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Objectives
GSS-0.2

The participants will learn

• to use generators for specific software tasks,

• to design domain specific languages (DSLs),

• to implement domain specific languages (DSLs),

• to use the Eli system to create generators.

The participants will define their own application project
and implement it.
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Contents
GSS-0.3

Chapter in GSS Book

1. Introduction 1

2. Constructing Trees 6

3. Visiting Trees 4

4. Names, Entities, and Properties 3

5. Binding Names to Entities 5

6. Structured Output 2

7. Library of Specification Modules -

8. An Integrated Approach (Structure Generator) 7

9. Individual Projects -

10.Visual Languages Developed using DEViL

Phase 1: Lectures, practical tutorials, and individual work are tightly interleaved

Phase 2: Participants work in groups on their projects.
During lecture hours advice is given, problems are discussed,
and experience are exchanged.
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Home Page of GSS Lecture

GSS-0.5
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Organization
GSS-0.6
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1. Introduction
Domain-Specific Knowledge

GSS-1.1

A task: „Implement a program to store collections of words, that describe animals“

Categories of knowledge required to carry out a task:

General: knowledge applicable to a wide variety of tasks
e.g. English words; program in C

Domain-specific: knowledge applicable to all tasks of this type
e.g. group word in sets;
implement arbitrary numbers of sets of strings in C

Task-specific: knowledge about the particular task at hand
e.g. sets of words to characterize animals

A domain-specific language is used to describe the particular task

A domain-specific generator creates a C program that stores the
particular set of strings.
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Example for a Domain-Specific Generator
GSS-1.2

colors {red blue green}
bugs{ant spider fly  moth bee}
verbs{crawl walk run fly}

int number_of_sets = 3;

char *name_of_set[] = {
"colors",
"bugs",
"verbs"};

int size_of_set[] = {
3,
5,
4};

char *set_of_ colors [] = {
"red",
"blue",
"green"};

char *set_of_bugs[] = {
"ant",
"spider",
" fly ",
"moth",
"bee"};

char *set_of_verbs[] = {
"crawl",
"walk",
"run",
"fly"};

char **values_of_set[] = {
set_of_ colors ,
set_of_bugs,
set_of_verbs};

Input: collection of words: Output: C header file:

• simple domain-specific description

• errors easier to detect in the domain-specific
description

• a number of tasks of the same kind

• constraints on representation using general
knowledge require a more complex and detailed
description (implementation)

• consistency conditions in the representation
using general knowledge are difficult to check
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The Generator Principle

Application generator : the most effective reuse method
[Ch. W. Kruger: Software Reuse]

narrow, specific application domain completely understood
Implementation automatically generated

Abstractions on a high level transformed into executable software
(using domain knowledge)

User  understands Generator expert  understands
abstractions  of the application domain implementation methods

wide cognitive distance
generator makes expert knowledge available

Examples : Data base report generator
GUI generator
Parser generator

GSS-1.3

Task description Generator Implementation
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Domain-Specific Languages for Generators
GSS-1.4

Task description Generator Implementation

Generator : transforms a specification language
into an executable program or/and into data,
applies domain-specific methods and techniques

Domain-specific languages (DSL)

Domains outside of informatics
Robot control
Stock exchange
Control of production lines
Music scores

Software engineering domains
Data base reports
User interfaces
Test descriptions
Representation of data structures (XML)

Language implementation as domain
Scanner specified by regular expressions
Parser specified by a context-free grammar
Language implementation specified for Eli

Some GSS Projects

Party organization
Soccer teams
Tutorial organization
Shopping lists
Train tracks layout

LED descriptions to VHDL
SimpleUML to XMI
Rule-based XML transformation
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Reuse of Products
GSS-1.5

Product What is reused?

Library of functions Implementation

Module, component Code

generic module Planned variants of code

Software architecture Design

Framework Design and code

Design pattern Strategy for design and construction

Generator Knowledge, how to construct
implementations from descriptions

Construction process Knowledge, how to use and
combine tools to build software

Ch. W. Kruger: Software Reuse, ACM Computing Surveys, 24(2), 1992

R. Prieto-Diaz: Status Report: Software reusability, IEEE Software, 10(3), 1993
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Organisation of Reuse
GSS-1.6

How

ad hoc

planned

automatic

Products

• Code is copied and modified

• adaptation of OO classes
incrementally in sub-classes

• oo libraries, frameworks

• Specialization of classes

• Generators,
intelligent development
environments

Consequences

• no a priori costs

• very dangerous for
maintanance

• high a priori costs

• effective reuse

• high a priori costs

• very effective reuse

• wide cognitive distance
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Roles of Provider and Reuser

GSS-1.7

Provider and reuser are on the
same level of experience:

• The same person , group of
persons, profession

• Provider assumes
his own level of understanding
for the reuser

• Examples: reuse of code,
design patterns

Provider  is an expert,
reusers  are amateurs:

• Reuse bridges a wide cognitive distance

• Expert knowledge  is made available for
non-experts

• Application domain has to be
completely understood  by the expert;
that knowledge is then encapsulated

• Requires domain-specific notions on a
high level

• Examples: Generators, frameworks,
intelligent development environments

Reusable products are

• Constructed and prepared for being reused. Role: provider

• Reused for a particular application. Role: reuser
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Project: Structure Generator (Lect. Ch. 8, Book Ch. 7)

GSS-1.8

Generator implements described record structures
useful tool in software construction

Set of record
descriptions

Structur C++ class
generator declarations

Customer  ( addr: Address;
account: int; )

Address ( name:  String;
zip:   int;
city:  String; )

import String from "util.h"

#include "util.h"

typedef class Customer _Cl * Customer ;
typedef class Address_Cl *Address;

class Customer _Cl {
private:

Address addr_fld;
int account_fld;

public:
Customer _Cl

( Address addr , int account)
{ addr_fld=addr;

account_fld=account; }
...
};
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Task Decomposition for the Implementation of
Domain-Specific Languages

Corresponds to task decomposition for
frontends  of compilers for programming languages (no machine code generation)
source-to-source  transformation

GSS-1.9

Structuring

Translation

Syntactic analysis

Transformation

Semantic analysis

Scanning

Conversion

Parsing

Tree construction

Name analysis

Property analysis

Data mapping

Action mapping

Lexical analysis

[W. M. Waite, L. R. Carter: Compiler Construction, Harper Collins College Publisher, 1993]
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Design and Specification of a DSL
GSS-1.9a

S
tr

uc
tu

rin
g

Tr
an

sl
at

io
n

Syntactic analysis

Transformation

Semantic analysis

Design the notation of tokens

Design the structure of descriptions

Design binding rules for names and
properties of entities.

Design the translation into target code.

Specify it by text patterns and their intantiation

Lexical analysis
Specify them by regular expressions

Specify it by a context-free grammar

Specify them by an attribute grammar

Customer  ( addr: Address;
account: int; )

Address ( name:  String;
zip:   int;
city:  String; )

import String from "util.h"
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Task Decomposition for the Structure Generator

GSS-1.10

S
tr

uc
tu

rin
g

Tr
an

sl
at

io
n

Syntactic analysis

Transformation

Semantic analysis

Recognize the symbols of the description

Store and encode identifiers

Recognize the structure of the description

Represent the structure by a tree

Bind names to structures and fields

Store properties and check them

Generate class declarations with

constructors and access methods

Lexical analysis

Customer  ( addr: Address;
account: int; )

Address ( name:  String;
zip:   int;
city:  String; )

import String from "util.h"
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Eli Generates a Structure Generator
GSS-1.11

Set of record
descriptions

Structure C++ class
generator declarations

Generator Implementation

. . . . . . . . .

Generator Implementation

Generator Implementation
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Task Decomposition Determines the Architecture of the Generator
GSS-1.12

Lexical
analysis

Trans-
formation

Source text Symbol sequence Structure tree Attr. structure tree Target text

Input processing
Scanning

Conversion
Symbol coding Parsing

Tree construction

Name analysis

Property analysis
Definition table

Text generation

Semantic
analysis

Syntactic
analysis

[1, 1] Ident: 12
[2, 3] open
[2, 4] Ident: 13
[2, 8] colon
[2,10] Ident: 14

Customer
(addr: Address;
 account: int;
)

Fields

Field Field

FieldName FieldName

TypeName TypeName

Fields

Field Field

FieldName FieldName

TypeName TypeName

isField isFiel d

class Customer_Cl
{ private:

Address addr_fld;
int account_fld;

}

Attribute computation in the tree

Specialized tools solve specific sub-tasks for creating of the product:
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The Eli System
GSS-1.13

• Framework for language implementation

• Suitable for any kind of textual language:
domain-specific languages ,
programming languages

• state-of-the-art compiler technique

• Based on the (complete)
task decomposition (cf. GSS-1.9)

• Automatic construction process

• Used for many practical projects  world wide

• Developed, extended, and maintained since1989 by
William M. Waite (University of Colorado at Boulder),
Uwe Kastens (University of Paderborn), and
Antony M. Sloane (Macquarie University, Sydney)

• Freely available  via Internet from
http://eli-project.sourceforge.net
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Hints for Using Eli

GSS-1.14

1. Start Eli:
/comp/eli/current/bin/eli [-c cacheLocation][-r]
Without -c  a cache is used/created in directory ~/.ODIN. -r  resets the cache

2. Cache:
Eli stores all intermediate products in cache, a tree of directories and files.
Instead of recomputing a product, Eli reuses it from the cache.
The cache contains only derived data; can be recomputed at any time.

3. Eli Documentation:
Guide for New Eli Users: Introduction including a little tutorial
Products and Parameters and Quick Reference Card: Description of Eli commands
Translation Tasks: Conceptual description of central phases of language implementation.
Reference Manuals, Tools and Libraries in Eli, Tutorials

4. Eli Commands:
A common form: Specification : Product > Target e.g.
Wrapper.fw : exe > .
from the specification derive the executable and store it in the current directory
Wrapper.fw : exe : warning >
from ... derive the executable, derive the warnings produced and show them

5. Eli Specifications: A set of files of specific file types.

6. Literate Programming: FunnelWeb files comprise specifications and their documentation
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2. Constructing Trees - Overview
GSS-2.1

Lexical
analysis

Source text Symbol sequence Structure tree

Input processing
Scanning

Conversion
Symbol coding Parsing

Tree construction

Syntactic
analysis

[1, 1] Ident: 12
[2, 3] open
[2, 4] Ident: 13
[2, 8] colon
[2,10] Ident: 14

Customer
(addr: Address;
 account: int;
)

Fields

Field Field

FieldName FieldName

TypeName TypeName

Tasks:

Phases:

Interfaces :

Input
representation:

Check the notation and the structure of the input and represent it as a tree.
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Eli: Specification of the Tree Construction
GSS-2.2

Specification Generator Target text

Scanner G.
Symbol
specification GLA Scanner

Attr.eval.-G.
Abstract
syntax Liga Attrib.evaluator

Map tool
Mapping
concr - abstr Synt. Tree construction

Parser G.
Concrete
syntax PGS, Cola Parser
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Specifications for the Structure Generator
GSS-2.3

Symbol
specifications

Concrete
syntax

Mapping
concr - abstr Synt

Abstract
syntax

Notations of non-literal tokens
.gla

Structure of input,
literal tokens
.con

.map

Structure of trees
.lido

Ident: PASCAL_IDENTIFIER
FileName: C_STRING_LIT

C_COMMENT

Descriptions:(Import / Structure)*.
Structure: StructureName '(' Fields ')'.
Fields: Field*.
Field: FieldName ':' TypeName.
...

is empty if concret and abstract syntax coincide

RULE: Descriptions LISTOF Import|Structure
COMPUTE ...

SYMBOL FieldName COMPUTE ...
SYMBOL TypeName COMPUTE ...

Only those symbols and productions, which need
computations
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Calendar Example: Structuring Task

GSS-2.4

A new example for the specification of the structuring task up to tree construction:

Input language: Sequence of calendar entries:

1.11. 20:00 "Theater"

Thu 14:15 "GSS lecture"

Weekday 12:05 "Dinner in Palmengarten"

Mon, Thu 8:00 "Dean's office"

31.12. 23:59 "Jahresende"

12/31 23:59 "End of year"
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Design of a Concrete Syntax
GSS-2.4a

1. Develop a set of examples, such that all aspects of the intended
language are covered.

2. Develop a context-free grammar using a top-down strategy
(see PLaC-3.4aa), and
update the set of examples correspondingly.

3. Apply the design rules of PLaC-3.4c - 3.4f:
- Syntactic structure should reflect semantic structure
- Syntactic restrictions versus semantic conditions
- Eliminate ambiguities
- Avoid unbounded lookahead

4. Design notations of non-literal tokens.
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Concrete Syntax
GSS-2.5

specifies the structure of the input  by a context-free grammar:

Calendar: Entry+ .
Entry: Date Event.

Date: DayNum '.' MonNum '.' /
MonNum '/' DayNum /
DayNames / GeneralPattern.

DayNum: Integer.
MonNum: Integer.

DayNames: DayName /
DayNames ',' DayName.

DayName: Day.

GeneralPattern: SimplePattern /
SimplePattern Modifier.

SimplePattern: 'Weekday' / 'Weekend'.
Modifier: '+' DayNames / '-' DayNames.

Event: When Description / Description.

When: Time / Time '-' Time.

1.11. 20:00 "Theater"
Thu 14:15 "GSS lecture"
Weekday 12:05 "Dinner in Palmengarten"
Mon, Thu 8:00 "Dean's office"
31.12. 23:59 "Jahresende"
12/31 23:59 "End of year"

Notation :

• Sequence of productions

• literal terminals between '

• EBNF constructs:
/ alternative
( ) parentheses
[ ] option
+, * repetition
// repetition with

separator

(for meaning see GPS)

Example:
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Literal and Non-Literal Terminals
GSS-2.6

Definition of notations of

• literal terminals (unnamed):
in the concrete syntax

• non-literal terminals
(named):
in an additional
specification for the
scanner generator

Calendar: Entry+ .
Entry: Date Event.

Date: DayNum ' . ' MonNum ' . ' /
MonNum ' / ' DayNum /
DayNames / GeneralPattern.

DayNum: Integer .
MonNum: Integer .

DayNames: DayName /
DayNames ' , ' DayName.

DayName: Day.

GeneralPattern: SimplePattern /
SimplePattern Modifier.

SimplePattern: ' Weekday' / ' Weekend'.
Modifier: ' +' DayNames / ' - ' DayNames.

Event: When Description  / Description .

When: Time  / Time  ' - ' Time .
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Specification of Non-Literal Terminals

GSS-2.7

The generator GLA generates a scanner from

• notations of literal terminals, extracted from the
concrete syntax by Eli

• specifications of non-literal terminals
in files of type.gla

Form of specifications:

Name: $ regular expression [Coding function]

Day: $ Mon|Tue|Wed|Thu|Fri|Sat|Son [mkDay]

Time: $(([0-9]|1[0-9]|2[0-3]):[0-5][0-9]) [mkTime]

Canned specifications:

Description: C_STRING_LIT
Integer: PASCAL_INTEGER
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Scanner Specification: Regular Expressions

Notation accepted character sequences

c the character c; except characters that have special meaning, see \c
\c space, tab, newline, \".[]^()|?+*{}/$<
"s" the character sequence s
. any  single character except newline
[xyz] exactly one  character of the set {x, y, z}
[^xyz] exactly one  character that is not in the set {x, y, z}
[c-d] exactly one  character, the ASCII code of which lies between c and d  (incl.)
(e) character sequence as specified by e
ef character sequences as specified by e followed by f
e | f character sequence as specified by e or by f
e? character sequence as specified by e or empty sequence
e+ one or more character sequences as specified by e
e* character sequence as specified by e+ or empty
e {m,n} at least m, and at most n character sequences as specified by e

e and f are regular expressions as defined here.

Each regular expression accepts the longest character sequence ,
that obeys its definition.

Solving ambiguities : 1. the longer accepted sequence
2. equal length: the earlier stated rule

GSS-2.8
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Scanner Specification: Programmed Scanner

There are situations where the to be accepted character sequences are very difficult to
define by a regular expression. A function may be implemented to accept such sequences.

The begin of the squence is specified by a regular expression, followed by the name of the
function, that will accept the remainder. For example, line comments of Ada:

$-- (auxEOL)

Parameters of the function:  a pointer to the first character of the so far accepted
sequence, and its length.
Function result:  a pointer to the charater immediately following the complete sequence:

char *Name(char *start, int length)

Some of the available programmed scanners:

auxEOL all characters up to and including the next newline

auxCString a C string literal after the opening "

auxM3Comment a Modula 3 comment after the opening (*, up to and including the
closing *); may contain nested comments paranthesized by (* and *)

Ctext C compound statements after the opening {, up to the closing };
may contain nested statements parenthesized by { and }

GSS-2.9
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Scanner Specification: Coding Functions

The accepted character sequence (start , length ) is passed to a coding function.

It computes the code of the accepted token (intrinsic )
i.e. an integral number, representing the identity of the token.

For that purpose the function may store and/or convert  the character sequence,
if necessary.

All coding functions have the same signature :

void Name (char *start, int length, int *class, int *intrinsic)

The token class  (terminal code, parameter class ) may be changed by the function call,
if necessary, e.g. to distinguish keywords from identifiers.

Available coding functions:

mkidn enter character sequence into a hash table and encode it bijectively

mkstr store character sequence, return a new code

c_mkstr C string literal, converted into its value, stored, and given a new code

mkint convert a sequences of digits into an integral value and return it value

c_mkint convert a literal for an integral number in C and return its value

GSS-2.10
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Scanner Specification: Canned Specifications

Complete canned specifications  (regular expression, a programmed scanner,
and a coding function) can be instantiated by their names :

Identifier: C_IDENTIFIER

For many tokens of several programming languages canned specifications are available
(complete list of descriptions in the documentation):

C_IDENTIFIER, C_INTEGER, C_INT_DENOTATION, C_FLOAT,
C_STRING_LIT, C_CHAR_CONSTANT, C_COMMENT

PASCAL_IDENTIFIER, PASCAL_INTEGER, PASCAL_REAL,
PASCAL_STRING, PASCAL_COMMENT

MODULA2_INTEGER, MODULA2_CHARINT, MODULA2_LITERALDQ,
MODULA2_LITERALSQ, MODULA2_COMMENT

MODULA3_COMMENT, ADA_IDENTIFIER, ADA_COMMENT, AWK_COMMENT

SPACES, TAB, NEW_LINE
are only used, if some token begins with one of these characters,
but, if these characters still separate tokens.

The used coding functions may be overridden.

GSS-2.11
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Abstract Syntax
GSS-2.12

specifies the structure trees  using a context-free grammar:

RULE pCalendar: Calendar LISTOF Entry END;
RULE pEntry: Entry ::= Date Event END;
RULE pDateNum: Date ::= DayNum MonNum END;
RULE pDatePattern: Date ::= Pattern END;
RULE pDateDays: Date ::= DayNames END;
RULE pDayNum: DayNum ::= Integer END;
RULE pMonth: MonNum ::= Integer END;
RULE pDayNames: DayNames LISTOF DayName END;
RULE pDay: DayName ::= Day END;
RULE pWeekday: Pattern ::= 'Weekday' END;
RULE pWeekend: Pattern ::= 'Weekend' END;
RULE pModifier: Pattern ::= Pattern Modifier END;
RULE pPlus: Modifier ::= '+' DayNames END;
RULE pMinus: Modifier ::= '-' DayNames END;
RULE pTimedEvent: Event ::= When Description END;
RULE pUntimedEvent: Event ::= Description END;
RULE pTime: When ::= Time END;
RULE pTimeRange: When ::= Time '-' Time END;

Notation :
• Language Lido  for computations in structure trees
• optionally named productions,
• no EBNF, except LISTOF  (possibly empty sequence)

©
 2

01
4 

be
i P

ro
f. 

D
r.

 U
w

e 
K

as
te

ns

Example for a Structure Tree
GSS-2.13

pEntry( pDateNum(pDayNum(1),pMonth(11)),
pTimedEvent(pTime(1200),"Theater")),

pEntry( pDateDays(pDay(4)),pTimedEvent(pTime(855),"GSS lecture")),

pEntry( pDatePattern(pWeekday()),
pTimedEvent(pTime(725),"Dinner in Palmengarten")),

pEntry( pDateDays(pDay(1),pDay(4)),pUntimedEvent("Dean's office")),

pEntry( pDateNum(pDayNum(31),pMonth(12)),
pTimedEvent(pTime(1439),"Jahresende")),

pEntry( pDateNum(pDayNum(31),pMonth(12)),
pTimedEvent(pTime(1439),"End of year"))

• Production names are node types

• Values of terminals at leaves

Tree output produced by Eli’s
unparser generator
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Graphic Structure Tree
GSS-2.14

pEntry

pDateNum

pDayNum

1

pMonth

11

pTime

1200

"Theater"

pTimedEvent

Time

IntegerInteger

(

((

(
(

)

)

)

)

,

,

)

pCalendar

( )

Description

( )

• Names of productions as node types

• Values of terminals at leaves

Output produced by
Eli‘s unparser generator,
Tree structure given by parentheses
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Symbol Mapping: Concrete - Abstract Syntax

GSS-2.15

SimplePattern : 'Weekday' / 'Weekend'.

GeneralPattern : SimplePattern  /
SimplePattern  Modifier.

RULE pWeekday: Pattern  ::= 'Weekday' END;
RULE pWeekend: Pattern  ::= 'Weekend' END;
RULE pModifier: Pattern  ::= Pattern  Modifier END;

mapping:

abstract syntax:

concrete syntax:

MAPSYM
Pattern  ::= GeneralPattern

SimplePattern .

Set of nonterminals of the
concrete syntax mapped to

one nonterminal of the
abstract syntax

simplify to create
abstract syntax:
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Rule Mapping
GSS-2.16

Date: DayNum '.' MonNum '.' /
MonNum '/' DayNum .

RULE pDateNum: Date ::= DayNum MonNum END;

Mapping:

MAPRULE
Date: DayNum '.' MonNum '.' < $1 $2 >.
Date: MonNum '/' DayNum < $2 $1 >.

Concrete Syntax:

Abstract syntax:

Different
productions  of the
concrete syntax

are unified  in the
abstract syntax
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Generate Tree Output
GSS-2.17

pEntry( pDateNum(pDayNum(1),pMonth(11)),
pTimedEvent(pTime(1200),"Theater")),

Produce structure trees with node types and values at terminal leaves:

Pattern constructor functions are called in tree contexts to produce output.

Specifications  are created automatically  by Eli’s unparser generator :

Unparser is generated from
the specification:

Calendar.fw
Calendar.fw:tree

Output of non-literal terminals:

Idem_Day: $ int
Idem_Time: $ int
Idem_Integer: $ int

Use predefined PTG patterns:

$/Output/PtgCommon.fw

Output at grammar root:

SYMBOL ROOTCLASS COMPUTE
BP_Out(THIS.IdemPtg);

END;
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3. Visiting Trees
Overview

GSS-3.1

Computations in structure trees may serve any suitable purpose, e.g.

• compute or check properties of language constructs , e. g. types, values

• determine or check relations in larger contexts, e.g. definition - use

• construct data structure or target text

Formal model for specification: attribute grammars (AGs)

Generator Liga  transforms

a specification of computations in the structure tree
(an AG written in the specification language Lido)

into

a tree walking attribute evaluator that executes the specified computations
for each given tree in a suitable order.
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Computations in Tree Contexts Specified by AGs

GSS-3.1a

Abstract syntax  is augmented by:

Attributes associated to nonterminals :
e.g. Expr.Value Expr.Type Block.depth used to

store values at tree nodes , representing a property of the construct,
propagate values  through the tree,
specify dependences  between computations

Computations  associated to productions (RULEs) or to nonterminals (SYMBOL):

Compute attribute values
using other attribute values of the particular context (RULE or SYMBOL), or

cause effects , e.g. store values in a definition table,
check a condition and issue a message, produce output

Each attribute  of every node is computed exactly once .
Each computation  is executed exactly once  for every node of the RULE it is specified for.

The order of the computation execution  is determined by the generator . It obeys the
specified dependences .
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Dependent Computations
GSS-3.2

SYMBOL Expr, Opr: value: int SYNT;
SYMBOL Opr: left, right: int INH;
TERM Number: int ;

RULE: Root ::= Expr COMPUTE
printf ("value is %d\n", Expr.value);

END;

RULE: Expr  ::= Number COMPUTE
Expr.value  = Number;

END;

RULE: Expr ::= Expr Opr  Expr COMPUTE
Expr[1].value = Opr.value;
Opr.left  = Expr[2].value;
Opr.right  = Expr[3].value;

END;

RULE: Opr  ::= '+' COMPUTE
Opr.value  = ADD (Opr.left, Opr.right);

END;
RULE: Opr  ::= '-' COMPUTE

Opr.value  = SUB (Opr.left, Opr.right);
END;

typed attributes of symbols

terminal symbol has int value

SYNThesized attributes are
computed in lower contexts,
INHerited attributes in upper c..

SYNT or INH usually need not
be specified.

Generator determines the
order of computations
consistent with dependences.

Example:

Computation and output of
an expression’s value
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An Attributed Structure Tree
GSS-3.3

Expr
value 9

left value rightOpr
8 3

5

left value rightOpr
5 4

9

Expr
value 4

Expr
value 5

Expr
value 3

Expr
value 8

Root

+

-

Number
4

Number
3

Number
8

Attribute
dependence
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Pre- and Postconditions of Computations
GSS-3.4

RULE: Root ::= Expr COMPUTE
Expr.print = "yes";
printf ("n") <- Expr.printed ;

END;

RULE: Expr ::= Number COMPUTE
Expr.printed  =

printf ("%d ", Number) <- Expr.print ;
END;

RULE: Expr ::= Expr Opr Expr COMPUTE
Expr[2].print  = Expr[1].print ;
Expr[3].print  = Expr[2].printed ;
Opr.print  = Expr[3].printed ;
Expr[1].printed  = Opr.printed ;

END;

RULE: Opr ::= '+' COMPUTE
Opr.printed  =

printf ("+ ") <- Opr.print ;
END;

Attributes print  and printed
don’t have values  (type VOID)

They describe states being pre-
and postconditions  of
computations

Expr.print :

Postfix output up to this node is
completed.

Expr.printed :

Postfix output up to and
including this node is
completed.

Example:

Expression is printed in
postfix form
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Pattern: Dependences Left-to-Right Depth-First Through the Tree

GSS-3.4a

CHAIN print: VOID;

RULE: Root ::= Expr COMPUTE
CHAINSTART HEAD.print =  "yes";
printf ("n") <- TAIL.print ;

END;

RULE: Expr ::= Number COMPUTE
Expr.print =

printf ("%d ", Number) <-Expr.print ;
END;

RULE: Expr ::= Expr Opr Expr COMPUTE
Expr[3].print = Expr[2].print;
Opr.print = Expr[3].print;
Expr[1].print = Opr.print;

END;

RULE: Opr ::= '+' COMPUTE
Opr.print =

printf ("+ ") <- Opr.print ;
END;

CHAIN specifies left-to-right
depth-first  dependence.

CHAINSTART  in the root
context  of the CHAIN
(initialized with an irrelevant
value)

Computations are inserted
between pre- and
postconditions of the CHAIN

CHAIN order can be
overridden .

Omitted CHAIN computations
are added automatically

Example:

Output an expression in
postfix form (cf. GSS-3.4)
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Pattern: Dependences Left-to-Right Depth-First Through the Tree
GSS-3.4b

Expr

Opr

Opr

Expr

ExprExpr
Expr

ExprExpr

Expr

Root

printf(...)
printf(...)

printf(...)
printf(...)

printf(...)

p(...)

added CHAIN
dependences

CHAIN pre- and
postcondition

overriding a
CHAIN dependence

CHAINSTART
HEAD TAIL
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Pattern: Combine Attribute Values of a Subtree
GSS-3.5

Specification

Usage

Usage

Usage

Other

Count

Count

Count

CONSTITUENTS combines certain attributes of a subtree, here Usage.Count

WITH (int, ADD, IDENTICAL, ZERO)

Meaning: type

CONSTITUENTS Usage.Count
WITH (int, ADD, IDENTICAL, ZERO)

binary
function

unary
function,
applied to
every attribute

constant
function for
optional
subtrees

©
 2

01
4 

be
i P

ro
f. 

D
r.

 U
w

e 
K

as
te

ns

Pattern: Use an Attribute of a Remote Ancestor Node
GSS-3.6

SYMBOL Block: depth: int INH;

RULE: Root ::= Block  COMPUTE
Block.depth =  0;

END;

RULE: Block ::= ’(’ Sequence ’)’ END;
RULE: Sequence LISTOF

Definition / Statement END;
...

RULE: Statement ::= Block  COMPUTE
Block.depth =

ADD ( INCLUDING Block.depth , 1);
END;

TERM Ident: int;

RULE: Definition ::= 'define' Ident
COMPUTE

printf("%s defined on depth %d\n",
StringTable (Ident),
INCLUDING Block.depth );

END;

INCLUDING Block.depth  refers to
the depth  attribute of the next
ancestor node (towards the root) that
has type Block

Example:

Compute nesting depth of blocks

The INCLUDING attribute is
automatically propagated  through
the contexts between its definition in
an ancestor node and its use in an
INCLUDING construct.
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Example for INCLUDING in a Tree

GSS-3.6a

Root

Block

Sequence

Statement Definition

Block

Sequence

Statement

Definition

Block

Sequence

StatementDefinition

INCLUDING Block.depth

INCLUDING Block.depth

INCLUDING Block.depth

INCLUDING Block.depth INCLUDING Block.depth

depth =

depth =depth =
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Pattern: Combine Preconditions of Subtree Nodes
GSS-3.7

SYMBOL Block: DefDone: VOID ;

RULE: Root ::= Block END;

RULE: Block ::= ’(’ Sequence ’)’
COMPUTE

Block.DefDone =
CONSTITUENTS Definition.DefDone;

END;

...

RULE: Definition ::= 'define' Ident
COMPUTE

Definition.DefDone =
printf("%s defined in line %d\n",

StringTable (Ident), LINE);
END;

RULE: Statement ::= 'use' Ident
COMPUTE

printf("%s used in line %d\n",
StringTable (Ident), LINE)
<- INCLUDING Block.DefDone ;

END;

The attributes DefDone  do not have
values - they specify preconditions
for some computations

Example:

Output all definitions
before all uses

This CONSTITUENTS construct does
not need a WITH clause , because it
does not propagate values

Typical combination of a
CONSTITUENTS construct and an
INCLUDING construct:

Specify the order side-effects are to
occur in.
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Computations Associated to Symbols
GSS-3.9

Computations may be associated to symbols ; then they are executed for every occurrence
of the symbol in a production.

SYMBOL Expr COMPUTE
printf ("expression value %d in line %d\n", THIS.value, LINE);

END;

Symbol computations may contain INCLUDING, CONSTITUENTS, and CHAIN constructs:

SYMBOL Block COMPUTE
printf ("%d uses occurred\n",

CONSTITUENTS Usage.Count WITH (int, ADD, IDENTICAL, ZERO);
END;

SYNT.a  resp. INH.a  indicates that the computation belongs to the lower resp. upper
context  of the symbol:

SYMBOL Block COMPUTE
INH.depth = ADD (INCLUDING Block.depth);

END;

Computations in RULE contexts override computations for the same attribute in SYMBOL
context , e.g. for begin of recursions, defaults, or exceptions:

RULE: Root ::= Block COMPUTE
Block.depth = 0;

END;
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Reuse of Computations
GSS-3.10

CLASS SYMBOL IdOcc: Sym: int;
CLASS SYMBOL IdOcc  COMPUTE

SYNT.Sym = TERM;
END;

SYMBOL DefVarIdent INHERITS IdOcc  END;
SYMBOL DefTypeIdent INHERITS IdOcc  END;
SYMBOL UseVarIdent INHERITS IdOcc  END;
SYMBOL UseTypeIdent INHERITS IdOcc  END;

CLASS SYMBOL CheckDefined COMPUTE
IF (EQ (THIS.Key, NoKey),
message ( ERROR,

"identifier is not defined",
0, COORDREF);

END;

SYMBOL UseVarIdent
INHERITS IdOcc, CheckDefined END;

SYMBOL UseTypeIdent
INHERITS IdOcc, CheckDefinedEND;

Computations are associated to
CLASS symbols, which do not
occur in the abstract syntax.

INHERITS  binds CLASS symbols
to tree symbols of the abstract
syntax.
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Reuse of Pairs of SYMBOL Roles

GSS-3.10a

CLASS SYMBOL OccRoot  COMPUTE
CHAINSTART HEAD.Occurs = 0;
SYNT.TotalOccs = TAIL.Occurs;

END;
CLASS SYMBOL OccElem COMPUTE

SYNT.OccNo = THIS.Occurs;
THIS.Occurs = ADD (SYNT.OccNo, 1);

END;

SYMBOL Block INHERITS OccRoot  END;
SYMBOL Definition INHERITS OccElem  END;

SYMBOL Statement INHERITS OccRoot  END;
SYMBOL Usage INHERITS OccElem  END;

CLASS symbols in cooperating
roles , e.g. count occurrences of a
language construct (OccElem ) in a
subtree (OccRoot )

Restriction:
Every OccElem -node must be in an
OccRoot -subtree.

Reused in pairs:

Block - Definition and

Statement - Usage

must obey the restriction.

Library modules are used in this
way (see Ch. 6)
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Design Rules for Computations in Trees
GSS-3.11

1.Decompose the task into subtasks , that are small enough to be solved each by only a
few of the specification patterns explained below.d
Develop a .lido  fragment for each subtask and explain it in the surrounding .fw  text.

2.Elaborate the central aspect of the subtask and map it onto one of the following cases:

A. The aspect is described in a natural way by properties of some related program
constructs ,
e.g. types of expressions, nesting depth of blocks, translation of the statements of a
block.

B. The aspect is described in a natural way by properties of some program entities,
e.g. relative addresses of variabes, use of variables before their definition.

Develop the computations as described for A or B.

3.Step 2 may exhibit that further aspects of the subtask need to be solved (attributes may
be used, for which the computations are not yet designed). Repeat step 2 for these
aspects.
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A: Compute Properties of Program Constructs
GSS-3.12

Determine the type of values , which describe the property. Introduce attributes of that
type for all symbols , which represent the program constructs . Check which of the
following cases fits best for the computation of that property:

A1: Each lower context  determines the property in a different way:
Then develop RULE computations for all lower contexts .

A2: As A1; but upper context .

A3: The property can be determined independently of RULE contexts , by using only
attributes of the symbol or attributes that are accessed via INCLUDING, CONSTI-
TUENT(S), CHAIN:
Then develop a lower (SYNT) SYMBOL computation .

A4: As A3; but there are a few exceptions , where either lower of upper (not both) RULE
contexts determine the property in a different way:
Then develop a upper (INH) or a lower (SYNT) SYMBOL computation  and over-
ride it in the deviating RULE contexts .

A5: As A4; but for recursive symbols : The begin of the recursion is considered to be
the exception of A4, e.g. nesting depth of Blocks.

If none of the cases fits, the design of the property is to be reconsiderd; it may be too
complex, and may need further refinement.
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4. Names, Entities, and Properties
GSS-4.1

Program constructs in the tree
(e.g. definitions) may

• introduce an entity
(e.g. a variable, a class, or a function)

• bind the entity to a name

• associate properties to the entity
(e.g. type, kind, address, line)

The definition module stores
program entities with their properties,
e.g. a variable with its type and the line
number where it is defined.

Entities are identified by keys of the
definition module.

Name analysis binds names to entities.

The properties of an entity are represented
by a list of (kind, value)-pairs

type int

type float

line 12

line 13

keys

int i

float x
i

x
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Basic name analysis provided by symbol roles

GSS-4.1a

Symbol roles:
Grammar root:

SYMBOL Program INHERITS RootScope  END;

Ranges containing definitions:

SYMBOL Block INHERITS RangeScope  END;

Defining identifier occurrence:

SYMBOL DefIdent INHERITS IdDefScope  END;

Applied identifier occurrence:

SYMBOL UseIdent INHERITS IdUseEnv, ChkIdUse  END;

Required attributes:
CLASS SYMBOL IdentOcc: Sym: int;
CLASS SYMBOL IdentOcc COMPUTE SYNT.Sym = TERM; END;

SYMBOL DefIdent INHERITS IdentOcc END;
SYMBOL UseIdent INHERITS IdentOcc END;

Provided attributes:
SYMBOL DefIdent, UseIdent: Key: DefTableKey , Bind: Binding ;
SYMBOL Program, Block: Env: Environment ;

Instantiation in a .specs  file
for Algol-like scope rules:

$/Name/AlgScope.gnrc:inst

for C-like scope rules:

$/Name/CScope.gnrc: inst
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PDL: A Generator for Definition Modules
GSS-4.2

central data structure associates properties to entities,
e.g. type of a variable, element type of an array type.

Entities are identified by a key (type DefTableKey ).

Operations:

NewKey ( ) yields a new key

ResetP (k, v) for key k  the property P is set to the value v

SetP (k, v, d) for key k  the property P is set to the value v, if it was not set,
otherwise to the value d

GetP (k, d) for key k  it yields the value of the property P if it is set,
otherwise it yields d

Functions are called in computations in tree contexts.

PDL generates functions ResetP, SetP, GetP from specifications of the form
PropertyName: ValueType;e.g.
Line: int;
Type: DefTableKey;
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Example: Set and Get a Property
GSS-4.3

The line number is associated as a property in a .pdl  file:
Line: int;

It is set in definition contexts and got in use contexts.

All set computations in definition contexts have to precede
any get in use contexts.

SYMBOL Program INHERITS RootScope END;
RULE: Program LISTOF Definition | Use COMPUTE

Program.GotLine = CONSTITUENTS Definition.GotLine;
END;

RULE: Definition ::= ’def’ NameDef END;
RULE: Use ::= ’use’ NameUse END;

SYMBOL NameDef INHERITS IdentOcc, IdDefScope COMPUTE
SYNT.GotLine = ResetLine (THIS.Key, LINE) ;
printf ("%s defined in line %d\n", StringTable(THIS.Sym), LINE);

END;

SYMBOL NameUse INHERITS IdentOcc, IdUseEnv, ChkIdUse COMPUTE
printf ("%s defined in line %d used in line %d\n",

StringTable(THIS.Sym), GetLine (THIS.Key, 0) , LINE)
<- INCLUDING Program.GotLine ;

END;
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Design Rules for Property Access (B)
GSS-4.4

Preparation:

• Usually identifiers in the tree refer to entities represented by DefTableKeys ;
an identifier is bound to a key using the name analysis module (see Ch.5).

• Symbol nodes for identifiers have a Key attribute; it identifies the entity

Design steps for the computation of properties:

1.Specify name and type of the property  in the notation of PDL.

2. Identify the contexts where the property is set .

3. Identify the contexts where the property is used .

4.Determine the dependences between (2) and (3) .
In simple cases it is: "all set operations before any get operation".

5.Specify (2), (3), and the pattern of (4).

Try to locate the computations that set or get properties of an entity in the context of
the identifier, if possible; avoid to propagate the Key values through the tree.

Use SYMBOL computations as far as possible (see design rules A).
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Technique: Do it once

GSS-4.5

Task:

• Many occurrences of an identifier are
bound to the same entity (key)

• For each entity a computation is
executed at exactly one (arbitrary)
occurrence of its identifier
(e.g. output some target code)

Solution:

Compute an attribute of type bool:
True at exactly one occurrence of the key,
false elsewhere.

Design steps:

1. Property specification: Done: int;

2. Set in name context, if not yet set.

3. Get in name context.

4. No dependences!

5. see on the right:

CLASS SYMBOL DoItOnce:
DoIt: int;

CLASS SYMBOL DoItOnce
INHERITS IdentOcc COMPUTE

SYNT.DoIt  =
IF ( GetDone (THIS.Key, 0) ,

0,
ORDER
 ( ResetDone (THIS.Key, 1) ,
 1));

END;

Anwendung:

SYMBOL StructName INHERITS DoITOnce
COMPUTE

SYNT.Text =
IF ( THIS.DoIt ,

PTGTransform (...),
PTGNULL);

END;
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5. Binding Names to Entities
GSS-5.1

Names in the source code represent entities to describe the meaning of the text.

Occurrences of names are bound to entities.

Scope rules of the language specify how names are to be bound. E.g.:

• Every name a, used as a structure name or as a type name is bound to the same entity.

• A type name a is an applied occurrence of a name. There must be a defining
occurrences of a somewhere in the text.

• Field names are bound separately for every structure.

Customer ( addr: Address ;
account:int;

)
Address  ( name: String;

zip: int;
)
Article ( name: String;

price: int;
)

• a structure (named Address )

• a field (named name)

• a Structur (named Article )

• a different field (named name)

• ...

.

.

.

some occurrences of names: some bindings: some entities:
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Keys and Properties
GSS-5.2

Entities are represented by keys.
Properties are associated to them.

Structures have a property called Environment

Eli tools implement properties of
entities and of envivronments

attributed tree

Structures fields

Entities and

their
properties

their keys

Definition module

environments
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Bindings and Environments
GSS-5.3

structures fields

Entities and

their
properties

their keys

Definition module

Environment: nested sets of bindings

Binding: associates a name with a key

The global environment binds all structure and type
names.

The environment of a structure binds its field names.

Eli tools implement properties of
entities and of envivronments

Customer

Address

account

addr

nested environments
sets of bindings

global
environment

C
us

to
m

er
 e

nv
iro

nm
en

t
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Attributed Tree for Name Analysis

GSS-5.4

Sym Bind Key Env

StructureName

Sym Bind Key

TypeName

Sym Bind Key

FieldName

Env

Env

Program

Fields

Structure Structure

Field Field
. . .

. . .

attributed tree
Attributes of the tree nodes
describe properties of the program
construct

Every node for a name occurrences
has attributes for

• the code of the identifier,

• the binding of its name, and

• its key

Program has the global
environment

StructureName and Fields have
the environment of the structure
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Attributes, Environments, and Keys
GSS-5.5

Customer

Address

account

addr

nested environments
sets of bindings

global
environment

C
us

to
m

er
 e

nv
iro

nm
en

t

Sym Bind Key Env

StructureName

Sym Bind Key

TypeName

Sym Bind Key

FieldName

Env

Env

Program

Fields

Structure Structure

Field Field
. . .

. . .

attributed tree

structures fields

Entities and

their
properties

their keys
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Environment Module

Implements the abstract data type Environment:
hierarchally nested sets (tree) of bindings (name, environment, key)

Functions:

NewEnv () creates a new environment e, that is the root of a new tree;
used in root context

NewScope (e1) creates a new environment e2 that is nested in e1.
Every binding of e1 is a binding of e2, too, if it is not hidden
by a binding established for the same name in e2;
used in range context

BindIdn (e, id) creates a new binding (id, e, k), if e does not yet have a
binding for id; k is then a new key for a new entity;
the result is in both cases the binding (id, e, k);
used for defining occurrences.

BindingInEnv (e, id) yields a binding (id, e1, k) of e oder of a surrounding
environment of e; if there is no such binding it yields NoBinding;
used for applied occurrences

BindingInScope (e, id) yields a binding (id, e, k) of e, if e directly contains such a
binding; NoBinding otherwise; e.g. used for qualified names

GSS-5.6
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Example: Names and Entities for the Structure Generator
GSS-5.8

Abstract syntax

RULE: Descriptions  LISTOF Import | Structure            END;

RULE: Import ::= 'import' ImportNames 'from' FileName END;

RULE: ImportNames   LISTOF ImportName                    END;

RULE: Structure ::= StructureName '(' Fields ')' END;

RULE: Fields        LISTOF Field                         END;

RULE: Field ::=     FieldName ':' TypeName ';' END;

RULE: StructureName ::= Ident                            END;

RULE: ImportName ::=    Ident                            END;

RULE: FieldName ::=     Ident                            END;

RULE: TypeName ::=      Ident                            END;

Different nonterminals for identifiers in different roles,
because different computations are expected, e.g. for
defining and applied occurrences.
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Computation of Environment Attributes

GSS-5.9

SYMBOL StructureName COMPUTE
SYNT.GotEnvir =

IF (EQ (GetEnvir (THIS.Key, NoEnv), NoEnv),
ResetEnvir

(THIS.Key,
NewScope (INCLUDING Range.Env) ));

SYNT.Env =
GetEnvir (THIS.Key, NoEnv) <- SYNT.GotEnvir;

END;

Root of the
environment hierarchy

Fields  play the
role of a Range.

The inherited
computation of Env is
overridden.

Each structure entity
has an environment
as its property.

It is created only once
for every occurrence of
a structure entity.

That environment is
embedded in the
global environment.

In that environment the
field names are bound.

SYMBOL Descriptions INHERITS RootScope  END;

SYMBOL Fields  INHERITS RangeScope  END;

RULE: Structure ::= StructureName '(' Fields ')'
COMPUTE

Fields.Env  = StructureName.Env;
END;
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Defining and Applied Occurrences of Identifiers
GSS-5.10

CLASS SYMBOL IdentOcc: Sym: int,
CLASS SYMBOL IdentOcc COMPUTE

SYNT.Sym = TERM;
END;

SYMBOL StructureName
INHERITS IdentOcc, IdDefScope  END;

SYMBOL ImportName
INHERITS IdentOcc, IdDefScope  END;

SYMBOL FieldName
INHERITS IdentOcc, IdDefScope  END;

SYMBOL TypeName
INHERITS IdentOcc, IdUseEnv, ChkIdScope  END;

Computations
IdentOcc for all
identifier occurrences.

All defining occurrences
bind their names in the
next enclosing Range

Bind an applied
occurrence of an
identifier in the enclosing
environment;
report an error if there is
no valid binding.
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6. Structured Output
GSS-6.1

Generator outputs structured text:

• programm in a suitable programming language

• data in suitable form (e.g. XML) to be processed by specific tools

• text in suitable form (e.g. HTML) to be presented by a text processor

Transformation phase of the generator
defines the structure of the texts:

• parameterized text patterns

• instances of text patterns
hierarchally nested

#ifndef WRAPPER_H
#define WRAPPER_H

#include "Pair.h"

#define noKind      0
#define int Kind 1
#define PairPtr Kind 2
#define float Kind 3

class int Wrapper;
class PairPtr Wrapper;
class float Wrapper;

class Object {
public:

class WrapperExcept {};
int getKind () { return kind; }

int get int Value ();
PairPtr get PairPtr Value ();
float get float Value ();

protected:
int kind;

};

#define  Kind

#define int Kind 1

#define PairPtr Kind 2

a text pattern with 2 parameters:

2 instances:
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„Structure Clash“ on Text Output
GSS-6.2

abstract program tree
drives creation of the target text
by a tree walk

target text
is composed of fragments

tree walk order does not fit to
sequence of target text fragments

A B X Y

X A B Y A B

X Y

A B A B

solution: text is composed into a buffer,
and sequentially written from there

here:

the buffer is a tree or DAG representing
pattern applications
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PTG: Pattern-Based Text Generator

GSS-6.3

Generates constructor functions from
specifications of text patterns

A. PTG provides a
Specification language for text patterns
each is a sequence of text fragments and
insertion points

B. PTG generates constructor functions
that build a data structure of pattern applications

one function per pattern
one parameter per insertion point

The functions are called on the tree walk.

C. PTG generates output functions
they walk recursively through the
data structure to output the target text

#define int Kind 1
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PTG’s Specification Language: Introductory Example
GSS-6.4

KindDef:
"#define " $ string  "Kind \t" $ int  "\n"

WrapperHdr:
"#ifndef WRAPPER_H\n"
"#define WRAPPER_H\n\n"
$1 /* Includes */

"\n#define noKind      0\n"
$2 /* KindDefs */
"\n"

$3 /* ClassFwds */
"\n"

"class Object {\n"
"public:\n"
"  class WrapperExcept {};\n"
"  int getKind () { return kind; }\n"
$4 /* ObjectGets */
"protected:\n"
"  int kind;\n"
"};\n\n"

#define int Kind 1

#ifndef WRAPPER_H
#define WRAPPER_H

#include " Pair.h "

#define noKind      0
#define intKind 1
#define PairPtrKind 2
#define floatKind 3

class intWrapper ;
class PairPtrWrapper ;
class floatWrapper ;

class Object {
public:

class WrapperExcept {};
int getKind () { return kind; }

int getintValue  ();
PairPtr getPairPtrValue  ();
float getfloatValue  ();

protected:
int kind;

};

Pattern: named sequence of C string literals and insertion points
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Constructor Functions
GSS-6.5

A constructor function for each pattern.

A parameter for each insertion point:

PTGNode PTGKindDef (char *a, int b) {...}

PTGNode PTGWrapperHdr (PTGNode a, PTGNode b, PTGNode c, PTGNode d)
{...}

Call of a constructor function

• creates an instance of the pattern with the supplied arguments and

• yields a reference to that instance

ik = PTGKindDef ("int", 1);

hdr = PTGWrapperHdr (ik, xx, yy, zz);

The arguments of calls are such references (type PTGNode) or they are values of the type
specified in the pattern (e. g. string or int)

Such calls are used to build the data structure bottom-up.
It is acyclic, a DAG.
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Output Functions
GSS-6.6

Predefined output functions:

• Call:

PTGOutFile ("example.h", hdr);

initiates a recursive walk through the data structure
starting from the given node (2nd argument)

• All text fragments of all pattern instances are output in the specified order.

• Shared substructures are walked through and are output on each visit from above.

• User defined functions may be called during the walk, in order to cause side-effects
(e.g. set and unset indentation).
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Important Techniques for Pattern Specification

GSS-6.7

Elements of pattern specifications:

• string literals in C notation "Value ();\n"

• value typed insertion points $string $int

• untyped insertion points (PTGNode) $ $1

• comments in C notation $ /* Includes */
e.g. to explain the purpose of insertion points

All charaters that separate tokens in the output and that format the output have to be
explicitly specified using string literals " " ";\n" "\tpublic:"

Identifiers can be augmented by prefixes or suffixes:

KindDef: "#define "$ string "Kind \t" $ int "\n"

may yield

#define PairPtrKind 2

There are advanced techniques to create „pretty printed“ output
(see PTG documentation).
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Important Techniques: Indexed Insertion Points
GSS-6.8

Indexed insertion points: $1 $2  ...

1. Application: one argument is to be inserted at several positions:

ObjectGet: "  " $1 string  " get" $1 string  "Value ();\n"

call: PTGObjectGet (" PairPtr ") result: PairPtr  get PairPtr Value ();

2. Application: modify pattern - use calls unchanged:

today: Decl: $1 /*type*/ " " $2 /*names*/ ";\n"

tomorrow: Decl: $2 /*names*/ ": " $1 /*type*/ ";\n"

unchanged call: PTGDecl ( tp , ids )

Rules:

• If n is the greatest index of an insertion point the constructor function has n parameters.

• If an index does not occur, its parameter exists, but it is not used.

• The order of the parameters is determined by the indexes.

• Do not have both indexed and non-indexed insertion points in a pattern.
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Important Techniques: Typed Insertion Points
GSS-6.9

Untyped insertion points: $ $1

Instances of patterns are inserted, i.e. the results of calls of constructor functions
Parameter type: PTGNode

Typed insertion points: $ string $1 int

Values of the given type are passed as arguments and output at the required position
Parameter type as stated, e.g. char*, int , or other basic types of C

KindDef: "#define " $ string "Kind \t" $ int "\n"

call: PTGKindDef ("PairPtr", 2)

Example for an application: generate identifiers

KindId: $ string "Kind" PTGKindId("Flow")
CountedId: "_" $ string "_" $ int PTGCountedId("Flow", i++)

Example for an application: conversion into a pattern instance

AsIs: $ string PTGAsIs("Hello")
Numb: $ int PTGNumb(42)

Rule:

• Same index of two insertion points implies the same types.
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Important Techniques: Sequences of Text Elements
GSS-6.10

Pairwise concatenation:

Seq: $ $ PTGSeq(PTGFoo(...),PTGBar(...))
res = PTGSeq(res, PTGFoo(...));

The application of an empty pattern yields PTGNULL

PTGNode res = PTGNULL;

Sequence with optional separator:

CommaSeq: $ {", "} $ res = PTGCommaSeq (res, x);

Elements that are marked optional by {} are not output,
if at least one insertion has the value PTGNULL

Optional parentheses:

Paren: {"("} $ {")"} no ( ) around empty text

The Eli specification $/Output/PtgCommon.fw makes some of these useful pattern
definitions available: Seq, CommaSeq, AsIs, Numb
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Compose Target Text in Adjacent Contexts

GSS-6.11

Attributes in adjacent tree contexts

LoopStmt

Condition Body
Code

Code

Code

ATTR Code: PTGNode ;

RULE: LoopStmt ::= Condition Body COMPUTE

LoopStmt.Code =
PTGWhile (Condition.Code, Body.Code);

END;

Application of the
While  pattern
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Compose Subtree Elements
GSS-6.12

Example wrapper generator; consider abstract program tree for some input:
Specification  is a sequence of tree nodes of type TypeName and FileName

Specification

TypeName

TypeName

TypeName

FileName

String

Identifier

Identifier

Identifier
int

PairPtr

"Pair.h"

float

Code

Code

PTGSeq

PTGSeq

Attributes TypeName.Code  contain references to created pattern applications;
they are composed by PTGSeq applications.

Code
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CONSTITUENTS Composes Attributes of a Subtree
GSS-6.13

Specification

TypeName

TypeName

TypeName

FileName

String

Identifier

Identifier

Identifier
int

PairPtr

"Pair.h"

float

Code

Code

Code

CONSTITUENTS composes TypeName.Code  attributes of the subtree

WITH (PTGNode, PTGSeq, IDENTICAL, PTGNull)

Meaning: type

CONSTITUENTS TypeName.Code
WITH (PTGNode, PTGSeq, IDENTICAL, PTGNull)

dyadic
composition
function

monadic
composition
function

constant
function for
optional
subtrees
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7. Library of Specification Modules
GSS-7.1

A reusable specification modul

• solves a frequently occurring task,
e.g. name analysis according Algol-like scope rules,

• provides abstract symbol roles (CLASS) with computations that contribute
to the solution of the task, z. B. IdUseEnv  for applied occurrences,

• contains all specifications, functions, etc. that are necessary to implement
the task’s solution (FunnelWeb file)

• is a member of a library of modules that support related topics,
e.g. name analysis according to different scope rules

• has a descriptive documentation

Users

• select a suitable module,

• instantiate it,

• let symbols of their abstract syntax inherit some of the symbol roles,

• use the computed attributes for their own computations.
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Basic Module for Name Analysis

GSS-7.2

Symbol roles:
Grammar root:

SYMBOL Program INHERITS RootScope  END;

Ranges containing definitions:

SYMBOL Block INHERITS RangeScope  END;

Defining identifier occurrence:

SYMBOL DefIdent INHERITS IdDefScope  END;

Applied identifier occurrence:

SYMBOL UseIdent
INHERITS IdUseEnv,ChkIdUse  END;

Provided attributes:
DefIdent, UseIdent: Key, Bind
Program, Block: Env

Instantiation
in a .specs file
for Algol-like scope rules:

$/Name/AlgScope.gnrc:inst

for C-like scope rules:

$/Name/CScope.gnrc: inst

for a new name space

$/Name/AlgScope.gnrc
+instance=Label
:inst

Symbol roles:
LabelRootScope,
LabelRangeScope , ...
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Specification Libraries in Eli
GSS-7.4

• Introduction of a running example

• How to use Specification Modules

• Name analysis according to scope rules

• Association of properties to definitions

• Type analysis tasks

• Tasks related to input processing

• Tasks related to generating output

• Abstract data types to be used in specifications

• Solutions of common problems

• Migration of Old Library Module Usage

Contetnts of the Eli Documentation
Specification Module Library:
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Name Analysis, Type Analysis
GSS-7.5

• Tree Grammar Preconditions

• Basic Scope Rules, 3 variants:
Algol-like, C-like, Bottom-Up

• Predefined Identifiers

• Joined Ranges (3 variants)

• Scopes being Properties of Objects
(4 variants)

• Inheritance of Scopes (3 variants)

• Name Analysis Test

• Environment Module

• Types, operators, and indications

• Typed entities

• Expressions

• User-defined types

• Structural type equivalence

• Error reporting in type analysis

• Dependence in type analysis

Name analysis according to scope rules Type analysis tasks
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Association of Properties to Entities
GSS-7.6

• Common Aspects of Property Modules

• Count Occurrences of Objects

• Set a Property at the First Object
Occurrence

• Check for Unique Object Occurrences

• Determine First Object Occurrence

• Map Objects to Integers

• Associate Kinds to Objects

• Associate Sets of Kinds to Objects

• Reflexive Relations Between Objects

• Some Useful PDL Specifications

Association of properties to definitions
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Input and Output

GSS-7.7

• Insert a File into the Input Stream

• Accessing the Current Token

• Command Line Arguments for
Included Files

• PTG Output for Leaf Nodes

• Commonly used Output patterns for PTG

• Indentation

• Output String Conversion

• Pretty Printing

• Typesetting for Block Structured Output

• Processing Ptg-Output into String Buffers

• Introduce Separators in PTG Output

Tasks related to input processing Tasks related to generating output
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Other Useful Modules
GSS-7.8

• Lists in LIDO Specifications

• Linear Lists of Any Type

• Bit Sets of Arbitrary Length

• Bit Sets of Integer Size

• Stacks of Any Type

• Mapping Integral Values To
Other Types

• Dynamic Storage Allocation

• String Concatenation

• Counting Symbol Occurrences

• Generating Optional Identifiers

• Computing a hash value

• Sorting Elements of an Array

• Character string arithmetic

Abstract data types
to be used in specifications

Solutions of common problems
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8. An Integrated Approach: Structure Generator
Task Description

GSS-8.1

The structure generator takes decriptions of structures with typed fields as
input, and generates an implementation by a class in C++ for each structure.
(see slides GSS 1.8 to 1.10)

1. An input file describes several structures with its components.

2. Each generated class has an initializing constructor, and a data attribute, a
set- and a get-method for each field.

3. The type of a field may be
predefined, a structure defined in the processed file, or an imported type.

4. The generator is intended to support software development.

5. Generated classes have to be sufficiently readable, s.th. they may be
adapted manually.

6. The generator is to be extensible, e.g. reading and writing of objects.

7. The description language shall allow, that the fields of a structure can be
accumulated from several descriptions of one structure.
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Example for the Output of the Structure Generator
GSS-8.2

#include " util.h "

typedef class Customer _Cl *Customer;
typedef class Address _Cl *Address;

class Customer _Cl {
private:

Address addr _fld;
int account _fld;

public:
Customer_Cl ( Address addr , int account )

{ addr _fld= addr ; account _fld= account ; }
void set_ addr  ( Address addr )

{ addr _fld= addr ;}
Address  get_ addr  ()

{return addr _fld;}
void set_ account  ( int account )

{ account _fld= account ;}
int  get_ account  ()

{return account _fld;}
};

class Address _Cl {
...

Import of externally
defined strucures:

Forward references:

Class declaration:

Fields:

Initializing constructor:

set- and get-methods
for fields:

Further class declarations:
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Variants of Input Form

GSS-8.3

Customer( addr:    Address;
account: int;

)
Address ( name:  String;

zip:   int;
city:  String;

)
import String from "util.h"

Address ( zip:   int;
phone: int;

)

Customer.addr: Address;
Address.name: String;
Address.zip: int;
import String from "util.h"
Customer.account: int;

Address.zip: int;
Address.phone: int;

closed form:

sequence of struct descriptions,
each consists of a
sequence of field descriptions

several descriptions for the same struct
accumulate the field descriptions

open form:

sequence of qualified field descriptions

several descriptions for the same struct
accumulate the field descriptions
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Task Decomposition for the Structure Generator
GSS-1.10 / 8.4

S
tr

uc
tu

rin
g

Tr
an

sl
at

io
n

Syntactic analysis

Transformation

Semantic analysis

Recognize the symbols of the description

Store and encode identifiers

Recognize the structure of the description

Represent the structure by a tree

Bind names to structures and fields

Store properties and check them

Generate class declarations with

constructors and access methods

Lexical analysis

Customer  ( addr: Address;
account: int; )

Address ( name:  String;
zip:   int;
city:  String; )

import String from "util.h"
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Task Decomposition Determines the Architecture of the Generator
GSS-1.12 / 8.5

Lexical
analysis

Trans-
formation

Source text Symbol sequence Structure tree attr. Structure tree Target text

Input processing
Scanning

Conversion
Symbol coding Parsing

Tree construction

Name analysis

Property analysis
Definition table

Text generation

Semantic
analysis

Syntactic
analysis

[1, 1] Ident: 12
[2, 3] open
[2, 4] Ident: 13
[2, 8] colon
[2,10] Ident: 14

Customer
(addr: Address;
 account: int;
)

Fields

Field Field

FieldName FieldName

TypeName TypeName

Fields

Field Field

FieldName FieldName

TypeName TypeName

isField isFiel d

class Customer_Cl
{ private:

Address addr_fld;
int account_fld;

}

Attribute computation in the tree

Specialized tools solve specific sub-tasks for creating of the product:
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Concrete Syntax
GSS-8.6

Descriptions: (Import / Structure)*.

Import:       'import' ImportNames 'from' FileName.

ImportNames:  ImportName // ','.

Structure:    StructureName '(' Fields ')'.

Fields:       Field*.

Field:        FieldName ':' TypeName ';'.

Different nonterminals for
identifiers in different roles:,

StructureName: Ident.

ImportName:    Ident.

FieldName:     Ident.

TypeName:      Ident.

Ident:     PASCAL_IDENTIFIER

FileName:  C_STRING_LIT

           C_COMMENT

Token specification:

Straight-forward natural description of language constructs:



©
 2

01
4 

be
i P

ro
f. 

D
r.

 U
w

e 
K

as
te

ns
Abstract Syntax

GSS-5.8 / 8.7

Concrete syntax rewritten 1:1, EBNF sequences substituted by LIDO LISTOF:

RULE: Descriptions  LISTOF Import | Structure            END;

RULE: Import ::= 'import' ImportNames 'from' FileName END;

RULE: ImportNames   LISTOF ImportName                    END;

RULE: Structure ::= StructureName '(' Fields ')' END;

RULE: Fields        LISTOF Field                         END;

RULE: Field ::=     FieldName ':' TypeName ';' END;

RULE: StructureName ::= Ident                            END;

RULE: ImportName ::=    Ident                            END;

RULE: FieldName ::=     Ident                            END;

RULE: TypeName ::=      Ident                            END;
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Name Analysis
GSS-8.8

Described in GSS 5.8 to 5.11
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Property Analysis (1)
GSS-8.9

It is an error if the name of a field, say addr , of a structure
occurs as the type of a field of that structure.

Customer ( addr : Address; account: addr ;)

Introduce a PDL property
IsField: int;

and check it:

SYMBOL Descriptions COMPUTE
SYNT.GotIsField = CONSTITUENTS FieldName.GotIsField;

END;

SYMBOL FieldName COMPUTE
SYNT.GotIsField = ResetIsField (THIS.Key, 1);

END;

SYMBOL TypeName COMPUTE
IF (GetIsField (THIS.Key, 0),

message (ERROR,
CatStrInd ("Field identifier not allowed here: ",

THIS.Sym),
0, COORDREF))

<- INCLUDING Descriptions.GotIsField;
END;
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Property Analysis (2)
GSS-8.10

It is an error if the same field of a structure occurs with different types specified.
Customer (addr: Address ;) Customer (addr: int ;)

We introduce predefined types int and float as keywords. For that purpose we have
to change both, concrete and abstract syntax correspondingly:

RULE: Field ::= FieldName ':' TypeName ';' END;

is replaced by
RULE: Field ::= FieldName ':' Type ';' END;
RULE: Type ::= TypeName END;
RULE: Type ::= 'int' END;
RULE: Type ::= 'float' END;

SYMBOL Type, FieldName: Type: DefTableKey;
RULE: Field ::= FieldName ':' Type ';' COMPUTE

FieldName.Type = Type.Type;
END;
RULE: Type ::= TypeName COMPUTE

Type.Type = TypeName.Key;
END;
RULE: Type ::= 'int' COMPUTE

Type.Type = intType;
END;
... correspondingly for floatType

Type information is
propagated to the
FieldName

intType and floatType
and errType are
introduced as PDL known
keys.
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Property Analysis (3)

GSS-8.11

It is an error if the same field of a structure occurs with different types specified.
Customer (addr: Address ;) Customer (addr: int ;)

SYMBOL FieldName COMPUTE
SYNT.GotType =

IsType (THIS.Key, THIS.Type, ErrorType) ;

IF (EQ (ErrorType, GetType (THIS.Key, NoKey)),
message
(ERROR, "different types specified for this field",
0, COORDREF))

<- INCLUDING Descriptions.GotType;
END;

SYMBOL Descriptions COMPUTE
SYNT.GotType = CONSTITUENTS FieldName.GotType;

END;

Request from PDL a property Type  that has an operation IsType (k, v, e) .

Type: DefTableKey [ Is ]

It sets the Type property of key k to v if it is unset; it sets it to e if the property has
a value different from v.
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Structured Target Text
GSS-8.12

Methods and techniques are applied as described in Chapter 6.

For one structure there may be several occurrences of structure descriptions in the
tree. At only one of them the complete class declaration for that structure is to be output.
that is achived by using the DoItOnce  technique (see GSS-4.5):

ATTR TypeDefCode: PTGNode;

SYMBOL Descriptions COMPUTE
SYNT.TypeDefCode =

CONSTITUENTS StructureName.TypeDefCode
WITH (PTGNode, PTGSeq, IDENTICAL, PTGNull);

END;

SYMBOL StructureName INHERITS DoItOnce  COMPUTE
SYNT.TypeDefCode =

IF ( THIS. DoIt ,
PTGTypeDef (StringTable (THIS.Sym)), PTGNULL);

END;
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9. Individual Projects
Steps for the Development of a Generator

GSS-9.1

1. Task Definition
a. Task description
b. Examples for input (DSL)
c. Examples for generated output
d. Description of analysis and transformation tasks

2. Structuring Phase
a. Develop concrete syntax
b. Specify notation of tokens
c. Develop abstract syntax
d. Comprehensive tests

3. Semantic Analysis
a. Characterize erroneous inputs by test cases
b. Specify binding of names
c. Specify computation and checks of properties
d. Comprehensive tests

4. Transformation
a. Develop output patterns
b. Develop computations to create output
c. Comprehensive tests

5. Documentation and Presentation of the Generator
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Individual Projects in Current Lecture
GSS-9.2

Topic Student team

A

B

C

D

E

F

G

H
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10. Visual Languages Developed using DEViL

GSS-10.1

Domain-Specific Visual Languages: Design and Implemenation

Uwe Kastens, July 2007 CoRTA

Outline:

1. What are visual languages?

2. Domain-specific visual languages

3. Ingredients for Language design

4. A Development Environment for Visual Languages

5. Pattern-Based Specifications in DEViL

Two conference presentations are available in the lecture material:

Specifying Generic Depictions of Language Constructs for 3D Visual Languages

Jan Wolter, September 2013, VL / HCC

Outline:

1. 3D Visual Languages

2. DEViL3D - Generator Framework for 3D Visual Languages

3. Generic Depictions


