
©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
8. An Integrated Approach: Structure Generator

Task Description

GSS-8.1

The structure generator takes decriptions of structures with typed fields as
input, and generates an implementation by a class in C++ for each structure.
(see slides GSS 1.8 to 1.10)

1. An input file describes several structures with its components.

2. Each generated class has an initializing constructor, and a data attribute, a
set- and a get-method for each field.

3. The type of a field may be
predefined, a structure defined in the processed file, or an imported type.

4. The generator is intended to support software development.

5. Generated classes have to be sufficiently readable, s.th. they may be
adapted manually.

6. The generator is to be extensible, e.g. reading and writing of objects.

7. The description language shall allow, that the fields of a structure can be
accumulated from several descriptions of one structure.

Lecture Generating Software from Specifications WS 2013/14 / Slide 801

Objectives:

Agree upon the task

In the lecture:

The items are explained.

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Example for the Output of the Structure Generator
GSS-8.2

#include " util.h "

typedef class Customer _Cl *Customer;
typedef class Address _Cl *Address;

class Customer _Cl {
private:

Address addr _fld;
int account _fld;

public:
Customer_Cl (Address addr , int account)

{ addr _fld= addr ; account _fld= account ; }
void set_ addr (Address addr)

{ addr _fld= addr ;}
Address get_ addr ()

{return addr _fld;}
void set_ account (int account)

{ account _fld= account ;}
int get_ account ()

{return account _fld;}
};

class Address _Cl {
...

Import of externally
defined strucures:

Forward references:

Class declaration:

Fields:

Initializing constructor:

set- and get-methods
for fields:

Further class declarations:

Lecture Generating Software from Specifications WS 2013/14 / Slide 802

Objectives:

Describe the generated results

In the lecture:

The items are explained.

©
 2

01
0

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Variants of Input Form

GSS-8.3

Customer(addr: Address;
account: int;

)
Address (name: String;

zip: int;
city: String;

)
import String from "util.h"

Address (zip: int;
phone: int;

)

Customer.addr: Address;
Address.name: String;
Address.zip: int;
import String from "util.h"
Customer.account: int;

Address.zip: int;
Address.phone: int;

closed form:

sequence of struct descriptions,
each consists of a
sequence of field descriptions

several descriptions for the same struct
accumulate the field descriptions

open form:

sequence of qualified field descriptions

several descriptions for the same struct
accumulate the field descriptions

Lecture Generating Software from Specifications WS 2013/14 / Slide 803

Objectives:

Discuss alternative input variants early

In the lecture:

The items are explained.

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Task Decomposition for the Structure Generator
GSS-1.10 / 8.4

S
tr

uc
tu

rin
g

Tr
an

sl
at

io
n

Syntactic analysis

Transformation

Semantic analysis

Recognize the symbols of the description

Store and encode identifiers

Recognize the structure of the description

Represent the structure by a tree

Bind names to structures and fields

Store properties and check them

Generate class declarations with

constructors and access methods

Lexical analysis

Customer (addr: Address;
account: int;)

Address (name: String;
zip: int;
city: String;)

import String from "util.h"

Lecture Generating Software from Specifications WS 2013/14 / Slide 804

Objectives:

Overview over subtasks

In the lecture:

The items are explained.

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Task Decomposition Determines the Architecture of the Generator

GSS-1.12 / 8.5

Lexical
analysis

Trans-
formation

Source text Symbol sequence Structure tree attr. Structure tree Target text

Input processing
Scanning

Conversion
Symbol coding Parsing

Tree construction

Name analysis

Property analysis
Definition table

Text generation

Semantic
analysis

Syntactic
analysis

[1, 1] Ident: 12
[2, 3] open
[2, 4] Ident: 13
[2, 8] colon
[2,10] Ident: 14

Customer
(addr: Address;
 account: int;
)

Fields

Field Field

FieldName FieldName

TypeName TypeName

Fields

Field Field

FieldName FieldName

TypeName TypeName

isField isFiel d

class Customer_Cl
{ private:

Address addr_fld;
int account_fld;

}

Attribute computation in the tree

Specialized tools solve specific sub-tasks for creating of the product:

Lecture Generating Software from Specifications WS 2013/14 / Slide 805

Objectives:

Structure of the generator

In the lecture:

The items are explained.

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Concrete Syntax
GSS-8.6

Descriptions: (Import / Structure)*.

Import: 'import' ImportNames 'from' FileName.

ImportNames: ImportName // ','.

Structure: StructureName '(' Fields ')'.

Fields: Field*.

Field: FieldName ':' TypeName ';'.

Different nonterminals for
identifiers in different roles:,

StructureName: Ident.

ImportName: Ident.

FieldName: Ident.

TypeName: Ident.

Ident: PASCAL_IDENTIFIER

FileName: C_STRING_LIT

 C_COMMENT

Token specification:

Straight-forward natural description of language constructs:

Lecture Generating Software from Specifications WS 2013/14 / Slide 806

Objectives:

Straight-forward specification

In the lecture:

The items are explained.

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Abstract Syntax

GSS-5.8 / 8.7

Concrete syntax rewritten 1:1, EBNF sequences substituted by LIDO LISTOF:

RULE: Descriptions LISTOF Import | Structure END;

RULE: Import ::= 'import' ImportNames 'from' FileName END;

RULE: ImportNames LISTOF ImportName END;

RULE: Structure ::= StructureName '(' Fields ')' END;

RULE: Fields LISTOF Field END;

RULE: Field ::= FieldName ':' TypeName ';' END;

RULE: StructureName ::= Ident END;

RULE: ImportName ::= Ident END;

RULE: FieldName ::= Ident END;

RULE: TypeName ::= Ident END;

Lecture Generating Software from Specifications WS 2013/14 / Slide 807

Objectives:

Concrete syntax rewitten

In the lecture:

The items are explained.

©
 2

00
7

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Name Analysis
GSS-8.8

Described in GSS 5.8 to 5.11

Lecture Generating Software from Specifications WS 2013/14 / Slide 808

Objectives:

Already explained in Ch. 5

In the lecture:

The items are explained.

©
 2

00
7

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Property Analysis (1)

GSS-8.9

It is an error if the name of a field, say addr , of a structure
occurs as the type of a field of that structure.

Customer (addr : Address; account: addr ;)

Introduce a PDL property
IsField: int;

and check it:

SYMBOL Descriptions COMPUTE
SYNT.GotIsField = CONSTITUENTS FieldName.GotIsField;

END;

SYMBOL FieldName COMPUTE
SYNT.GotIsField = ResetIsField (THIS.Key, 1);

END;

SYMBOL TypeName COMPUTE
IF (GetIsField (THIS.Key, 0),

message (ERROR,
CatStrInd ("Field identifier not allowed here: ",

THIS.Sym),
0, COORDREF))

<- INCLUDING Descriptions.GotIsField;
END;

Lecture Generating Software from Specifications WS 2013/14 / Slide 809

Objectives:

A property introduced for checking

In the lecture:

The items are explained.

©
 2

00
7

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Property Analysis (2)
GSS-8.10

It is an error if the same field of a structure occurs with different types specified.
Customer (addr: Address ;) Customer (addr: int ;)

We introduce predefined types int and float as keywords. For that purpose we have
to change both, concrete and abstract syntax correspondingly:

RULE: Field ::= FieldName ':' TypeName ';' END;

is replaced by
RULE: Field ::= FieldName ':' Type ';' END;
RULE: Type ::= TypeName END;
RULE: Type ::= 'int' END;
RULE: Type ::= 'float' END;

SYMBOL Type, FieldName: Type: DefTableKey;
RULE: Field ::= FieldName ':' Type ';' COMPUTE

FieldName.Type = Type.Type;
END;
RULE: Type ::= TypeName COMPUTE

Type.Type = TypeName.Key;
END;
RULE: Type ::= 'int' COMPUTE

Type.Type = intType;
END;
... correspondingly for floatType

Type information is
propagated to the
FieldName

intType and floatType
and errType are
introduced as PDL known
keys.

Lecture Generating Software from Specifications WS 2013/14 / Slide 810

Objectives:

A simple type analysis

In the lecture:

The items are explained:

• Predefined types: keywords are easier than identifiers!

• Late syntax modifications may occur.

• Use of known keys.

©
 2

00
7

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Property Analysis (3)

GSS-8.11

It is an error if the same field of a structure occurs with different types specified.
Customer (addr: Address ;) Customer (addr: int ;)

SYMBOL FieldName COMPUTE
SYNT.GotType =

IsType (THIS.Key, THIS.Type, ErrorType) ;

IF (EQ (ErrorType, GetType (THIS.Key, NoKey)),
message
(ERROR, "different types specified for this field",
0, COORDREF))

<- INCLUDING Descriptions.GotType;
END;

SYMBOL Descriptions COMPUTE
SYNT.GotType = CONSTITUENTS FieldName.GotType;

END;

Request from PDL a property Type that has an operation IsType (k, v, e) .

Type: DefTableKey [Is]

It sets the Type property of key k to v if it is unset; it sets it to e if the property has
a value different from v.

Lecture Generating Software from Specifications WS 2013/14 / Slide 811

Objectives:

PDL property functions are used

In the lecture:

The items are explained:

• There are more useful PDL property functions.

• Apply typical PDL usage pattern!

©
 2

00
7

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Structured Target Text
GSS-8.12

Methods and techniques are applied as described in Chapter 6.

For one structure there may be several occurrences of structure descriptions in the
tree. At only one of them the complete class declaration for that structure is to be output.
that is achived by using the DoItOnce technique (see GSS-4.5):

ATTR TypeDefCode: PTGNode;

SYMBOL Descriptions COMPUTE
SYNT.TypeDefCode =

CONSTITUENTS StructureName.TypeDefCode
WITH (PTGNode, PTGSeq, IDENTICAL, PTGNull);

END;

SYMBOL StructureName INHERITS DoItOnce COMPUTE
SYNT.TypeDefCode =

IF (THIS. DoIt ,
PTGTypeDef (StringTable (THIS.Sym)), PTGNULL);

END;

Lecture Generating Software from Specifications WS 2013/14 / Slide 812

Objectives:

Apply PTG techniques

In the lecture:

The items are explained:

• Recall the DoItOnce technique.

• Recall Chapter 6.

