
©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
3. Visiting Trees

Overview

GSS-3.1

Computations in structure trees may serve any suitable purpose, e.g.

• compute or check properties of language constructs , e. g. types, values

• determine or check relations in larger contexts, e.g. definition - use

• construct data structure or target text

Formal model for specification: attribute grammars (AGs)

Generator Liga transforms

a specification of computations in the structure tree
(an AG written in the specification language Lido)

into

a tree walking attribute evaluator that executes the specified computations
for each given tree in a suitable order.

©
 2

00
7

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Computations in Tree Contexts Specified by AGs
GSS-3.1a

Abstract syntax is augmented by:

Attributes associated to nonterminals :
e.g. Expr.Value Expr.Type Block.depth used to

store values at tree nodes , representing a property of the construct,
propagate values through the tree,
specify dependences between computations

Computations associated to productions (RULEs) or to nonterminals (SYMBOL):

Compute attribute values
using other attribute values of the particular context (RULE or SYMBOL), or

cause effects , e.g. store values in a definition table,
check a condition and issue a message, produce output

Each attribute of every node is computed exactly once .
Each computation is executed exactly once for every node of the RULE it is specified for.

The order of the computation execution is determined by the generator . It obeys the
specified dependences .

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Dependent Computations
GSS-3.2

SYMBOL Expr, Opr: value: int SYNT;
SYMBOL Opr: left, right: int INH;
TERM Number: int ;

RULE: Root ::= Expr COMPUTE
printf ("value is %d\n", Expr.value);

END;

RULE: Expr ::= Number COMPUTE
Expr.value = Number;

END;

RULE: Expr ::= Expr Opr Expr COMPUTE
Expr[1].value = Opr.value;
Opr.left = Expr[2].value;
Opr.right = Expr[3].value;

END;

RULE: Opr ::= '+' COMPUTE
Opr.value = ADD (Opr.left, Opr.right);

END;
RULE: Opr ::= '-' COMPUTE

Opr.value = SUB (Opr.left, Opr.right);
END;

typed attributes of symbols

terminal symbol has int value

SYNThesized attributes are
computed in lower contexts,
INHerited attributes in upper c..

SYNT or INH usually need not
be specified.

Generator determines the
order of computations
consistent with dependences.

Example:

Computation and output of
an expression’s value

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

An Attributed Structure Tree
GSS-3.3

Expr
value 9

left value rightOpr
8 3

5

left value rightOpr
5 4

9

Expr
value 4

Expr
value 5

Expr
value 3

Expr
value 8

Root

+

-

Number
4

Number
3

Number
8

Attribute
dependence

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Pre- and Postconditions of Computations

GSS-3.4

RULE: Root ::= Expr COMPUTE
Expr.print = "yes";
printf ("n") <- Expr.printed ;

END;

RULE: Expr ::= Number COMPUTE
Expr.printed =

printf ("%d ", Number) <- Expr.print ;
END;

RULE: Expr ::= Expr Opr Expr COMPUTE
Expr[2].print = Expr[1].print ;
Expr[3].print = Expr[2].printed ;
Opr.print = Expr[3].printed ;
Expr[1].printed = Opr.printed ;

END;

RULE: Opr ::= '+' COMPUTE
Opr.printed =

printf ("+ ") <- Opr.print ;
END;

Attributes print and printed
don’t have values (type VOID)

They describe states being pre-
and postconditions of
computations

Expr.print :

Postfix output up to this node is
completed.

Expr.printed :

Postfix output up to and
including this node is
completed.

Example:

Expression is printed in
postfix form

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Pattern: Dependences Left-to-Right Depth-First Through the Tree
GSS-3.4a

CHAIN print: VOID;

RULE: Root ::= Expr COMPUTE
CHAINSTART HEAD.print = "yes";
printf ("n") <- TAIL.print ;

END;

RULE: Expr ::= Number COMPUTE
Expr.print =

printf ("%d ", Number) <-Expr.print ;
END;

RULE: Expr ::= Expr Opr Expr COMPUTE
Expr[3].print = Expr[2].print;
Opr.print = Expr[3].print;
Expr[1].print = Opr.print;

END;

RULE: Opr ::= '+' COMPUTE
Opr.print =

printf ("+ ") <- Opr.print ;
END;

CHAIN specifies left-to-right
depth-first dependence.

CHAINSTART in the root
context of the CHAIN
(initialized with an irrelevant
value)

Computations are inserted
between pre- and
postconditions of the CHAIN

CHAIN order can be
overridden .

Omitted CHAIN computations
are added automatically

Example:

Output an expression in
postfix form (cf. GSS-3.4)

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Pattern: Dependences Left-to-Right Depth-First Through the Tree
GSS-3.4b

Expr

Opr

Opr

Expr

ExprExpr
Expr

ExprExpr

Expr

Root

printf(...)
printf(...)

printf(...)
printf(...)

printf(...)

p(...)

added CHAIN
dependences

CHAIN pre- and
postcondition

overriding a
CHAIN dependence

CHAINSTART
HEAD TAIL

©
 2

00
7

be
i P

ro
f.

 D
r.

 U
w

e
K

as
te

ns

Pattern: Combine Attribute Values of a Subtree
GSS-3.5

Specification

Usage

Usage

Usage

Other

Count

Count

Count

CONSTITUENTS combines certain attributes of a subtree, here Usage.Count

WITH (int, ADD, IDENTICAL, ZERO)

Meaning: type

CONSTITUENTS Usage.Count
WITH (int, ADD, IDENTICAL, ZERO)

binary
function

unary
function,
applied to
every attribute

constant
function for
optional
subtrees

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Pattern: Use an Attribute of a Remote Ancestor Node

GSS-3.6

SYMBOL Block: depth: int INH;

RULE: Root ::= Block COMPUTE
Block.depth = 0;

END;

RULE: Block ::= ’(’ Sequence ’)’ END;
RULE: Sequence LISTOF

Definition / Statement END;
...

RULE: Statement ::= Block COMPUTE
Block.depth =

ADD (INCLUDING Block.depth , 1);
END;

TERM Ident: int;

RULE: Definition ::= 'define' Ident
COMPUTE

printf("%s defined on depth %d\n",
StringTable (Ident),
INCLUDING Block.depth);

END;

INCLUDING Block.depth refers to
the depth attribute of the next
ancestor node (towards the root) that
has type Block

Example:

Compute nesting depth of blocks

The INCLUDING attribute is
automatically propagated through
the contexts between its definition in
an ancestor node and its use in an
INCLUDING construct.

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Example for INCLUDING in a Tree
GSS-3.6a

Root

Block

Sequence

Statement Definition

Block

Sequence

Statement

Definition

Block

Sequence

StatementDefinition

INCLUDING Block.depth

INCLUDING Block.depth

INCLUDING Block.depth

INCLUDING Block.depth INCLUDING Block.depth

depth =

depth =depth =

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Pattern: Combine Preconditions of Subtree Nodes
GSS-3.7

SYMBOL Block: DefDone: VOID ;

RULE: Root ::= Block END;

RULE: Block ::= ’(’ Sequence ’)’
COMPUTE

Block.DefDone =
CONSTITUENTS Definition.DefDone;

END;

...

RULE: Definition ::= 'define' Ident
COMPUTE

Definition.DefDone =
printf("%s defined in line %d\n",

StringTable (Ident), LINE);
END;

RULE: Statement ::= 'use' Ident
COMPUTE

printf("%s used in line %d\n",
StringTable (Ident), LINE)
<- INCLUDING Block.DefDone ;

END;

The attributes DefDone do not have
values - they specify preconditions
for some computations

Example:

Output all definitions
before all uses

This CONSTITUENTS construct does
not need a WITH clause , because it
does not propagate values

Typical combination of a
CONSTITUENTS construct and an
INCLUDING construct:

Specify the order side-effects are to
occur in.

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Computations Associated to Symbols
GSS-3.9

Computations may be associated to symbols ; then they are executed for every occurrence
of the symbol in a production.

SYMBOL Expr COMPUTE
printf ("expression value %d in line %d\n", THIS.value, LINE);

END;

Symbol computations may contain INCLUDING, CONSTITUENTS, and CHAIN constructs:

SYMBOL Block COMPUTE
printf ("%d uses occurred\n",

CONSTITUENTS Usage.Count WITH (int, ADD, IDENTICAL, ZERO);
END;

SYNT.a resp. INH.a indicates that the computation belongs to the lower resp. upper
context of the symbol:

SYMBOL Block COMPUTE
INH.depth = ADD (INCLUDING Block.depth);

END;

Computations in RULE contexts override computations for the same attribute in SYMBOL
context , e.g. for begin of recursions, defaults, or exceptions:

RULE: Root ::= Block COMPUTE
Block.depth = 0;

END;

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Reuse of Computations

GSS-3.10

CLASS SYMBOL IdOcc: Sym: int;
CLASS SYMBOL IdOcc COMPUTE

SYNT.Sym = TERM;
END;

SYMBOL DefVarIdent INHERITS IdOcc END;
SYMBOL DefTypeIdent INHERITS IdOcc END;
SYMBOL UseVarIdent INHERITS IdOcc END;
SYMBOL UseTypeIdent INHERITS IdOcc END;

CLASS SYMBOL CheckDefined COMPUTE
IF (EQ (THIS.Key, NoKey),
message (ERROR,

"identifier is not defined",
0, COORDREF);

END;

SYMBOL UseVarIdent
INHERITS IdOcc, CheckDefined END;

SYMBOL UseTypeIdent
INHERITS IdOcc, CheckDefinedEND;

Computations are associated to
CLASS symbols, which do not
occur in the abstract syntax.

INHERITS binds CLASS symbols
to tree symbols of the abstract
syntax.

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Reuse of Pairs of SYMBOL Roles
GSS-3.10a

CLASS SYMBOL OccRoot COMPUTE
CHAINSTART HEAD.Occurs = 0;
SYNT.TotalOccs = TAIL.Occurs;

END;
CLASS SYMBOL OccElem COMPUTE

SYNT.OccNo = THIS.Occurs;
THIS.Occurs = ADD (SYNT.OccNo, 1);

END;

SYMBOL Block INHERITS OccRoot END;
SYMBOL Definition INHERITS OccElem END;

SYMBOL Statement INHERITS OccRoot END;
SYMBOL Usage INHERITS OccElem END;

CLASS symbols in cooperating
roles , e.g. count occurrences of a
language construct (OccElem) in a
subtree (OccRoot)

Restriction:
Every OccElem -node must be in an
OccRoot -subtree.

Reused in pairs:

Block - Definition and

Statement - Usage

must obey the restriction.

Library modules are used in this
way (see Ch. 6)

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Design Rules for Computations in Trees
GSS-3.11

1.Decompose the task into subtasks , that are small enough to be solved each by only a
few of the specification patterns explained below.d
Develop a .lido fragment for each subtask and explain it in the surrounding .fw text.

2.Elaborate the central aspect of the subtask and map it onto one of the following cases:

A. The aspect is described in a natural way by properties of some related program
constructs ,
e.g. types of expressions, nesting depth of blocks, translation of the statements of a
block.

B. The aspect is described in a natural way by properties of some program entities,
e.g. relative addresses of variabes, use of variables before their definition.

Develop the computations as described for A or B.

3.Step 2 may exhibit that further aspects of the subtask need to be solved (attributes may
be used, for which the computations are not yet designed). Repeat step 2 for these
aspects.

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

A: Compute Properties of Program Constructs
GSS-3.12

Determine the type of values , which describe the property. Introduce attributes of that
type for all symbols , which represent the program constructs . Check which of the
following cases fits best for the computation of that property:

A1: Each lower context determines the property in a different way:
Then develop RULE computations for all lower contexts .

A2: As A1; but upper context .

A3: The property can be determined independently of RULE contexts , by using only
attributes of the symbol or attributes that are accessed via INCLUDING, CONSTI-
TUENT(S), CHAIN:
Then develop a lower (SYNT) SYMBOL computation .

A4: As A3; but there are a few exceptions , where either lower of upper (not both) RULE
contexts determine the property in a different way:
Then develop a upper (INH) or a lower (SYNT) SYMBOL computation and over-
ride it in the deviating RULE contexts .

A5: As A4; but for recursive symbols : The begin of the recursion is considered to be
the exception of A4, e.g. nesting depth of Blocks.

If none of the cases fits, the design of the property is to be reconsiderd; it may be too
complex, and may need further refinement.

