7 Modellierung von Abläufen 7.1 Endliche Automaten

Endlicher Automat:

Formaler Kalkül zur Spezifikation von realen oder abstrakten Maschinen. Sie

- reagieren auf äußere Ereignisse,
- · ändern ihren inneren Zustand.
- produzieren ggf. Ausgabe.

Endliche Automaten werden eingesetzt, um

- das Verhalten realer Maschinen zu spezifizieren, z. B. Getränkeautomat,
- das Verhalten von Software-Komponenten zu spezifizieren,
 z. B. Reaktionen von Benutzungsoberflächen auf Bedienereignisse,
- Sprachen zu spezifizieren: Menge der Ereignis- oder Symbolfolgen, die der Automat akzeptiert, z. B. Schreibweise von Bezeichnern und Zahlwerten in Programmen

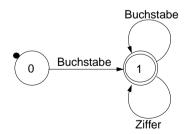
Zunächst definieren wir nur die **Eingabeverarbeitung** der Automaten; das Erzeugen von **Ausgabe** fügen wir **später** hinzu.

Mod-7.2

Zwei einführende Beispiele

Endlicher Automat definiert eine **Sprache**, d. h. eine Menge von Wörtern. Ein Wort ist eine Folge von Zeichen.

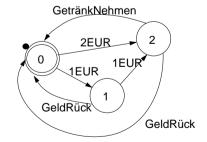
Hier: Bezeichner in Pascal-Programmen:



Akzeptiert Folgen von Buchstaben und Ziffern beginnend mit einem Buchstaben.

Endlicher Automat spezifiziert das **Verhalten einer Maschine**.

Hier: einfacher Getränkeautomat:



Akzeptiert Folgen von Ereignissen zur Bedienung eines Getränkeautomaten

Endliche Automaten können durch **gerichtete, markierte Graphen** dargestellt werden, **Ablaufgraphen**.

Vorlesung Modellierung WS 2011/12 / Folie 701

Ziele:

Charakterisierung endlicher Automaten

in der Vorlesung:

Erläuterungen dazu

nachlesen:

Kastens, Kleine Büning: Modellierung, Abschnitt 7.1

Vorlesung Modellierung WS 2011/12 / Folie 702

Ziele:

Eindruck von Automaten und ihrer Darstellung

in der Vorlesung:

Informelle Erläuterungen zu

- Zuständen,
- · Übergängen,
- · äußeren Ereignissen

nachlesen:

Kastens, Kleine Büning: Modellierung, Abschnitt 7.1

8 hai Prof Dr II ue Kastans

Alphabete

Alphabet:

Eine **Menge von Zeichen** zur Bildung von Zeichenfolgen, häufig mit Σ bezeichnet.

Wir betrachten hier nur endliche Alphabete, z. B.

Ein Wort über einem Alphabet Σ ist eine Zeichenfolge aus Σ^*

statt
$$(a_1, a_2, ..., a_n) \in \Sigma^*$$
 schreiben wir $a_1 a_2 ... a_n$, z. B. $10010 \in \{0, 1\}^*$

für die leere Folge schreiben wir auch ϵ (epsilon)

. .. .

Reguläre Ausdrücke

Reguläre Ausdrücke beschreiben Mengen von Worten, die nach bestimmten Regeln aufgebaut sind. Seien F und G reguläre Ausdrücke, dann gilt

augustus and evicent und evicy and girl								
	regulärer Ausdruck	Menge von Worten	Erklärung					
	а	{ a }	Zeichen a als Wort					
	ε	{ε}	das leere Wort					
	F G	$\{f \mid f \in F\} \cup \{g \mid g \in G\}$	Alternativen					
	FG	$\{\ f\ g\ \ f\in F,\ g\in G\ \}$	Zusammenfügen von Worten					
	F ⁿ	$\{f_1f_2f_n\mid \forall i\in\{1,n\}\!\!:f_i\inF\}$	n Worte aus F					
	F*	$\{\ f_1\ f_2\\ f_n\ \ n\geq 0\ und\ \forall i\in \{1,n\}\!;\ f_i\in\ F\ \}$	Folgen von Worten aus F					
	F ⁺	$\{\:f_1\:f_2\:\:f_n\mid n\ge 1\:und\:\forall i\in\{1,n\}\!\colon f_i\in\:F\:\}$	nicht-leere Folgen von Worten aus F					
	(F)	F	Klammerung					
Beispiele:		1 ³ (1 0)* 0 ³						
	Е	Bezeichner = B (B D)* mit B = a b z und D = 0 1 9						

Vorlesung Modellierung WS 2011/12 / Folie 703

Ziele:

Mod-7.3

Wörter über Alphabeten

in der Vorlesung:

Erläuterungen und Beispiele dazu

nachlesen:

Kastens, Kleine Büning: Modellierung, Abschnitt 7.1

Vorlesung Modellierung WS 2011/12 / Folie 704

Ziele:

Einfache Beschreibung von Wortmengen kennenlernen

in der Vorlesung:

Erläuterungen zu

- rekursiver Definition von regulären Ausdrücken,
- · Hintereinanderschreibung von Zeichen und Teilworten,
- · Folgen von Worten,
- · Alternativen,
- · Namen für reguläre Ausdrücke

nachlasan:

Kastens, Kleine Büning: Modellierung, Abschnitt 7.1

Verständnisfragen:

Unterscheiden Sie:

- das leere Wort,
- · die leere Menge,
- die Menge, die nur das leere Wort enthält.

Quintupel A = (Σ , Q, δ , q₀, F) mit

Σ endliches **Eingabealphabet**

Q endliche **Menge von Zuständen**

δ Übergangsfunktion aus Q × Σ -> Q

 $q_0 \in Q$ Anfangszustand

F ⊆ Q Menge der Endzustände (akzeptierend)

Wir nennen $r = \delta(q, a)$ Nachfolgezustand von q unter a.

A heißt deterministisch, weil es zu jedem Paar (q, a), mit $q \in Q$, $a \in \Sigma$, höchstens einen Nachfolgezustand $\delta(q, a)$ gibt, d. h. δ ist eine Funktion in Q.

A heißt vollständig, wenn die Übergangsfunktion δ eine totale Funktion ist.

Mod-7.0

Gerichteter Graph zu endlichem Automaten

Knoten: **Zustände** des Automaten; Anfangszustand und Endzustände werden speziell markiert **Kanten**: **Übergangsfunktion**, q -> r markiert mit a, genau dann wenn $\delta(q, a) = r$ Es gibt Kanten, die sich nur durch ihre Markierung unterscheiden, deshalb: **Multigraph**

Beispiele von Mod-7.2:

$$\Sigma := \text{Menge der ASCII-Zeichen}$$

$$Q := \{0, 1\}$$

$$\delta := \frac{ \text{a...zA...Z} | 0...9 | \text{sonstige}}{0 | 1 | 1 |}$$

$$q_0 = 0$$

$$F = \{1\}$$
Buchstabe Ziffer

Buchstabe, Ziffer sind Namen reg. Ausdrücke

δ :=		45110	arun.	CaldDitale	Catuinklakanan
• •				Gelakuck	GetränkNehmer
	0	1	2		
	1	2		0	
	2			0	0
$q_0 = 0$ $F = \{0\}$ GetränkNehmen $\begin{array}{c} \text{GetränkNehmen} \\ \text{GeldRück} \end{array}$ GeldRück					

 $\Sigma := \{1EUR, 2EUR, GeldRück, GetränkNehmen\}$

Vorlesung Modellierung WS 2011/12 / Folie 705

Ziele:

Formale Definition verstehen

in der Vorlesung:

Erläuterungen zu

- · den Komponenten des 5-Tupels,
- · dem Begriff "deterministisch",
- · der Eigenschaft "vollständig"

nachlesen:

Kastens, Kleine Büning: Modellierung, Abschnitt 7.1

Vorlesung Modellierung WS 2011/12 / Folie 706

Ziele:

Graphdarstellung verstehen

in der Vorlesung:

- · Übergangsfunktion ist als Tabelle angegeben
- · Markierung von Anfangs- und Endzuständen
- Zusammenfassung von Zeichen mit gleichen Übergängen zu Zeichenklassen

nachlesen:

Kastens, Kleine Büning: Modellierung, Abschnitt 7.1

Akzeptierte Sprache

Die Zeichen einer Zeichenfolge bewirken nacheinander Zustandsübergänge in Automaten. **Zustandsübergangsfunktion erweitert für Zeichenfolgen**:

Sei δ : Q x Σ -> Q ei

eine Übergangsfunktion für Zeichen,

dann ist δ : Q x Σ^* -> Q eine **Übergangsfunktion für Wörter**, rekursiv definiert:

- Übergang mit dem **leeren Wort**: δ (q, ϵ) = q für alle q ϵ Q
- Übergang mit dem **Wort wa**: δ (q, wa) = δ (δ (q, w), a) für alle q \in Q, w \in Σ^* , a \in Σ

Statt δ schreiben wir meist auch δ .

Sei A = $(\Sigma, Q, \delta, q_0, F)$ ein deterministischer endlicher Automat und $w \in \Sigma^*$.

A akzeptiert das Wort w genau dann, wenn δ (q₀, w) \in F.

Die Menge L(A) : = { $w \in \Sigma^* \mid \delta (q_0, w) \in F$ } heißt die von A akzeptierte Sprache.

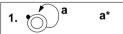
Beispiele für Sprachen, die von endlichen Automaten akzeptiert werden können:

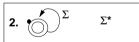
$$L_1 = a^+ b^+ = \bigcup_{n, m \in \mathbb{N}} a^n b^m \qquad L_2 = \Sigma^*$$

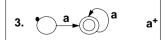
Es gibt keinen endlichen Automaten, der $L_3 = n \in \mathbb{N}$ an b^n akzeptiert.

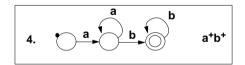
iviou - 7.0

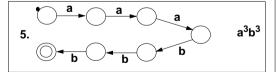
Beispiele: Endliche Automaten und ihre Sprachen

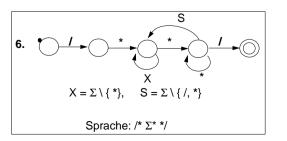












Vorlesung Modellierung WS 2011/12 / Folie 707

Ziele:

Sprache eines endlichen Automaten verstehen

in der Vorlesung:

Erläuterungen

- · zur Übergangsfunktion für Wörter,
- · zur Sprache des Automaten,
- · zu Beispielen

In der Praxis werden Automaten meist nicht vollständig (siehe Mod-7.5) angegeben. Sie arbeiten dann nach der **Regel** des längsten Musters. d. h.:

- Der Automat macht Übergänge, solange sie für die Eingabe definiert sind.
- Der zuletzt durchlaufene Endzustand bestimmt das akzeptierte Wort.

nachlesen:

Kastens, Kleine Büning: Modellierung, Abschnitt 7.1

Vorlesung Modellierung WS 2011/12 / Folie 708

Ziele:

Sprachen endlicher Automaten verstehen

in der Vorlesung:

Erläuterungen zur Sprache der Automaten

nachlesen:

Kastens, Kleine Büning: Modellierung, Abschnitt 7.1

III bei Prof. Dr. Uwe Kastens

Nicht-deterministischer Automat

Nicht-deterministisch (allgemein):

Es gibt mehrere Möglichkeiten der Entscheidung bzw. der Fortsetzung, es ist aber nicht festgelegt, welche gewählt wird.

Nicht-deterministischer endlicher Automat:

Die Übergangsfunktion δ kann einen Zustand q und ein Eingabezeichen a auf mehrere Nachfolgezustände abbilden δ : Q × Σ -> Pow (Q).

Welcher gewählt wird, ist nicht festgelegt.

 Σ , Q, q₀, F sind wie für deterministische endliche Automaten definiert.

Erweiterung von δ auf Zeichenfolgen:

Sei A = (Σ , Q, δ , q_0 , F) ein nicht-deterministischer endlicher Automat; dann ist δ definiert:

- Übergang mit dem **leeren Wort**: δ (q, ϵ) = { q } für alle q ϵ Q
- Übergang mit dem **Wort wa**: δ (q, wa) = {q' \in Q | $\exists p \in \delta$ (q, w): q' $\in \delta$ (p, a)} für alle q \in Q, w $\in \Sigma^*$, a $\in \Sigma$,

d. h. die Menge aller Zustände, die man von q mit wa erreichen kann

Wir schreiben meist δ für δ

Ein nicht-deterministischer endlicher Automat A **akzeptiert** ein Wort w gdw. δ (q₀, w) \cap F \neq \emptyset

 $L(A) = \{ w \in \Sigma^* \mid \delta (q_0, w) \cap F \neq \emptyset \} \text{ ist die von A akzeptierte Sprache}.$

Mod - 7.10

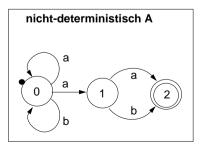
Nicht-deterministische und deterministische Automaten

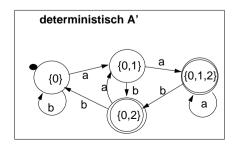
Satz: Sei L(A) die Sprache eines nicht-deterministischen Automaten.

Dann gibt es einen deterministischen Automaten, der L(A) akzeptiert.

Man kann aus einem nicht-deterministischen Automaten A = $(\Sigma, Q, \delta, q_0, F)$ einen deterministischen A' = $(\Sigma, Q', \delta', q_0', F')$ systematisch konstruieren:

Jeder Zustand aus Q' repräsentiert eine Menge von Zuständen aus Q, d. h. $Q' \subseteq Pow(Q)$ Beispiel:





Die Zahl der Zustände kann sich dabei exponentiell vergrößern.

Vorlesung Modellierung WS 2011/12 / Folie 709

Ziele:

Nicht-Determiniertheit verstehen

in der Vorlesung:

Erläuterungen

- · zur Übergangsfunktion an Beispielen,
- zur Erweiterung der Übergangsfunktion,
- zur Nicht-Determiniertheit im Automaten und im allgemeinen.

nachlesen:

Kastens, Kleine Büning: Modellierung, Abschnitt 7.1

Vorlesung Modellierung WS 2011/12 / Folie 710

Ziele:

Zusammenhang der Automaten verstehen

in der Vorlesung:

(Zusammen mit Mod-7.11)

- Zusammenhang: Zustand Menge von Zuständen,
- · Beispiel erläutern.
- L(A): Wörter über {a, b}*, deren zweitletztes Zeichen ein a ist.
- Bei n-letztem Zeichen benötigt der deterministische Automat 2 hoch n Zustände.

nachlesen:

Kastens, Kleine Büning: Modellierung, Abschnitt 7.1

Do best Dead Dead Illinois

Konstruktion deterministischer Automaten

Sei A ein nicht-deterministischer Automate A = $(\Sigma, Q, \delta, q_0, F)$ daraus wird ein deterministischer Automat A' = $(\Sigma, Q', \delta', q_0', F')$ systematisch konstruiert:

Jeder Zustand aus Q' repräsentiert eine Menge von Zuständen aus Q, d. h. Q' ⊆ Pow(Q)

Konstruktionsschritte:

- 1. Anfangszustand: $q_0' = \{q_0\}$
- 2. Wähle einen schon konstruierten Zustand $q' \in Q'$ wähle ein Zeichen $a \in \Sigma$

berechne r' =
$$\delta'(q', a) = \bigcup_{q \in q'} \delta(q, a)$$

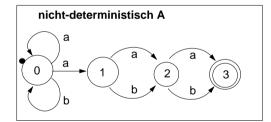
d. h. r' repräsentiert die Vereinigung aller Zustände, die in A von q unter a erreicht werden. r' wird **Zustand in Q'** und δ' (q', a) = r' wird **Übergang in** δ' .

- 3. **Wiederhole (2) bis keine neuen Zustände oder Übergänge** mehr konstruiert werden können.
- 4. Endzustände: F' = {q' ∈ Q' | q' ∩ F ≠ ∅}
 d. h. q' ist Endzustand, wenn seine Zustandsmenge einen Endzustand von A enthält.

Beispiel zur Konstruktion NDEA -> DEA

Sprache: (a | b)* a (a | b)2

Worte w über {a, b} mit |w| > 2 und drittletztes Zeichen ist ein a





Vorlesung Modellierung WS 2011/12 / Folie 711

Ziele:

Konstruktionsprinzip verstehen

in der Vorlesung:

(Zusammen mit Mod-7.10 und 7.11a)

- · Erläuterungen zur Konstruktion,
- · Konstruktion am Beispiel,

Dies ist ein Beispiel für ein wichtiges, induktives Konstruktionsschema:

- · Gegeben eine Regel und ein Anfangswert.
- · Wende die Regel an, solange sich noch etwas Neues ergibt.

nachlesen:

Kastens, Kleine Büning: Modellierung, Abschnitt 7.1

Vorlesung Modellierung WS 2011/12 / Folie 711a

Ziele:

Konstruktionsprinzip am Beispiel verstehen

in der Vorlesung:

(Zusammen mit Mod-7.11)

- Erläuterungen zur Konstruktion,
- · Konstruktion am Beispiel,

nachlesen:

Kastens, Kleine Büning: Modellierung, Abschnitt 7.1

© 2008 bei Prof. Dr. U

Endliche Automaten mit Ausgabe

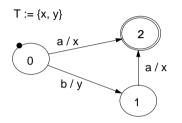
Man kann mit endlichen Automaten auch **Reaktionen der modellierten Maschine** spezifizieren: **Automaten mit Ausgabe**.

Wir erweitern den Automaten um ein **endliches Ausgabealphabet T** und um eine Ausgabefunktion. Es gibt 2 Varianten für die Ausgabefunktion:

Mealy-Automat:

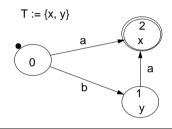
Eine Ausgabefunktion $\lambda: Q \times \Sigma -> T^*$ ordnet den **Zustandsübergängen** jeweils ein **Wort über dem Ausgabealphabet** zu.

Graphische Notation:



Moore-Automat:

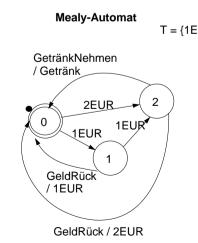
Eine Ausgabefunktion $\mu: Q \to T^*$ ordnet den **Zuständen** jeweils ein **Wort über dem Ausgabealphabet** zu. Es wird bei Erreichen des Zustands ausgegeben.

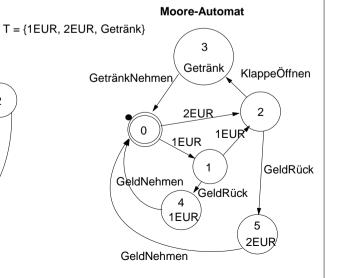


Ein Mealy-Automat kann die Ausgabe feiner differenzieren als ein Moore-Automat.

Beispiele für endliche Automaten mit Ausgabe

Die Spezifikation des Getränkeautomaten aus Mod-7.2 wird mit Ausgabe versehen:





Vorlesung Modellierung WS 2011/12 / Folie 712

Ziele:

Mod - 7.12

Mod-7.13

Zwei Ausgabevarianten

in der Vorlesung:

- · Erläuterungen dazu;
- Wenn keine Ausgabe angegeben ist, wird das leere Wort als Ausgabe angenommen.
- · Mealy- und Moore-Automaten werden auch so definiert, dass jeweils ein Zeichen statt ein Wort ausgegeben werden.

nachlesen:

Kastens, Kleine Büning: Modellierung, Abschnitt 7.1

Vorlesung Modellierung WS 2011/12 / Folie 713

Ziele:

Ausgabe zuordnen

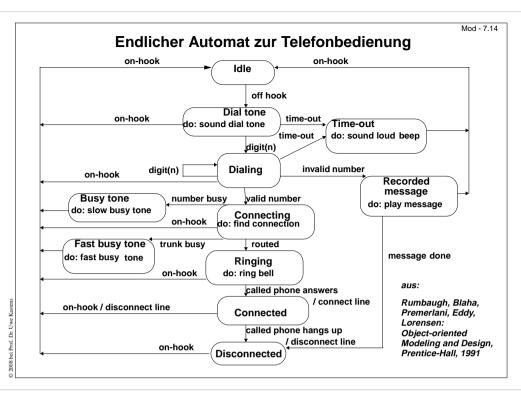
in der Vorlesung:

Erläuterungen dazu

- · Mealy-Automat erläutern
- · An einigen Positionen bleibt die Ausgabe leer.
- · Moore-Automat erläutern
- · Zusätzliche Zustände begründen

nachlesen:

Kastens, Kleine Büning: Modellierung, Abschnitt 7.1



Endliche Automaten in UML: Modell einer Uhr UML Diagrammtyp Statecharts: Bedienung einer Uhr Modellierung von Abläufen Einstellen von Zeit, Wecker, Stoppuhr Konzeptuelle Grundlage: sm Uhr-Einstellung **Endliche Automaten** Zeit Zustände können hierarchisch zu Teilautomaten verfeinert werden. Mehrere Teilautomaten können "quasi-gleichzeitig" Übergänge ausführen - zur Modellierung von Nebenläufigkeit. Anfangszustand Endzustand Stoppuhr Wecker а elementarer Zustand Stunde Teilautomat

Vorlesung Modellierung WS 2011/12 / Folie 714

Ziele:

Praktisches Modellierungsbeispiel sehen

in der Vorlesung:

- · Erläuterungen dazu
- · Eingabe sind Ereignisse beim Telefonieren
- · Ausgabe sind ausgelöste Aktionen
- Ausgabe ist sowohl einigen Zuständen (do:...) als auch einigen Übergängen (/...) zugeordnet.

nachlesen:

Kastens, Kleine Büning: Modellierung, Abschnitt 7.1

Übungsaufgaben:

Modellieren Sie die Bedienung des Getränkeautomaten durch endliche Automaten. Modellieren Sie Das Betätigen der Tasten, die Geldeingabe, Geldrückgabe und Getränkeausgabe.

Vorlesung Modellierung WS 2011/12 / Folie 714a

Ziele:

UML Statechart am Beispiel kennenlernen

in der Vorlesung:

Erläuterungen dazu

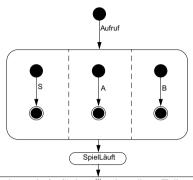
- Wiederholtes Betätigen der Taste "a" schaltet zwischen der Einstellung von Zeit, Wecker und Stoppuhr um.
- Taste "x" beendet das Einstellen.
- · Der Teilautomat "Zeit" ist weiter verfeinert:
- Von jedem seiner 3 Zustände wird er mit "a" oder "x" verlassen.
- · Jedes Statechart kann systematisch in einen endlichen Automaten mit gleichem Verhalten transformiert werden.

nachlesen:

Kastens, Kleine Büning: Modellierung, Abschnitt 7.1.5

Modellierung von Nebenläufigkeit: Beginn eines Tennisspieles

UML Statechart

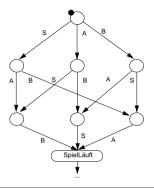


Mit dem "Aufruf" des werden die 3 Teilautomaten des mittleren Zustandes "gleichzeitig" aktiviert.

Sie führen jeweils einen Übergang aus (Ankunft von Schiedsrichter, Spieler A, Spieler B).

Wenn sie ihre Endzustände erreicht haben, wird der zusammengesetzte Zustand verlassen.

Det. endlicher Automat



Der gleichbedeutende **endliche Automat** modelliert **alle Reihenfolgen der Übergänge** S, A, B.

Das Statechart abstrahiert davon.

Vorlesung Modellierung WS 2011/12 / Folie 714b

Ziele:

Modellierung von Nebenläufigkeit

in der Vorlesung:

Erläuterungen dazu

- Es ist nicht relevant, in welcher Reihenfolge die Übergänge in den Teilautomaten des Statechart ausgeführt werden.
- · Deshalb ist das Statechart übersichtlicher als der endliche Automat.

nachlesen:

Kastens, Kleine Büning: Modellierung, Abschnitt 7.1.5

7.2 Petri-Netze

Petri-Netz (auch Stellen-/Transitions-Netz):

Formaler Kalkül zur **Modellierung von Abläufen mit nebenläufigen Prozessen** und kausalen Beziehungen

Basiert auf bipartiten gerichteten Graphen:

- Knoten repräsentieren Bedingungen, Zustände bzw. Aktivitäten.
- Kanten verbinden Aktivitäten mit ihren Vor- und Nachbedingungen.
- Knotenmarkierung repräsentiert den veränderlichen Zustand des Systems.
- graphische Notation.

C. A. Petri hat sie 1962 eingeführt.

Es gibt zahlreiche Varianten und Verfeinerungen von Petri-Netzen. Hier nur die Grundform.

Anwendungen von Petri-Netzen zur Modellierung von

- realen oder abstrakten Automaten und Maschinen
- kommunizierenden Prozessen in der Realität oder in Rechnern
- Verhalten von Hardware-Komponenten
- Geschäftsabläufe
- Spielpläne

Vorlesung Modellierung WS 2011/12 / Folie 715

Ziele:

Einführung zu Petri-Netzen

in der Vorlesung:

Erläuterungen dazu

nachlesen:

Kastens, Kleine Büning: Modellierung, Abschnitt 7.2

2012 bei Prof. Dr. Uwe Kastens

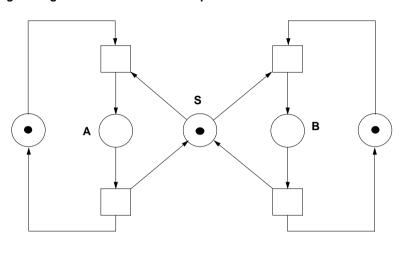
Einführendes Beispiel

Das Petri-Netz modelliert zwei zyklisch ablaufende Prozesse.

Die mittlere Stelle synchronisiert die beiden Prozesse.

so dass sie sich nicht zugleich in den Zuständen A und B befinden können.

Prinzip: gegenseitiger Ausschluss durch Semaphor



Definition von Petri-Netzen

Ein **Petri-Netz** ist ein Tripel P = (S, T, F) mit

S Menge von Stellen. repräsentieren Bedingungen, Zustände; graphisch Kreise

Т Menge von Transitionen oder Übergänge, repräsentieren Aktivitäten; graphisch Rechtecke

F **Relation** mit $F \subseteq S \times T \cup T \times S$ repräsentieren kausale oder zeitliche Vor-, Nachbedingungen von Aktivitäten aus T

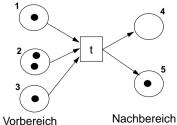
P bildet einen bipartiten, gerichteten Graphen mit den Knoten S U T und den Kanten F.

Zu einer Transition t in einem Petri-Netz P sind folgende Stellenmengen definiert

Vorbereich (t) $:= \{ s \mid (s, t) \in F \}$ Nachbereich (t) := $\{ s \mid (t, s) \in F \}$

Der Zustand des Petri-Netzes wird durch eine Markierungsfunktion angegeben, die jeder Stelle eine Anzahl von Marken zuordnet: $M_P: S \to \mathbb{N}_0$

Sind die Stellen von 1 bis n nummeriert, so kann man M_P als Folge angeben, z. B. (1, 2, 1, 0, 1)



Vorlesung Modellierung WS 2011/12 / Folie 716

Ziele:

Mod-7.16

Eindruck von Petri-Netzen

in der Vorlesung:

informelle Erläuterungen zu

- · parallelen Prozessen
- · gegenseitigem Ausschluss
- Markierung und Schalten in Petri-Netzen

nachlesen:

Kastens, Kleine Büning: Modellierung, Abschnitt 7.2

Vorlesung Modellierung WS 2011/12 / Folie 717

Ziele:

Petri-Netz formal verstehen

in der Vorlesung:

Erläuterungen zu den Begriffen

nachlesen:

Kastens, Kleine Büning: Modellierung, Abschnitt 7.2

Verständnisfragen:

Welche Arten von Kanten kann es in einem Petri-Netz nicht geben?

Eine **Transition t kann schalten**, wenn für alle Stellen $s \in Vorbereich (t)$ gilt $M(s) \ge 1$.

Wenn eine Transition t schaltet, gilt für die Nachfolgemarkierung M':

M'(v) = M(v) - 1 für alle

v ∈ Vorbereich(t) \ Nachbereich(t)

M'(n) = M(n) + 1 für alle

n ∈ Nachbereich(t) \ Vorbereich(t)

M'(s) = M(s) sonst

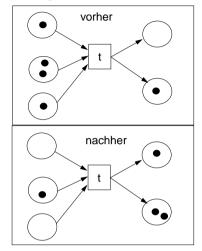
Wenn in einem Schritt mehrere Transitionen schalten können, wird eine davon nicht-deterministisch ausgewählt.

In jedem Schritt schaltet genau eine Transition

- auch wenn das Petri-Netz parallele Abläufe modelliert!

Zwei Transitionen mit gemeinsamen Stellen im Vorbereich können (bei passender Markierung) im **Konflikt** stehen:

Jede kann schalten, aber nicht beide nacheinander.

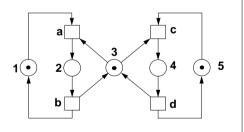


Markierungen

Zu jedem Petri-Netz wird eine **Anfangsmarkierung M**₀ angeben.

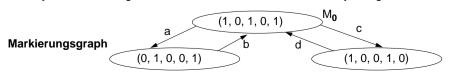
z. B.
$$\mathbf{M_0} = (1, 0, 1, 0, 1)$$

Wir sagen, eine Markierung M_2 ist von einer Markierung M_1 aus erreichbar, wenn es ausgehend von M_1 eine Folge von Transitionen gibt, die nacheinander schalten und M_1 in M_2 überführen können.



Die Markierungen eines Petri-Netzes kann man als gerichteten **Markierungsgraphen** darstellen:

- · Knoten: erreichbare Markierung
- Kante x->y: Die Markierung x kann durch Schalten einer Transition in y übergehen.



Vorlesung Modellierung WS 2011/12 / Folie 718

Ziele:

Schaltregel verstehen

in der Vorlesung:

- · Schaltregel erläutern
- · nicht-deterministische Auswahl zeigen,
- Konflikt zwischen mehreren Transitionen, die Schalten können zeigen.

nachlesen:

Kastens, Kleine Büning: Modellierung, Abschnitt 7.2

Vorlesung Modellierung WS 2011/12 / Folie 719

Ziele:

Darstellung von Markierungen verstehen

in der Vorlesung:

Markierung als

- Funktion,
- Tupel,
- · Knoten im Markierungsgraph;
- · Zusammenhang zu endlichen Automaten.

nachlesen:

Kastens, Kleine Büning: Modellierung, Abschnitt 7.2

9 hai Beaf Dr. Huss Kastans

Schaltfolgen

Mod-7.20

Schaltfolgen kann man angeben als

• Folge von Markierungen

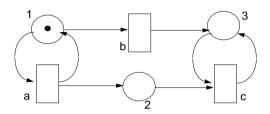
• Folge der geschalteten Transitionen

Beispiel für eine **Schaltfolge** zum Petri-Netz auf Mod-7.19:

(1, 0, 1, 0, 1)	a
(0, 1, 0, 0, 1)	k
(1, 0, 1, 0, 1)	C

(1, 0, 0, 1, 0) (1, 0, 1, 0, 1)

Schaltfolgen können als Wörter einer Sprache aufgefasst werden.



alle Schaltfolgen ohne Nachfolgemarkierung haben die Form:

aⁿ b cⁿ

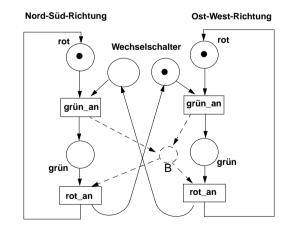
Petri-Netze können unbegrenzt zählen: Anzahl der Marken auf einer Stelle.

Mod-7.21

Modellierung alternierender zyklischer Prozesse

Beispiel: Einfache Modellierung einer Ampelkreuzung:

- 2 sich zyklisch wiederholende Prozesse
- Die beiden Stellen "Wechselschalter" koppeln die Prozesse, sodass sie alternierend fortschreiten.
- Alle Stellen repräsentieren Bedingungen: 1 oder 0 Marken
- "Beobachtungsstelle" B modelliert, wieviele Richtungen "grün" haben



Vorlesung Modellierung WS 2011/12 / Folie 720

Ziele:

Mit Schaltfolgen modellieren

in der Vorlesung:

- Notation von Schaltfolgen,
- Zusammenhang zu Sprachen von endlichen Automaten.

nachleser

Kastens, Kleine Büning: Modellierung, Abschnitt 7.2

Vorlesung Modellierung WS 2011/12 / Folie 721

Ziele:

Modellieren von Bedingungen lernen

in der Vorlesung:

Erläuterung

- · der zyklischen Prozesse,
- der Bedingungen,
- der Rolle der Beobachtungsstelle.

nachlesen:

Kastens, Kleine Büning: Modellierung, Abschnitt 7.2

08 bei Prof. Dr. Uwe Kastens

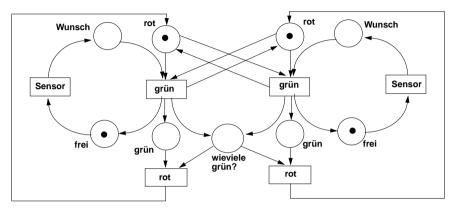
Mod-7.22

Beispiel für ein binäres Netz

Ein Petri-Netz heißt **binär (sicher)**, wenn für alle aus M_0 erreichbaren Markierungen M und für alle Stellen s gilt $M(s) \le 1$.

Petri-Netze, deren Stellen Bedingungen repräsentieren müssen binär sein.

Beispiel: Modellierung einer Sensor-gesteuerten Ampelkreuzung:



aus: B. Baumgarten: Petri-Netze, Bibliographisches Institut & F. A. Brockhaus AG, 1990

Mod - 7.23

Lebendige Petri-Netze

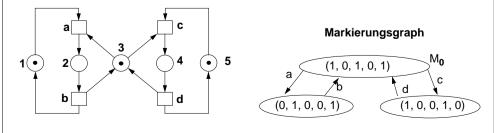
Petri-Netze modellieren häufig Systeme, die nicht anhalten sollen.

Ein Petri-Netz heißt **schwach lebendig**, wenn es zu jeder von M_0 erreichbaren Markierung eine Nachfolgemarkierung gibt.

Eine **Transition t heißt lebendig**, wenn es zu jeder von M_0 erreichbaren Markierung M' eine Markierung M'' gibt, die von M' erreichbar ist, und in der t schalten kann.

Ein Petri-Netz heißt lebendig, wenn alle seine Transitionen lebendig sind.

Beispiel für ein lebendiges Petri-Netz (Mod-7.19):



Vorlesung Modellierung WS 2011/12 / Folie 722

Ziele:

Stellen als Bedingungen verstehen

in der Vorlesung:

- Erläuterungen zu dem Beispiel,
- · Vor- und Nachbedingungen diskutieren,
- · Eigenschaften diese Modells diskutieren

nachlesen:

Kastens, Kleine Büning: Modellierung, Abschnitt 7.2

Vorlesung Modellierung WS 2011/12 / Folie 723

Ziele:

Begriffe zur Lebendigkeit von Netzen verstehen

in der Vorlesung:

Erläuterungen zu

- · nicht-terminierenden Systemen,
- · Lebendigkeitsbegriffen,

am Beispiel von Mod-7.19

nachlesen:

Kastens, Kleine Büning: Modellierung, Abschnitt 7.2

i Prof. Dr. Uwe Kastens

Verklemmung: Ein System kann unerwünscht anhalten,

weil das Schalten einiger Transitionen zyklisch voneinander abhängt.

Sei: $\sigma \subseteq S$ eine Teilmenge der Stellen eines Petri-Netzes und

Vorbereich (σ) := {t | \exists s \in σ : (t, s) \in F},

d. h. die Transitionen, die auf Stellen in σ wirken

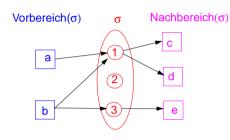
Nachbereich (σ) := {t | \exists s \in σ : (s, t) \in F},

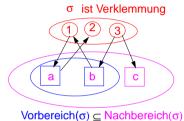
d. h. die Transitionen, die Stellen in σ als Vorbedingung haben

Dann ist σ eine Verklemmung, wenn Vorbereich $(\sigma) \subseteq$ Nachbereich (σ) .

Wenn für alle $s \in \sigma$ gilt M (s) = 0, dann kann es keine Marken auf Stellen in σ in einer Nachfolgemarkierung von M geben.

Verklemmung beim Lesen von Dateien





Mod - 7.24

Mod - 7.23a

Datei 1 Datei 2 Datei 1 Datei 2 lesen lesen Prozess 2 Prozess 1 3 (•) 6 Datei 2 lesen Datei 1 lesen **Dateien** Dateien freigeben freigeben

 $s = \{1, 2, 4, 5, 7, 8\}$

Vorbereich (s)

 $= \{b, c, e, f\}$

Nachbereich (s)

 $= \{a, b, c, d, e, f\}$

M(s) = 0

Anfangsmarkierung:

(1, 1, 0, 0, 1, 0, 0, 1)

Vorlesung Modellierung WS 2011/12 / Folie 723a

Ziele:

Begriff Verklemmung verstehen

in der Vorlesung:

Erläuterungen zu

• Verklemmungen am Beispiel von Mod-7.24

nachlesen

Kastens, Kleine Büning: Modellierung, Abschnitt 7.2

Vorlesung Modellierung WS 2011/12 / Folie 724

Ziele:

Beispiel für eine Verklemmung

in der Vorlesung:

Erläuterung:

- Jeder der Prozesse fordert nacheinander zwei Dateien an und gibt sie dann beide wieder frei.
- Die Verklemmung tritt ein, wenn jeder Prozess eine Datei belegt und auf die andere wartet.
- · Sigma charakterisiert diese Situation.
- Es gibt verschiedene Techniken, die Verklemmung zu vermeiden, z. B.
- Bei einem Prozess die Reihenfolge der Dateien vertauschen.
- · Beide Dateien zugleich anfordern.

nachlesen:

Kastens, Kleine Büning: Modellierung, Abschnitt 7.2

Kapazitäten und Gewichte

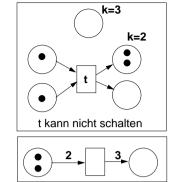
Man kann Stellen eine begrenzte Kapazität von $k \in \mathbb{N}$ Marken zuordnen.

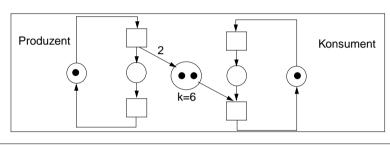
Die Bedingung, dass eine **Transition t schalten kann**, wird erweitert um:

Die Kapazität keiner der Stellen im Nachbereich von t darf überschritten werden.

Kanten kann ein Gewicht $n \in \mathbb{N}$ zugeordnet werden: sie bewegen beim Schalten n Marken.

Beispiel: Beschränkter Puffer





Mod - 7.26

Mod - 7.25

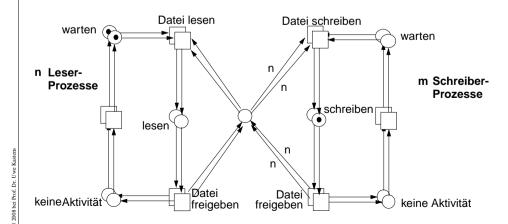
Beispiel: Leser-Schreiber-System

n Leser-Prozesse und m Schreiber-Prozesse operieren auf derselben Datei.

Mehrere Leser können zugleich lesen.

Ein Schreiber darf nur dann schreiben, wenn kein anderer Leser oder Schreiber aktiv ist.

Modellierung: ein Schreiber entzieht der Synchronisationsstelle alle n Marken.



Vorlesung Modellierung WS 2011/12 / Folie 725

Ziele:

Konzepte verstehen

in der Vorlesung:

Erläuterung der beiden Konzepte am Beispiel.

- · Schaltregel wird ergänzt.
- Produzent liefert immer 2 Einheiten zugleich (Kantengewicht 2).
- Produzent kann nur liefern (schalten), wenn die Pufferstelle noch freie Kapazität.

nachlesen:

Kastens, Kleine Büning: Modellierung, Abschnitt 7.2

Vorlesung Modellierung WS 2011/12 / Folie 726

Ziele:

Beispiel für Kapazitäten und Gewichte

in der Vorlesung:

- Erläuterung des Leser-Schreiber-Systems.
- · Allerdings können wechselnde Leser die Schreiber auf Dauer blockieren. Das Petri-Netz ist nicht fair.

nachlesen:

Kastens, Kleine Büning: Modellierung, Abschnitt 7.2

Übungsaufgaben:

Modellieren Sie die Bedienung des Getränkeautomaten durch Petri-Netze. Modellieren Sie Das Betätigen der Tasten, die Geldeingabe, Geldrückgabe und Getränkeausgabe.