Scanner

Attr.eval.-G.
Abstract
syntax Liga Attrib.evaluator

Map tool
Mapping
concr - abstr Synt. Tree construction

Parser G.
Concrete
syntax PGS, Cola Parser

Lecture Generating Software from Specifications WS 2013/14 / Slide 202

Objectives:

Understand how the structuring phase is generated

In the lecture:

Explain

• Roles of the specifications,

• tasks of the generators,

• cooperation between the generators.

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Specifications for the Structure Generator

GSS-2.3

Symbol
specifications

Concrete
syntax

Mapping
concr - abstr Synt

Abstract
syntax

Notations of non-literal tokens
.gla

Structure of input,
literal tokens
.con

.map

Structure of trees
.lido

Ident: PASCAL_IDENTIFIER
FileName: C_STRING_LIT

C_COMMENT

Descriptions:(Import / Structure)*.
Structure: StructureName '(' Fields ')'.
Fields: Field*.
Field: FieldName ':' TypeName.
...

is empty if concret and abstract syntax coincide

RULE: Descriptions LISTOF Import|Structure
COMPUTE ...

SYMBOL FieldName COMPUTE ...
SYMBOL TypeName COMPUTE ...

Only those symbols and productions, which need
computations

Lecture Generating Software from Specifications WS 2013/14 / Slide 203

Objectives:

A simple example

In the lecture:

Get an idea of the specifications

©
 2

01
0

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Calendar Example: Structuring Task
GSS-2.4

A new example for the specification of the structuring task up to tree construction:

Input language: Sequence of calendar entries:

1.11. 20:00 "Theater"

Thu 14:15 "GSS lecture"

Weekday 12:05 "Dinner in Palmengarten"

Mon, Thu 8:00 "Dean's office"

31.12. 23:59 "Jahresende"

12/31 23:59 "End of year"

Lecture Generating Software from Specifications WS 2013/14 / Slide 204

Objectives:

Introduce a new example

In the lecture:

Explain the task using the examples

©
 2

01
2

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Design of a Concrete Syntax

GSS-2.4a

1. Develop a set of examples, such that all aspects of the intended
language are covered.

2. Develop a context-free grammar using a top-down strategy
(see PLaC-3.4aa), and
update the set of examples correspondingly.

3. Apply the design rules of PLaC-3.4c - 3.4f:
- Syntactic structure should reflect semantic structure
- Syntactic restrictions versus semantic conditions
- Eliminate ambiguities
- Avoid unbounded lookahead

4. Design notations of non-literal tokens.

Lecture Generating Software from Specifications WS 2013/14 / Slide 204a

Objectives:

Issues of grammar design

In the lecture:

• The strategy is explained.

• Repeat the methods learned in PLaC Sect. 3.2

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Concrete Syntax
GSS-2.5

specifies the structure of the input by a context-free grammar:

Calendar: Entry+ .
Entry: Date Event.

Date: DayNum '.' MonNum '.' /
MonNum '/' DayNum /
DayNames / GeneralPattern.

DayNum: Integer.
MonNum: Integer.

DayNames: DayName /
DayNames ',' DayName.

DayName: Day.

GeneralPattern: SimplePattern /
SimplePattern Modifier.

SimplePattern: 'Weekday' / 'Weekend'.
Modifier: '+' DayNames / '-' DayNames.

Event: When Description / Description.

When: Time / Time '-' Time.

1.11. 20:00 "Theater"
Thu 14:15 "GSS lecture"
Weekday 12:05 "Dinner in Palmengarten"
Mon, Thu 8:00 "Dean's office"
31.12. 23:59 "Jahresende"
12/31 23:59 "End of year"

Notation :

• Sequence of productions

• literal terminals between '

• EBNF constructs:
/ alternative
() parentheses
[] option
+, * repetition
// repetition with

separator

(for meaning see GPS)

Example:

Lecture Generating Software from Specifications WS 2013/14 / Slide 205

Objectives:

Learn the CFG notation

In the lecture:

• Design of productions,

• notation of productions,

• relate to example input.

©
 2

01
2

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Literal and Non-Literal Terminals

GSS-2.6

Definition of notations of

• literal terminals (unnamed):
in the concrete syntax

• non-literal terminals
(named):
in an additional
specification for the
scanner generator

Calendar: Entry+ .
Entry: Date Event.

Date: DayNum ' . ' MonNum ' . ' /
MonNum ' / ' DayNum /
DayNames / GeneralPattern.

DayNum: Integer .
MonNum: Integer .

DayNames: DayName /
DayNames ' , ' DayName.

DayName: Day.

GeneralPattern: SimplePattern /
SimplePattern Modifier.

SimplePattern: ' Weekday' / ' Weekend'.
Modifier: ' +' DayNames / ' - ' DayNames.

Event: When Description / Description .

When: Time / Time ' - ' Time .

Lecture Generating Software from Specifications WS 2013/14 / Slide 206

Objectives:

Classification of terminals

In the lecture:

Notation of terminals specified in different ways

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Specification of Non-Literal Terminals
GSS-2.7

The generator GLA generates a scanner from

• notations of literal terminals, extracted from the
concrete syntax by Eli

• specifications of non-literal terminals
in files of type.gla

Form of specifications:

Name: $ regular expression [Coding function]

Day: $ Mon|Tue|Wed|Thu|Fri|Sat|Son [mkDay]

Time: $(([0-9]|1[0-9]|2[0-3]):[0-5][0-9]) [mkTime]

Canned specifications:

Description: C_STRING_LIT
Integer: PASCAL_INTEGER

Lecture Generating Software from Specifications WS 2013/14 / Slide 207

Objectives:

Understand scanner specifications

In the lecture:

Explain

• Notation of regular expressions,

• Task and interface of coding function,

• canned specifications.

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Scanner Specification: Regular Expressions

Notation accepted character sequences

c the character c; except characters that have special meaning, see \c
\c space, tab, newline, \".[]^()|?+*{}/$<
"s" the character sequence s
. any single character except newline
[xyz] exactly one character of the set {x, y, z}
[^xyz] exactly one character that is not in the set {x, y, z}
[c-d] exactly one character, the ASCII code of which lies between c and d (incl.)
(e) character sequence as specified by e
ef character sequences as specified by e followed by f
e | f character sequence as specified by e or by f
e? character sequence as specified by e or empty sequence
e+ one or more character sequences as specified by e
e* character sequence as specified by e+ or empty
e {m,n} at least m, and at most n character sequences as specified by e

e and f are regular expressions as defined here.

Each regular expression accepts the longest character sequence ,
that obeys its definition.

Solving ambiguities : 1. the longer accepted sequence
2. equal length: the earlier stated rule

GSS-2.8 Lecture Generating Software from Specifications WS 2013/14 / Slide 208

Objectives:

Notation of regular expressions

In the lecture:

Explain how to apply the definintions

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Scanner Specification: Programmed Scanner

There are situations where the to be accepted character sequences are very difficult to
define by a regular expression. A function may be implemented to accept such sequences.

The begin of the squence is specified by a regular expression, followed by the name of the
function, that will accept the remainder. For example, line comments of Ada:

$-- (auxEOL)

Parameters of the function: a pointer to the first character of the so far accepted
sequence, and its length.
Function result: a pointer to the charater immediately following the complete sequence:

char *Name(char *start, int length)

Some of the available programmed scanners:

auxEOL all characters up to and including the next newline

auxCString a C string literal after the opening "

auxM3Comment a Modula 3 comment after the opening (*, up to and including the
closing *); may contain nested comments paranthesized by (* and *)

Ctext C compound statements after the opening {, up to the closing };
may contain nested statements parenthesized by { and }

GSS-2.9 Lecture Generating Software from Specifications WS 2013/14 / Slide 209

Objectives:

Recognize useful applications

In the lecture:

• Explain the principle and examples,

• refer to the list of available functions in the documentation.

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Scanner Specification: Coding Functions

The accepted character sequence (start , length) is passed to a coding function.

It computes the code of the accepted token (intrinsic)
i.e. an integral number, representing the identity of the token.

For that purpose the function may store and/or convert the character sequence,
if necessary.

All coding functions have the same signature :

void Name (char *start, int length, int *class, int *intrinsic)

The token class (terminal code, parameter class) may be changed by the function call,
if necessary, e.g. to distinguish keywords from identifiers.

Available coding functions:

mkidn enter character sequence into a hash table and encode it bijectively

mkstr store character sequence, return a new code

c_mkstr C string literal, converted into its value, stored, and given a new code

mkint convert a sequences of digits into an integral value and return it value

c_mkint convert a literal for an integral number in C and return its value

GSS-2.10 Lecture Generating Software from Specifications WS 2013/14 / Slide 210

Objectives:

Recognize the principle and useful applications

In the lecture:

• Explain the interface and examples

• refer to the list of available functions in the documentation

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Scanner Specification: Canned Specifications

Complete canned specifications (regular expression, a programmed scanner,
and a coding function) can be instantiated by their names :

Identifier: C_IDENTIFIER

For many tokens of several programming languages canned specifications are available
(complete list of descriptions in the documentation):

C_IDENTIFIER, C_INTEGER, C_INT_DENOTATION, C_FLOAT,
C_STRING_LIT, C_CHAR_CONSTANT, C_COMMENT

PASCAL_IDENTIFIER, PASCAL_INTEGER, PASCAL_REAL,
PASCAL_STRING, PASCAL_COMMENT

MODULA2_INTEGER, MODULA2_CHARINT, MODULA2_LITERALDQ,
MODULA2_LITERALSQ, MODULA2_COMMENT

MODULA3_COMMENT, ADA_IDENTIFIER, ADA_COMMENT, AWK_COMMENT

SPACES, TAB, NEW_LINE
are only used, if some token begins with one of these characters,
but, if these characters still separate tokens.

The used coding functions may be overridden.

GSS-2.11 Lecture Generating Software from Specifications WS 2013/14 / Slide 211

Objectives:

Recognize the potential for reuse

In the lecture:

• Explain some of the specifications,

• refer to the documentation

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Abstract Syntax

GSS-2.12

specifies the structure trees using a context-free grammar:

RULE pCalendar: Calendar LISTOF Entry END;
RULE pEntry: Entry ::= Date Event END;
RULE pDateNum: Date ::= DayNum MonNum END;
RULE pDatePattern: Date ::= Pattern END;
RULE pDateDays: Date ::= DayNames END;
RULE pDayNum: DayNum ::= Integer END;
RULE pMonth: MonNum ::= Integer END;
RULE pDayNames: DayNames LISTOF DayName END;
RULE pDay: DayName ::= Day END;
RULE pWeekday: Pattern ::= 'Weekday' END;
RULE pWeekend: Pattern ::= 'Weekend' END;
RULE pModifier: Pattern ::= Pattern Modifier END;
RULE pPlus: Modifier ::= '+' DayNames END;
RULE pMinus: Modifier ::= '-' DayNames END;
RULE pTimedEvent: Event ::= When Description END;
RULE pUntimedEvent: Event ::= Description END;
RULE pTime: When ::= Time END;
RULE pTimeRange: When ::= Time '-' Time END;

Notation :
• Language Lido for computations in structure trees
• optionally named productions,
• no EBNF, except LISTOF (possibly empty sequence)

Lecture Generating Software from Specifications WS 2013/14 / Slide 212

Objectives:

Learn the notation for abstract syntax

In the lecture:

• Design of productions,

• notation of productions

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Example for a Structure Tree
GSS-2.13

pEntry(pDateNum(pDayNum(1),pMonth(11)),
pTimedEvent(pTime(1200),"Theater")),

pEntry(pDateDays(pDay(4)),pTimedEvent(pTime(855),"GSS lecture")),

pEntry(pDatePattern(pWeekday()),
pTimedEvent(pTime(725),"Dinner in Palmengarten")),

pEntry(pDateDays(pDay(1),pDay(4)),pUntimedEvent("Dean's office")),

pEntry(pDateNum(pDayNum(31),pMonth(12)),
pTimedEvent(pTime(1439),"Jahresende")),

pEntry(pDateNum(pDayNum(31),pMonth(12)),
pTimedEvent(pTime(1439),"End of year"))

• Production names are node types

• Values of terminals at leaves

Tree output produced by Eli’s
unparser generator

Lecture Generating Software from Specifications WS 2013/14 / Slide 213

Objectives:

Read tree in notation of named parenthesis

In the lecture:

• Relate to example input,

• relate to abstract syntax.

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Graphic Structure Tree

GSS-2.14

pEntry

pDateNum

pDayNum

1

pMonth

11

pTime

1200

"Theater"

pTimedEvent

Time

IntegerInteger

(

((

(
(

)

)

)

)

,

,

)

pCalendar

()

Description

()

• Names of productions as node types

• Values of terminals at leaves

Output produced by
Eli‘s unparser generator,
Tree structure given by parentheses

Lecture Generating Software from Specifications WS 2013/14 / Slide 214

Objectives:

Understand the tree representation

In the lecture:

Understand the relation between the abstract syntax (tree grammar) and the textual representation

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Symbol Mapping: Concrete - Abstract Syntax
GSS-2.15

SimplePattern : 'Weekday' / 'Weekend'.

GeneralPattern : SimplePattern /
SimplePattern Modifier.

RULE pWeekday: Pattern ::= 'Weekday' END;
RULE pWeekend: Pattern ::= 'Weekend' END;
RULE pModifier: Pattern ::= Pattern Modifier END;

mapping:

abstract syntax:

concrete syntax:

MAPSYM
Pattern ::= GeneralPattern

SimplePattern .

Set of nonterminals of the
concrete syntax mapped to

one nonterminal of the
abstract syntax

simplify to create
abstract syntax:

Lecture Generating Software from Specifications WS 2013/14 / Slide 215

Objectives:

Simplification of the structure tree

In the lecture:

• Explain symbol mapping,

• cf. symbol mapping for expression grammars in (GPS-2-9)

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Rule Mapping

GSS-2.16

Date: DayNum '.' MonNum '.' /
MonNum '/' DayNum .

RULE pDateNum: Date ::= DayNum MonNum END;

Mapping:

MAPRULE
Date: DayNum '.' MonNum '.' < $1 $2 >.
Date: MonNum '/' DayNum < $2 $1 >.

Concrete Syntax:

Abstract syntax:

Different
productions of the
concrete syntax

are unified in the
abstract syntax

Lecture Generating Software from Specifications WS 2013/14 / Slide 216

Objectives:

Tree simplification

In the lecture:

• Explain rule mapping,

• cf. simplification of expression grammars (GPS-2-9),

• abstract sytax can be genrated from concrete syntax and mapping specification,

• concrete syntax can be generated from abstract syntax and mapping specification,

• Abstract and concrete syntax can be matched, yielding the mapping specification.

• The grammars can be matched piecewise.

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Generate Tree Output
GSS-2.17

pEntry(pDateNum(pDayNum(1),pMonth(11)),
pTimedEvent(pTime(1200),"Theater")),

Produce structure trees with node types and values at terminal leaves:

Pattern constructor functions are called in tree contexts to produce output.

Specifications are created automatically by Eli’s unparser generator :

Unparser is generated from
the specification:

Calendar.fw
Calendar.fw:tree

Output of non-literal terminals:

Idem_Day: $ int
Idem_Time: $ int
Idem_Integer: $ int

Use predefined PTG patterns:

$/Output/PtgCommon.fw

Output at grammar root:

SYMBOL ROOTCLASS COMPUTE
BP_Out(THIS.IdemPtg);

END;

Lecture Generating Software from Specifications WS 2013/14 / Slide 217

Objectives:

Learn to use the unparser generator

In the lecture:

Explain the roles of the specification

• Unparser generator generates Eli specifications (ptg and lido)!

• Individual specifications needed for the root and the leaves only.

• Another variant of the unparser generator can reproduce the input text: instead of ":tree" derive ":idem". It may be used
for language extensions.

