
©
 2

01
2

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
4. Names, Entities, and Properties

GSS-4.1

Program constructs in the tree
(e.g. definitions) may

• introduce an entity
(e.g. a variable, a class, or a function)

• bind the entity to a name

• associate properties to the entity
(e.g. type, kind, address, line)

The definition module stores
program entities with their properties,
e.g. a variable with its type and the line
number where it is defined.

Entities are identified by keys of the
definition module.

Name analysis binds names to entities.

The properties of an entity are represented
by a list of (kind, value)-pairs

type int

type float

line 12

line 13

keys

int i

float x
i

x

©
 2

01
2

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Basic name analysis provided by symbol roles
GSS-4.1a

Symbol roles:
Grammar root:

SYMBOL Program INHERITS RootScope END;

Ranges containing definitions:

SYMBOL Block INHERITS RangeScope END;

Defining identifier occurrence:

SYMBOL DefIdent INHERITS IdDefScope END;

Applied identifier occurrence:

SYMBOL UseIdent INHERITS IdUseEnv, ChkIdUse END;

Required attributes:
CLASS SYMBOL IdentOcc: Sym: int;
CLASS SYMBOL IdentOcc COMPUTE SYNT.Sym = TERM; END;

SYMBOL DefIdent INHERITS IdentOcc END;
SYMBOL UseIdent INHERITS IdentOcc END;

Provided attributes:
SYMBOL DefIdent, UseIdent: Key: DefTableKey , Bind: Binding ;
SYMBOL Program, Block: Env: Environment ;

Instantiation in a .specs file
for Algol-like scope rules:

$/Name/AlgScope.gnrc:inst

for C-like scope rules:

$/Name/CScope.gnrc: inst

©
 2

01
2

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

PDL: A Generator for Definition Modules
GSS-4.2

central data structure associates properties to entities,
e.g. type of a variable, element type of an array type.

Entities are identified by a key (type DefTableKey).

Operations:

NewKey () yields a new key

ResetP (k, v) for key k the property P is set to the value v

SetP (k, v, d) for key k the property P is set to the value v, if it was not set,
otherwise to the value d

GetP (k, d) for key k it yields the value of the property P if it is set,
otherwise it yields d

Functions are called in computations in tree contexts.

PDL generates functions ResetP, SetP, GetP from specifications of the form
PropertyName: ValueType;e.g.
Line: int;
Type: DefTableKey;

©
 2

01
2

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Example: Set and Get a Property
GSS-4.3

The line number is associated as a property in a .pdl file:
Line: int;

It is set in definition contexts and got in use contexts.

All set computations in definition contexts have to precede
any get in use contexts.

SYMBOL Program INHERITS RootScope END;
RULE: Program LISTOF Definition | Use COMPUTE

Program.GotLine = CONSTITUENTS Definition.GotLine;
END;

RULE: Definition ::= ’def’ NameDef END;
RULE: Use ::= ’use’ NameUse END;

SYMBOL NameDef INHERITS IdentOcc, IdDefScope COMPUTE
SYNT.GotLine = ResetLine (THIS.Key, LINE) ;
printf ("%s defined in line %d\n", StringTable(THIS.Sym), LINE);

END;

SYMBOL NameUse INHERITS IdentOcc, IdUseEnv, ChkIdUse COMPUTE
printf ("%s defined in line %d used in line %d\n",

StringTable(THIS.Sym), GetLine (THIS.Key, 0) , LINE)
<- INCLUDING Program.GotLine ;

END;

©
 2

01
2

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Design Rules for Property Access (B)

GSS-4.4

Preparation:

• Usually identifiers in the tree refer to entities represented by DefTableKeys ;
an identifier is bound to a key using the name analysis module (see Ch.5).

• Symbol nodes for identifiers have a Key attribute; it identifies the entity

Design steps for the computation of properties:

1.Specify name and type of the property in the notation of PDL.

2. Identify the contexts where the property is set .

3. Identify the contexts where the property is used .

4.Determine the dependences between (2) and (3) .
In simple cases it is: "all set operations before any get operation".

5.Specify (2), (3), and the pattern of (4).

Try to locate the computations that set or get properties of an entity in the context of
the identifier, if possible; avoid to propagate the Key values through the tree.

Use SYMBOL computations as far as possible (see design rules A).

©
 2

01
2

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Technique: Do it once
GSS-4.5

Task:

• Many occurrences of an identifier are
bound to the same entity (key)

• For each entity a computation is
executed at exactly one (arbitrary)
occurrence of its identifier
(e.g. output some target code)

Solution:

Compute an attribute of type bool:
True at exactly one occurrence of the key,
false elsewhere.

Design steps:

1. Property specification: Done: int;

2. Set in name context, if not yet set.

3. Get in name context.

4. No dependences!

5. see on the right:

CLASS SYMBOL DoItOnce:
DoIt: int;

CLASS SYMBOL DoItOnce
INHERITS IdentOcc COMPUTE

SYNT.DoIt =
IF (GetDone (THIS.Key, 0) ,

0,
ORDER
 (ResetDone (THIS.Key, 1) ,
 1));

END;

Anwendung:

SYMBOL StructName INHERITS DoITOnce
COMPUTE

SYNT.Text =
IF (THIS.DoIt ,

PTGTransform (...),
PTGNULL);

END;

