Modellierung WS 2011/2012 — Lösung zum Übungsblatt 3

Lösung 1: Direkter Beweis

Wir zeigen: GBG ist eine Äquivalenzrelation.

Voraussetzungen:

- $G := \{A, AB, B, 0\}$
- TN ist beliebige Menge
- ullet bg:TN o G ist eine totale Funktion
- $GBG = \{(x, y) \mid x, y \in TN, \ bg(x) = bg(y)\}$

Behauptung:

GBG ist Äquivalenzrelation.

Beweis:

zu zeigen:

- a) GBG ist reflexiv
- b) GBG ist symmetrisch
- c) GBG ist transitiv

d.h.

- a) $\forall t \in TN, (t,t) \in GBG$
- b) $\forall (t_1, t_2) \in TN \times TN, (t_1, t_2) \in GBG \Rightarrow (t_2, t_1) \in GBG$
- c) $(t_1, t_2) \in GBG \land (t_2, t_3) \Rightarrow (t_1, t_3) \in GBG$

zu a)

Jeder hat die gleiche Blutgruppe wie er selbst. Daraus folgt, dass $\forall t \in TN, (t,t) \in GBG$

zu b)

Da $(t_1, t_2) \in GBG$ folgt, dass $bg(t_1) = bg(t_2)$. Also ist auch $(t_2, t_1) \in GBG$

zu c

 $\text{Da }(t_1,t_2) \in \textit{GBG} \text{ und } (t_2,t_3) \in \textit{GBG} \text{ folgt, dass } \textit{gb}(t_1) = \textit{bg}(t_2) = \textit{bg}(t_3). \text{ Also ist auch } (t_1,t_3) \in \textit{GBG}$

Lösung 2: Beweis durch Widerspruch

Voraussetzungen:

$$n \in \mathbb{N}$$

Behauptung:

$$\exists k \in \mathbb{N} \ mit \ k*3 = n+n+1+n+2.$$

Beweis:

Nimm negierte Behauptung in die Voraussetzung auf und leite daraus einen Widerspruch ab:

$$n \in \mathbb{N} \text{ und } \not\exists k \in \mathbb{N} \text{ } mit \text{ } k*3 = n+n+1+n+2 \Rightarrow \\ n \in \mathbb{N} \text{ und } \not\exists k \in \mathbb{N} \text{ } mit \text{ } k*3 = (n+1)*3 \Rightarrow \\$$

$$n \in \mathbb{N} \text{ und } \not\exists k \in \mathbb{N} \text{ } mit \text{ } k = (n+1)$$

Das ist ein Widerspruch zur Definition der natürlichen Zahlen.

Lösung 3: Prüfen eines Beweises

- (a) Voraussetzungen: $A \subseteq C, B \subseteq C$ und $x \in A$ Behauptung: $x \in B$.
- (b) Fehler:

Der Schluss "Da $x \notin B$ und $B \subseteq C$ ist, gilt $x \notin C$ " ist falsch. Für $B := \{1\}$, $C := \{1,2\}$, x = 2 ist die Voraussetzung $x \notin B \land B \subseteq C$ erfüllt, aber es gilt nicht $x \notin C$.

(c) Gegenbeispiel:

Für $A := \{1\}, B := \{2\}, C := \{1,2\}, x = 1$ ist die Voraussetzung $A \subseteq C \land B \subseteq C \land x \in A$ des Theorems erfüllt, aber die Behauptung $x \in B$ ist falsch.

Lösung 4: Strukturierter Beweis

Theorem: Sei $A \cap B = C$. Wenn $A \cup B = C$ und $B = \emptyset$ ist, dann ist auch $A = \emptyset$. Beweis schrittweise nach dem Schema von Folie Mod-2.59(a-i)!

• Gültige Aussagen: $A \cap B = C$ Behauptungen: $A \cup B = C$ und $B = \emptyset$ impliziert $A = \emptyset$

• Die Behauptung ist eine Implikation. Die linke Seite der Implikation wird zu den Voraussetzungen hinzugefügt und die rechte Seite als Behauptung bewiesen.

Gültige Aussagen: $A \cap B = C$, $A \cup B = C$, $B = \emptyset$ Behauptungen: $A = \emptyset$

- Aus $A \cap B = C$ und $B = \emptyset$ ergibt sich: $C = \emptyset$ Gültige Aussagen: $A \cap B = C$, $A \cup B = C$, $B = \emptyset$, $C = \emptyset$ Behauptungen: $A = \emptyset$
- Aus $A \cup B = C$ und $C = \emptyset$ ergibt sich: $A = \emptyset$ Gültige Aussagen: $A \cap B = C$, $A \cup B = C$, $B = \emptyset$, $C = \emptyset$, $A = \emptyset$ Behauptungen: $A = \emptyset$

Die Behauptung ist eine gültige Aussage. Also ist auch das Theorem korrekt.

Lösung 5: Induktionsbeweis

Voraussetzung: $n \in \mathbb{N}_0$

Behauptung: $|\{w \mid w \in \{A, B, ..., Z\} *, |w| \le n\}| = \frac{26^{n+1}-1}{25}$

Induktions anfang: n=0

 $|\{()\}|=1=rac{26^1-1}{25}$ Es gibt eine Zeichenkette der Länge 0, das leere Wort.

Induktionsschritt: $n \rightarrow n+1$

$$\begin{aligned} &|\{w\mid w\in\{A,B,...,Z\}*,\;|w|\leq n+1\}|\\ &=|\{w\mid w\in\{A,B,...,Z\}*,\;|w|=n+1\}\cup\{w\mid w\in\{A,B,...,Z\}*,\;|w|\leq n\}|\end{aligned}$$

Die beiden Mengen sind disjunkt, daher

$$\begin{split} |\{w\mid w\in\{A,B,...,Z\}*,\;|w|=n+1\}\cup\{w\mid w\in\{A,B,...,Z\}*,\;|w|\leq n\}| =\\ |\{w\mid w\in\{A,B,...,Z\}*,\;|w|=n+1\}|+|\{w\mid w\in\{A,B,...,Z\}*,\;|w|\leq n\}| =\\ 26^{n+1}+\frac{26^{n+1}-1}{25}= \end{split}$$

$$\frac{25 \times 26^{n+1}}{25} + \frac{26^{n+1} - 1}{25} =$$

$$\frac{25 * 26^{n+1} + 26^{n+1} - 1}{25} =$$

$$\frac{26*26^{n+1}-1}{25}=\\26^{n+2}-1$$