4.2 Prädikatenlogik

Prädikatenlogik umfasst Aussagenlogik mit **atomaren Aussagen**, **Variablen**, **Junktoren**. Zusätzliche Konzepte:

- A = (τ, Σ) ist die so genannte Termalgebra (mit Variablen, ohne Axiome) mit Signatur
 Σ = ({T}, F), wobei T die Sorte "Term" ist und alle Operationen f ∈ F von der Form f: Tⁿ → T sind. Terme sind die korrekten Terme bzgl. dieser Termalgebra.
- n-stellige Prädikate sind Operationen P: Tⁿ → BOOL. In einer Konkretisierung entsprechen ihnen n-stellige Relationen,

z. B. "x ist eine Katze" bzw. als Formel: istKatze(x) teilt(a,b), größterGemeinsamerTeiler(a, b, g)

• Quantoren "für alle x gilt α " und "es gibt ein x, so dass α gilt"

in Symbolen: ∀xα bzw. ∃xα

Beispiel: $\forall x \text{ (esIstNacht } \land \text{ istKatze}(x) \rightarrow \text{ istGrau}(x));$

in Worten: "Nachts sind alle Katzen grau."

Schon zur Modellierung einfacher Aufgaben braucht man Konzepte der Prädikatenlogik,

z. B. größter gemeinsamer Teiler:

gegeben: $a \in \mathbb{N}, b \in \mathbb{N}$;

gesucht: größter gemeinsamer Teiler g von a und b, d. h.

 $teilt(g, a) \land teilt(g, b) \land (\forall h (teilt(h, a) \land teilt(h, b) \rightarrow h \leq g))$

Mod-4.22

Vorschau auf Begriffe

Ähnliche Folge von Begriffen wie in der Aussagenlogik:

- prädikatenlogische Formeln als Sprache der Prädikatenlogik Syntax: Terme, Prädikate, logische Junktoren, Quantoren
- gebundene und freie Variable
- Individuenbereich: allgemeiner Wertebereich für Variable und Terme
- Belegung von Variablen mit Werten aus dem Individuenbereich
- Interpretation: Variablenbelegung und Definition der Funktionen und Prädikate
- erfüllbar, allgemeingültig, widerspruchsvoll: wie in der Aussagenlogik definiert
- logischer Schluss: wie in der Aussagenlogik definiert
- Gesetze zum Umformen von Formeln mit Quantoren

© 2007 bei Prof. Dr. Uwe Kastens überarbeitet 2004 Prof. Dr. W. Hauenschild

Prädikatenlogische Formeln

Prädikatenlogische Formeln (PL-Formeln) werden induktiv wie folgt definiert:

- 1. **PrimformeIn** sind Anwendungen von Prädikaten in der Form $P(t_1, ..., t_n)$ oder Gleichungen in der Form $t_1 = t_2$.
 - Dabei ist P ein n-stelliges Prädikatsymbol und die t_i sind Terme der Termalgebra.
 - 0-stellige Prädikatsymbole entsprechen den atomaren Aussagen der Aussagenlogik.
- 2. logische Junktoren bilden prädikatenlogische Formeln:

$$\neg \alpha$$
 $\alpha \land \beta$ $\alpha \lor \beta$
sowie $\alpha \rightarrow \beta$ $\alpha \leftrightarrow \beta$ **als Abkürzungen**
mit prädikatenlogischen Formeln α und β

3. der **Allquantor** ∀ und der **Existenzquantor** ∃ bilden prädikatenlogische Formeln:

$$\forall \mathbf{x} \alpha \text{ und } \exists \mathbf{x} \alpha$$

mit der prädikatenlogischen Formel α ; sie definieren die Variable x

Nur nach (1. - 3.) gebildete Formeln sind syntaktisch korrekte prädikatenlogische Formeln.

Quantoren haben die gleiche Präzedenz wie ¬, also höhere als ∧

Beispiele:

teilt(g, a)
$$\land$$
 teilt(g, b) \land (\forall h (teilt(h, a) \land teilt(h, b) \rightarrow \le (h, g)) (siehe Folie 4.21)
 \forall x \forall y \forall z ((R(x, y) \land R(x,z)) \rightarrow y = z) "R ist eine Funktion"

Mod-4.24

Anmerkungen zu prädikatenlogischen Formeln

- Prädikatsymbole und Operationssymbole in Termen erhalten ihre Bedeutung erst durch die Interpretation der Formel (wie bei abstrakten Algebren), aber
- Prädikate und Operationen werden häufig nicht explizit definiert, sondern mit üblicher Bedeutung der Symbole angenommen.
- Signatur Σ wird meist nicht explizit angegeben, sondern aus den Operationen angenommen, die in den Termen verwendet werden.
- Hier: Prädikatenlogik erster Stufe: Variable sind nur als
 Operanden in Termen erlaubt, aber nicht für Funktionen oder für Prädikate. Nur solche Variablen dürfen quantifiziert werden.

© 2011 bei Prof. Dr. Uwe Kastens überarbeitet 2006 Prof. Dr. W. Hauenschild

Vorkommen von Variablen

Wir sagen: (Eine Variable mit Namen) **x kommt in einer PL-Formel** α **vor**, wenn sie in einer Primformel und dort in einem Term vorkommt.

Für eine PL-Formel der Form $\forall x \alpha$ oder $\exists x \alpha$ ist α der Wirkungsbereich (für x) des Quantors. x ist der Name der Variablen des Quantors.

Beispiel:

$$\forall x (P(x) \land Q(x)) \lor \exists y (P(y) \land \forall z R(y, z))$$

Quantoren mit ihrenWirkungsbereichen

Anmerkungen:

- Eine Variable hat einen Namen; mehrere Variable können den gleichen Namen haben.
- Ein Quantor definiert eine Variable, z. B. ∀x α definiert (eine Variable mit Namen) x.
 Ihr Name kann im Wirkungsbereich (auch mehrfach) vorkommen.
- Wirkungsbereiche von Quantoren können geschachtelt sein, sogar mit (verschiedenen) Variablen, die dieselben Namen haben.

Mod-4.26

Freie und gebundene Variable

(Ein Vorkommen von) \mathbf{x} in einer Formel α heißt frei, wenn es nicht im Wirkungsbereich für \mathbf{x} eines Quantors liegt.

Ein **Quantor** $\forall \mathbf{x} \alpha$ **bzw.** $\exists \mathbf{x} \alpha$ **bindet** alle (Vorkommen von) x, die frei sind in α . (Das Vorkommen von) x heißt dann **gebunden**.

Beispiel: Formel α

$$R(y) \wedge \exists y \ (P(y, x) \vee Q(y, z))$$

freie Vorkommen

gebundene Vorkommen

In α gibt es 3 freie Variable; sie haben die Namen y, x, z.

2 Variable haben den Namen y; eine kommt frei vor in R(y), die andere kommt 2 mal gebunden in α vor.

© 2007 bei Prof. Dr. Uwe Kastens überarbeitet 2004 Prof. Dr. W. Hauenschild

Umbenennung von Variablen

In einer Formel können mehrere Vorkommen von Quantoren verschiedene Variable mit gleichem Namen einführen und in ihrem Wirkungsbereich binden:

Beispiele:

$$\forall y \ (\exists x \ R(x, y) \land \exists x \ Q(x, y))$$

$$\forall x \ \forall y \ (P(x, y) \land \exists x \ R(x, y))$$

Umbenennung: In einer Formel kann man alle (gebundenen) Vorkommen des Namens x der Variablen eines Quantors in dessen Wirkungsbereich durch einen neuen Namen z ersetzen, der sonst nicht in der Formel vorkommt. Die Bedeutung der Formel, (genauer: semantische Aussagen über sie), ändert sich dadurch nicht.

Beispiele von oben:

$$\forall x \ \forall y \ (P(x, y) \land \exists z \ R(z, y))$$

Damit kann man erreichen, dass verschiedene Variable verschiedene Namen haben. Wir sagen dann: Die Variablen der Formel sind konsistent umbenannt. Formeln, in denen alle Variablen verschiedene Namen haben sind meist besser lesbar. Manche Definitionen sind einfacher für konsistent umbenannte Formeln.

Mod-4.28

Interpretation zu prädikatenlogischer Formel

Einer prädikatenlogischen Formel α wird durch eine **Interpretation** \Im (α) **Bedeutung zugeordnet**, sodass man ihren Wahrheitswert (w oder f) berechnen kann.

Eine Interpretation $\ensuremath{\mathfrak{I}}$ wird bestimmt durch

- einen **Individuenbereich U**, der nicht leer ist (auch Universum genannt). Aus U stammen die Werte der Variablen und Terme.
- eine **Abbildung der Funktions- und Prädikatsymbole** auf dazu passende konkrete Funktionen und Relationen, notiert als z. B. $\Im(h)$, $\Im(P)$
- eine Belegung der freien Variablen mit Werten aus U, notiert z. B. $\mathfrak{I}(x)$.
- die Interpretation der Junktoren und Quantoren (definiert auf Folie 4.31)

Bemerkungen:

- In der Prädikatenlogik enthält der Individuenbereich U alle Individuen auch verschiedenartige - die für die Interpretation benötigt werden.
 Er ist nicht in Wertebereiche gleichartiger Individuen strukturiert (wie in Kapitel 2).
- Der Sorte T wird deshalb der ganze Individuenbereich U zugeordnet.
- Eine Interpretation wird immer passend zu einer Menge prädikatenlogischer Formeln definiert. Nur darin vorkommende Funktionen, Prädikate und Variable interessieren.

© 2011 bei Prof. Dr. Uwe Kastens überarbeitet 2006 Prof. Dr. Wilfried Hauenschild

Beispiel für eine passende Interpretation zu einer Formel

Zur Formel $\alpha = (\forall x \ P(x, h(x))) \land Q(g(a, z))$ ist folgendes \Im eine passende Interpretation:

- U := **I**N
- $\Im(P) := \{ (m, n) \mid m, n \in U \text{ und } m < n \}$
- $\Im(Q) := \{ n \mid n \in U \text{ und } n \text{ ist Primzahl } \}$
- $\Im(h)$ ist die Nachfolgerfunktion auf U, also $\Im(h)(n) = n + 1$
- $\Im(g)$ ist die Additionsfunktion auf U also $\Im(g)(m, n) = m + n$
- $\Im(a) := 2$ (a ist eine Konstante, d.h. eine 0-stellige Funktion, $2 \in U$)
- $\Im(z)$:= n (z ist eine freie Variable, $n \in U$)

Bemerkungen:

- Häufig wird die Interpretation von Funktions- und Prädikatssymbolen nicht explizit angegeben, sondern die "übliche Bedeutung der Symbole" angenommen.
- Die Anwendung von Szeigt, wie die Variablen der Quantoren Werte erhalten (Folie 4.31).

Das Beispiel stammt aus

U. Schöning: Logik für Informatiker, Spektrum Akademischer Verlag, 4. Aufl., 1995, S. 55

Mod-4.30

Wahrheitswerte prädikatenlogischer Formeln

Sei α eine prädikatenlogische Formel und \Im eine dazu passende Interpretation, dann berechnet man den **Wahrheitswert** $\Im(\alpha)$, indem man \Im **rekursiv anwendet** auf die Teile von α :

- die Prädikatsymbole und deren Terme,
- die Funktionssymbole und deren Terme,
- die freien und gebundenen Variablen,
- die mit Junktoren verknüpften Teilformeln und
- die Quantor-Formeln.

© 2007 bei Prof. Dr. Uwe Kastens überarbeitet 2004 Prof. Dr. W. Hauenschild

Interpretation von PL-Formeln (vollständige Definition)

Die Interpretation der Symbole wird auf prädikatenlogische Formeln, deren Variablen konsistent umbenannt sind, erweitert:

Für jeden Term $h(t_1, ..., t_n)$ wird definiert: $\Im(h(t_1, ..., t_n)) = \Im(h)(\Im(t_1), ..., \Im(t_n))$.

Für Formeln gilt (Definition durch Induktion über den Aufbau der prädikatenlogischen Formeln):

- 1. $\Im(P(t_1,...,t_n))$ = w genau dann, wenn $(\Im(t_1),...,\Im(t_n)) \in \Im(P)$
- 2. $\Im(t_1 = t_2) = w$ genau dann, wenn $\Im(t_1) = \Im(t_2)$
- 3. $\Im(\neg \alpha)$ = w genau dann, wenn $\Im(\alpha)$ = f
- 4. $\Im(\alpha \land \beta)$ = w genau dann, wenn $\Im(\alpha)$ = w **und** $\Im(\beta)$ = w
- 5. $\Im(\alpha \vee \beta) = w$ genau dann, wenn $\Im(\alpha) = w$ oder $\Im(\beta) = w$
- 6. $\Im(\forall x\alpha)$ = w genau dann, wenn **für jeden Wert d** \in **U** gilt $\Im_{[x/d]}(\alpha)$ = w
- 7. $\Im(\exists x\alpha)$ = w genau dann, wenn es **einen Wert d** \in **U gibt** mit $\Im_{[x/d]}(\alpha)$ = w

Dabei ordnet $\Im_{[\mathbf{x}/\mathbf{d}]}(\alpha)$ in α der Variablen \mathbf{x} den Wert \mathbf{d} zu und stimmt sonst mit der gerade angewandten Interpretation \Im überein.

Mod-4.32

Beispiel für Interpretation einer Formel

Formel α :

Interpretation \mathfrak{I} :

$$R \wedge \forall x \forall y P(x, y)$$

$$U = \{ 1, 2, 3 \}$$

$$\Im(P) = \{ (a, b) \mid a + b < 10 \}$$

$$\Im(R) = w$$

Interpretation ${\mathfrak I}$ rekursiv gemäß Mod-4.31 angewandt:

Nr.:
$$\Im(R \wedge \forall$$

$$\Im(R \wedge \forall x \forall y P(x, y))$$

$$4 = \Im(R) \text{ und } \Im(\forall x \forall y P (x, y))$$

$$\Im$$
,6,6 = w und für jedes d, $e \in U$ gilt $\Im_{[x/d, y/e]}(P(x, y))$

1 = w und für jedes d,
$$e \in U$$
 gilt $(\Im_{[x/d, y/e]}(x), \Im_{[x/d, y/e]}(y)) \in \Im_{[x/d, y/e]}(P)$

$$\Im$$
 = w und für jedes d, e ∈ { 1, 2, 3 } gilt (d, e) ∈ { (a, b) | a + b < 10 }

= w und w

= w

© 2011 bei Prof. Dr. W. Hauenschild

Elementare Interpretationen

Wir betrachten für die Beispiele A bis G eine Interpretation \mathfrak{I} mit Individuenbereich $\mathsf{U} = \mathbb{N}$.

- a. freie Variable: \Im (u) = 1 \in U, \Im (v) = 2 \in U (bestimmte Elemente von U)
- b. 0-stellige Prädikate: $\Im(A) = w \text{ oder } \Im(A) = f$ (boolesche Variable)
- c. 1-stellige Prädikate: \Im (P) = M := $\{1, 2, 3\}\subseteq U$ (Teilmenge von U)
- d. 2-stellige Prädikate: $\Im(Q) = R := \{(1, 2), (2, 2)\} \subseteq U \times U$ (Relation auf U)
- A. $\Im(P(u)) = w$ gdw \Im (u) $\in \Im$ (P), d. h. $1 \in M$
- B. $\Im(Q(u, v)) = w$ gdw $(\Im(u), \Im(v)) \in \Im(Q), d. h. (1, 2) \in R$
- gdw (Für alle $d \in U$ gilt: $d \in M$) = f, d. h. $M \neq U$ C. $\Im (\forall x P(x)) = w$
- D. $\Im (\exists x P(x)) = w$ gdw Es existiert $d \in U$ mit $d \in M$, $M \neq \emptyset$
- E. $\Im (\forall x Q(x, x)) = w$ gdw (Für alle $d \in U$ gilt: $(d, d) \in R$) = f, d. h. R ist nicht reflexiv
- gdw Es gibt ein $d \in U$ mit $(d, d) \in R$, d. h. R ist nicht irreflexiv F. $\Im (\exists x Q(x, x)) = w$
- G. $\Im (\forall x \forall y (Q(x,y) \land Q(y,x) \rightarrow x = y)) = w$

gdw Für alle d, $e \in U$ gilt: aus $(d, e) \in R$ und $(e, d) \in R$ folgt d = e,

d. h. R ist antisymmetrisch

Prof. Dr.

Mod-4.34

Beschränkung von Wertebereichen

In der Prädikatenlogik kann die Interpretation von Variablen Werte aus dem gesamten Individuenbereich U annehmen (im Unterschied zu einem Wertebereich). Deshalb muss eine Einschränkung explizit als Relation formuliert werden.

Beschränkung des Wertebereiches bei Allquantoren durch Implikation →:

"Für alle $m \in U$ gilt: aus $m \in M$ folgt Q(m, n)" oder abgekürzt " $\forall m \in M$: Q(m, n)"

als PL-Formel: $\forall x (P(x) \rightarrow Q(x, y))$

ausführliche Notation: abkürzende Notation:

Für alle $i \in U$ gilt: aus $i \in \{1, 2, 3, 4\}$ folgt $b_i = a_i^2$ $\forall i \in \{1, 2, 3, 4\}$: $b_i = a_i^2$ Beispiele:

> Für alle $k \in U$ gilt: aus $k \in \mathbb{N}$ folgt $a + k \ge a$ $\forall k \in \mathbb{N}: a + k \ge a$

Beschränkung des Wertebereiches bei Existenzguantoren durch Konjunktion A: "Es gibt ein m ∈ U, sodass m ∈ M und Q(m, n) " oder abgekürzt "∃m ∈ M: Q(m, n)"

PL-Formel: $\exists x (P(x) \land Q(x, y))$

Beispiele: Es gibt ein $k \in U$, sodass $k \in \mathbb{N}$ und a * k = b $\exists k \in \mathbb{N}$: a * k = b

Es gibt ein $i \in U$, sodass $i \in \{1, 2, 3, 4\}$ und $a_i = x$ $\exists i \in \{1, 2, 3, 4\}$: $a_i = x$

Beispiele für PL-Formeln und deren Interpretation (1)

Die Variablen in Gleichungen konkreter Algebren sind durch Allquantoren gebunden:

Axiom K3: pop (push (k, x)) ->k (in der abstrakten Keller-Algebra)

Gleichung: $\forall a \in \mathbb{N}^* : \forall n \in \mathbb{N} : \text{remove (append (a, n))} = a$ (konkrete Algebra)

PL-Formel: $\forall k \ \forall x \ (P(k) \land S(x) \rightarrow h \ (g \ (k, x)) = k)$

Interpretation: $U = \mathbb{N}^* \cup \mathbb{N}$, $\Im(S) = \mathbb{N}$, $\Im(P) = \mathbb{N}^*$

 $\Im(h) = remove: \mathbb{N}^* \to \mathbb{N}^*,$

 $\mathfrak{I}(g) = append: \mathbb{N}^* \times \mathbb{N} \to \mathbb{N}^*$

Es gilt: $\Im(\forall k \ \forall x \ (P(k) \land S(x) \rightarrow h(g(k, x)) = k))) = w$

gdw $\forall a \in \mathbb{N}^* \cup \mathbb{N} : \forall n \in \mathbb{N}^* \cup \mathbb{N} : \Im_{[k/a, x/n]} (P(k) \land S(x) \rightarrow h (g(k, x)) = k) = w$

gdw $\forall a \in \mathbb{N}^* \cup \mathbb{N} : \forall n \in \mathbb{N}^* \cup \mathbb{N} : Aus \ a \in \mathbb{N}^* \ und \ n \in \mathbb{N} \ folgt: remove (append (a, n)) = a$

gdw $\forall a \in \mathbb{N}^* \cup \mathbb{N} : \forall n \in \mathbb{N} : \text{remove (append (a, n))= a}$

Mod-4.36

Beispiele für PL-Formeln und deren Interpretation (2)

Aus der Analysis:

Eine Funktion a : $\mathbb{N} \rightarrow \mathbb{R}$, a(n) = a_n , heißt Nullfolge, wenn gilt

 $\forall \ \epsilon \in \mathbb{R}^+: \exists \ n_0 \in \mathbb{N}: \ \forall \ n \in \mathbb{N} \ \text{mit} \ n_0 < n: \ | \ a_n | < \epsilon$

Dreifache Schachtelung der Quantoren; Reihenfolge ist wichtig!

 $\text{PL-Formel }\alpha \text{:} \qquad \forall x (P_1(x) \to \exists y (P_2(y) \land \forall z (P_2(z) \land Q(y,\,z)) \to Q(h(z),\,x))))$

Interpretation: $U = \mathbb{R}, \Im(P_1) = \mathbb{R}^+, \Im(P_2) = \mathbb{N},$

 $\Im(Q) = \{ \, (r, \, s) \mid (r, \, s) \in \, {\rm I\!R}^+ x {\rm I\!R}^+ und \; r \le s \, \},$

 $\Im(h): \mathbb{N} \to \mathbb{R}, \quad \Im(h) \ (i) = |a_i|$

Es gilt: $\Im(\alpha) = w$ gdw a_n ist eine Nullfolge

Beispiele für PL-Formeln und deren Interpretation (3)

Aus der Informatik:

Eine Folge $a = (a_1, ..., a_k) \in \mathbb{N}^k$ heißt monoton wachsend, wenn gilt

 $\forall i \in \{1, ..., k\}: \forall j \in \{1, ..., k\} \text{ mit } i \leq j \text{ gilt } a_i \leq a_i$

 $\text{PL-Formel }\beta: \qquad \forall x (P(x) \rightarrow \forall y ((P(y) \land Q(x,\,y)) \rightarrow Q(h(x),\,h(y))))$

Interpretation: $U = \mathbb{N}^{k} \cup \{1, ..., k\}, \Im(P) = \{1, ..., k\},$

 $\mathfrak{I}(Q) = \{ (m, n) \in \mathbb{N} \times \mathbb{N} \mid m \leq n \}$

 $\Im(h): \{1, ..., k\} \rightarrow \mathbb{N}, \ \Im(h)(i) = a_i$

Es gilt: $\Im(\beta) = w$ gdw a_n ist monoton wachsend

Was bedeutet $\Im(P(x) \land \forall y(P(y) \rightarrow (Q(h(x), h(y)) \land (h(x) = h(y) \rightarrow Q(x, y))))) = w$

mit $\Im(x) = i$, $i \in \{1, ..., k\}$, bei sonst unveränderter Interpretation?

Mod-4.38

Beispiel: Spezifikation des n-Damen-Problems

gegeben:

Kantenlänge n ∈ IN eines n * n Schachbrettes

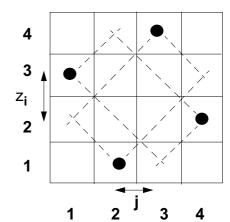
gesucht:

Menge P zulässiger Platzierungen von jeweils n Damen auf dem Schachbrett, so dass keine Dame eine andere nach Schachregeln schlägt:

Sei Index := {1, ..., n}

 $P := \{ \; p \mid p = (z_1, \, ..., \, z_n) \in \; Index^n \wedge zul\"{assig} \; (p) \; \}$

z_i gibt die Zeilennummer der Dame in Spalte i an.



Dabei bedeutet

zulässig (p): \forall i \in Index: \forall j \in Index: i \neq j \rightarrow z_i \neq z_i \land | z_i - z_i | \neq | i - j |

Erfüllbarkeit und logischer Schluss

Die folgenden Begriffe sind in der Prädikatenlogik so **definiert wie in der Aussagenlogik**. **Aber**: Interpretationen der Prädikatenlogik sind komplexe Strukturen.

Deshalb sind die Eigenschaften "**erfüllbar**" und "**allgemeingültig**" für prädikatenlogische Formeln **nicht allgemein entscheidbar**.

- Wenn für eine Interpretation $\Im(\alpha)$ = w gilt, heißt \Im auch ein **Modell der Formel** α .
- Eine Formel α heißt **erfüllbar**, wenn es eine Interpretation \Im gibt, so dass gilt $\Im(\alpha)$ = w, sonst ist sie **widerspruchsvoll**.
- Eine Formel α heißt **allgemeingültig** oder **Tautologie**, wenn für alle Interpretationen von α gilt \Im (α) = w, sonst ist sie **falsifizierbar**.
- Eine Formel α ist genau dann **allgemeingültig, wenn** $\neg \alpha$ **widerspruchsvoll** ist.
- Zwei Formeln α und β sind **logisch äquivalent**, in Zeichen: $\alpha \equiv \beta$, wenn sie für alle Interpretationen \Im dasselbe Ergebnis haben: $\Im(\alpha) = \Im(\beta)$
- Sei F eine Menge von Formeln und α eine Formel. Wenn für **alle Interpretationen** \Im , die alle Formeln in F erfüllen, auch \Im (α) gilt, dann sagen wir, α **folgt semantisch aus F**" bzw. F |= α ; F |= α heißt auch **logischer Schluss**.

Mod-4.40

Äquivalente Umformung prädikatenlogischer Formeln

Seien α und β beliebige prädikatenlogische Formel. Dann gelten folgende Äquivalenzen:

1. **Negation:**

$$\neg \forall x \ \alpha \equiv \exists x \ \neg \alpha$$

$$\neg \exists x \ \alpha \equiv \forall x \ \neg \alpha$$

2. Wirkungsbereich der Quantoren verändern:

Falls x in β nicht frei vorkommt, gilt

$$(\forall x \ \alpha) \land \beta \equiv \forall x \ (\alpha \land \beta)$$

$$(\forall x \ \alpha) \lor \beta \equiv \forall x \ (\alpha \lor \beta)$$

$$(\exists x \ \alpha) \land \beta \equiv \exists x \ (\alpha \land \beta)$$

$$(\exists x \ \alpha) \lor \beta \equiv \exists x \ (\alpha \lor \beta)$$

$$\beta \equiv \exists x \beta$$

$$\beta \equiv \forall x \beta$$

3. Quantoren zusammenfassen:

$$(\forall x \ \alpha \land \forall x \ \beta) \equiv \forall x \ (\alpha \land \beta)$$

$$(\exists x \ \alpha \lor \exists x \ \beta) \equiv \exists x \ (\alpha \lor \beta)$$

Folgende Formelpaare sind im allgemeinen nicht äquivalent:

$$(\forall x \alpha \vee \forall x \beta) \neq \forall x (\alpha \vee \beta)$$

$$(\exists x \alpha \land \exists x \beta) \neq \exists x (\alpha \land \beta)$$

4. Quantoren vertauschen:

$$\forall x \ \forall y \ \alpha \equiv \forall y \ \forall x \ \alpha$$

$$\exists x \; \exists y \; \alpha \equiv \exists y \; \exists x \; \alpha$$

© 2007 bei Prof. Dr. Uwe Kastens überarbeitet 2006 Prof. Dr. W. Hauenschild

Mod-4.42

1. **Negation:** formal

Alle haben den Schuss gehört. $\forall x \text{ gehört}(x)$ negiert: Es gibt einen, der den Schuss nicht gehört hat. $\exists x \neg gehört(x)$

falsch negiert: Alle haben den Schuss nicht gehört. $\forall x \neg gehört(x)$

$$\neg \forall i \in Ind: a_i < 10$$

gdw
$$\neg \forall i \ (i \in Ind \rightarrow a_i < 10)$$

gdw
$$\exists i \neg (\neg i \in Ind \lor a_i < 10)$$

gdw
$$\exists i (i \in Ind \land \neg a_i < 10)$$

gdw
$$\exists i \in Ind: a_i \ge 10$$

$$(\exists x P(x)) \to P(y)$$

$$\equiv \neg(\exists x P(x)) \lor P(y)$$

$$\equiv (\forall x \neg P(x)) \lor P(y)$$

$$\equiv \forall x (\neg P(x) \lor P(y))$$

$$\equiv \forall x (P(x) \rightarrow P(y))$$

2. **Zusammenfassung von Quantoren:**

Äquivalent:

$$(\forall i \in \text{Ind: } a_i < 10) \land (\forall i \in \text{Ind: } 0 < a_i) \text{ gdw } \forall i \in \text{Ind: } (a_i < 10 \land 0 < a_i)$$

Nicht äquivalent, vielmehr gilt nur:

Aus $(\forall i \in \text{Ind: } a_i < 10) \lor (\forall i \in \text{Ind: } 0 < a_i) \text{ folgt } \forall i \in \text{Ind: } (a_i < 10 \lor 0 < a_i)$

Beispiel für Umformungen

Die folgende prädikatenlogische Formel wird so umgeformt, dass alle Quantoren vorne (außen) stehen:

$$\neg (\exists x \ P(x, y) \lor \forall z \ Q(z)) \land \exists u \ f(a, u) = a$$
 DeMorgan

$$\equiv \quad (\neg \exists x \; P(x, \, y) \land \neg \forall z \; Q(z)) \land \exists u \; f(a, \, u) = a \qquad \qquad \text{Negation von Quantorformeln } (x, \, z)$$

$$\equiv (\forall x \neg P(x, y) \land \exists z \neg Q(z)) \land \exists u \ f(a, u) = a$$
 Kommutativität

$$\equiv \exists u \ f(a, u) = a \land (\forall x \neg P(x, y) \land \exists z \neg Q(z))$$
 Wirkungsbereiche ausweiten (u, x)

$$\equiv \exists u \ (f(a, u) = a \land \forall x \ (\neg P(x, y) \land \exists z \neg Q(z)))$$
 Kommutativität (2 mal)

$$\equiv \exists u \ (\forall x \ (\exists z \neg Q(z) \land \neg P(x, y)) \land f(a, u) = a)$$
 Wirkungsbereich ausweiten (z)

$$\equiv \exists u \ (\forall x \ \exists z \ (\neg Q(z) \land \neg P(x, y)) \land f(a, u) = a)$$
 Wirkungsbereiche ausweiten (x, z)

$$\equiv \exists \mathbf{u} \ \forall \mathbf{x} \ \exists \mathbf{z} \ (\neg \mathsf{Q}(\mathsf{z}) \land \neg \mathsf{P}(\mathsf{x}, \mathsf{y}) \land \mathsf{f}(\mathsf{a}, \mathsf{u}) = \mathsf{a})$$

In diesem Beispiel hätten die Quantoren auch in anderer Reihenfolge enden können, wenn in anderer Reihenfolge umgeformt worden wäre. Das ist nicht allgemein so.

© 2010 bei Prof. Dr. Uwe Kastens

Normalformen

- **Definition:** Eine PL-Formel α ist in **Negationsnormalform (NNF)** genau dann, wenn jedes Negationszeichen in α unmittelbar vor einer Primformel steht und α die Junktoren \rightarrow und \leftrightarrow nicht enthält.
- •**Definition:** Eine PL-Formel α ist in **pränexer Normalform (PNF)** genau dann, wenn sie von der Form Q_1x_1 Q_2x_2 ... Q_nx_n β ist, wobei Q_i Quantoren sind und β keine Quantoren enthält.
- •Satz: Zu jeder PL-Formel gibt es logisch äquivalente Formeln in Negationsnormalform bzw. in pränexer Normalform.

© 2010 bei Prof. Dr. W. Hauenschil

Mod-4.44

Erzeugung der PNF

Die Erzeugung der pränexen Normalform geschieht in zwei Schritten:

- 1. Konsistente **Umbenennung** der Variablen (siehe Folie 4.27)
- 2. Quantoren nach links mit Hilfe der folgenden **Ersetzungsregeln** (Äquivalenzen):
 - a. Ersetze $(\forall x\alpha) \land \beta$ durch $\forall x(\alpha \land \beta)$

(wegen (1) kommt x nicht frei in β vor)

- b. Ersetze $(\exists x\alpha) \land \beta$ durch $\exists x(\alpha \land \beta)$
- c. Ersetze $(\forall x\alpha) \lor \beta$ durch $\forall x(\alpha \lor \beta)$
- d. Ersetze $(\exists x\alpha) \lor \beta$ durch $\exists x(\alpha \lor \beta)$
- e. Ersetze $\neg \forall x \alpha$ durch $\exists x \neg \alpha$
- f. Ersetze $\neg \exists x \alpha$ durch $\forall x \neg \alpha$

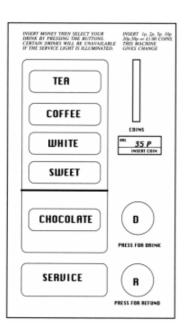
- Es gibt für die Prädikatenlogik erster Stufe einen **vollständigen**, **korrekten Kalkül** zur Herleitung allgemeingültiger Formeln.
- Die Prädikatenlogik ist **unentscheidbar**, d. h. es gibt kein Verfahren, das für eine beliebige PL-Formel feststellen kann, ob sie allgemeingültig ist.
- Die Prädikatenlogik ist **rekursiv aufzählbar**, d. h. es gibt ein Verfahren, das für eine beliebige PL-Formel feststellen kann, ob sie allgemeingültig ist, das aber im negativen Fall nicht notwendig terminiert.
- Die natürlichen Zahlen lassen sich in der Prädikatenlogik erster Stufe nicht modellieren.

Ausschnitt aus einer Spezifikation in Z

Mod-4.46

Die **Spezifikationssprache Z** basiert auf typisierter Mengentheorie (Wertebereiche wie in Abschnitt 2) und verwendet **Prädikatenlogik**.

Ausschnitt aus der Fallstudie "A Drinks Dispensing Machine" aus Deri Sheppard: An Introduction to Formal Specification with Z and VDM, McGraw-Hill, 1994, S. 271ff



```
. Get_Drink .
△Abs State Machine
choice?: PSelection_buttons
d! : Drink
Change! : bag British_coin
choice? ∈ Drink
Value Balance > Prices choice?
\forall i : Recipe \ choice? \bullet \ count \ Stock \ i > 0
Cups > 0
\exists b: \textit{bag British\_coins} \bullet (\textit{b} \sqsubseteq \textit{Takings} \land \textit{Value Balance} = \textit{Value b} + \textit{Prices choice?})
Balance' = [\![ ]\!]
Stock' \uplus \{i : Recipe \ choice? \bullet \ i \mapsto 1\} = Stock
Cups' = Cups - 1
Change! \sqsubseteq Takings \land Value Balance = Value Change! + Prices choice?
Takings' \uplus Change! = Takings
Prices' = Prices
Service_light' = Service_light
Report_display' = insert coin
d! = choice?
```