
©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Programming Languages and Compilers

Prof. Dr. Uwe Kastens

WS 2013 / 2014

PLaC-0.1 Lecture Programming Languages and Compilers WS 2013/14 / Slide 001

In the lecture:

Welcome to the lecture!

©
 2

00
8

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

0. Introduction

Objectives

PLaC-0.2

Lectures

Tutorials

Homeworks

Exercises
Running project

Forms of teaching:

The participants are taught to

• understand properties and notions of programming languages

• understand fundamental techniques of language implementation, and
to use generating tools and standard solutions ,

• apply compiler techniques for design and implementation of specification
languages and domain specific languages

Lecture Programming Languages and Compilers WS 2013/14 / Slide 002

Objectives:

Understand the objectives of the course.

In the lecture:

The objectives are explained.

Questions:

• What are your objectives?

• Do they match with these?

• When did you last listen to a talk given in English?

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Contents

Week Chapter

1 0. Introduction

2 1. Language Properties and Compiler tasks

3 - 4 2. Symbol Specification and Lexical Analysis

5 - 7 3. Context-free Grammars and Syntactic Analysis

8 - 10 4. Attribute Grammars and Semantic Analysis

11 5. Binding of Names

12 6. Type Specification and Analysis

13 7. Specification of Dynamic Semantics

13 8. Source-to-Source Translation

9. Domain Specific Languages

Summary

PLaC-0.3 Lecture Programming Languages and Compilers WS 2013/14 / Slide 003

Objectives:

Overview over the topics of the course

In the lecture:

Comments on the topics.

Prerequisites

from Lecture Topic here needed for

Foundations of Programming Languages:

4 levels of language properties Language specification,
compiler tasks

Context-free grammars Grammar design,
syntactic analysis

Scope rules Name analysis

Data types Type specification and analysis

Modeling:
Finite automata Lexical analysis

Context-free grammars Grammar design,
syntactic analysis

PLaC-0.4 Lecture Programming Languages and Compilers WS 2013/14 / Slide 004

Objectives:

Identify concrete topics of other courses

In the lecture:

Point to material to be used for repetition

Suggested reading:

• Course material for Foundations of Programming Languages

• Course material for Modeling

Questions:

• Do you have the prerequisites?

• Are you going to learn or to repeat that material?

©
 2

00
7

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
References

Material for this course PLaC: http://ag-kastens.upb.de/lehre/material/plac
for the Master course Compilation Methods : http://ag-kastens.upb.de/lehre/material/compii

Modellierung : http://ag-kastens.upb.de/lehre/material/model
Grundlagen der Programmiersprachen : http://ag-kastens.upb.de/lehre/material/gdp

John C. Mitchell: Concepts in Programming Languages , Cambridge University Press, 2003

R. W. Sebesta: Concepts of Programming Languages , 4. Ed., Addison-Wesley, 1999

U. Kastens: Übersetzerbau , Handbuch der Informatik 3.3, Oldenbourg, 1990
(not available on the market anymore, available in the library of the University)

A. W. Appel: Modern Compiler Implementation in Java , Cambridge University Press,
2nd Edition, 2002 (available for C and for ML, too)

W. M. Waite, L. R. Carter: An Introduction to Compiler Construction,
Harper Collins, New York, 1993

U. Kastens, A. M. Sloane, W. M. Waite: Generating Software from Specifications ,
Jones and Bartlett Publishers, 2007

PLaC-0.5 Lecture Programming Languages and Compilers WS 2013/14 / Slide 005

Objectives:

Useful references for the course

In the lecture:

Comments of the course material and books

Questions:

• Find the material in the Web, get used to its structure, place suitable bookmarks.

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

References forReading

Week Chapter Kastens Waite Eli
Carter Doc.

1 0. Introduction

2 1. Language Properties 1, 2 1.1 - 2.1
and Compiler tasks

3 - 4 2. Symbol Specification 3 2.4 +
and Lexical Analysis 3.1 - 3.3

5 - 7 3. Context-free Grammars 4 4, 5, 6 +
and Syntactic Analysis

8 - 10 4. Attribute Grammars 5 +
and Semantic Analysis

11 5. Binding of Names 6.2 7 +

12 6. Type Specification and Analysis (6.1) +

13 7. Specification of Dynamic Semantics

13 8. Source-to-Source Translation

9. Domain Specific Languages

PLaC-0.5a Lecture Programming Languages and Compilers WS 2013/14 / Slide 005a

Objectives:

Associate reading material to course topics

In the lecture:

Explain the strategy for using the reading material

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Course material in the Web

PLaC-0.6 Lecture Programming Languages and Compilers WS 2013/14 / Slide 006

Objectives:

The root page of the course material.

In the lecture:

The navigation structure is explained.

Assignments:

Explore the course material.

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Commented slide in the course material
PLaC-0.7 Lecture Programming Languages and Compilers WS 2013/14 / Slide 007

Objectives:

A slide of the course material.

In the lecture:

The comments are explained.

Assignments:

Explore the course material.

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Organization of the course

PLaC-0.8 Lecture Programming Languages and Compilers WS 2013/14 / Slide 008

Objectives:

Know how the course is organized

In the lecture:

Comments on exams and registration

Assignments:

Explore the course material.

©
 2

00
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

What does a compiler compile?

A compiler transforms correct sentences of its source language into sentences of its
target language such that their meaning is unchanged. Examples:

Source language: Target language:

Programming language Machine language
C++ Sparc code

Programming language Abstract machine
Java Java Bytecode

Programming language Programming language (source-to-source)
C++ C

Domain specific language Application language
LaTeX HTML
Data base language (SQL) Data base system calls

Application generator:
Domain specific language Programming language

SIM Toolkit language Java

Some languages are interpreted rather than compiled:
Lisp, Prolog, Script languages like PHP, JavaScript, Perl

PLaC-0.9 Lecture Programming Languages and Compilers WS 2013/14 / Slide 009

Objectives:

Variety of compiler applications

In the lecture:

Explain examples for pairs of source and target languages.

Suggested reading:

Kastens / Übersetzerbau, Section 1.

Assignments:

• Find more examples for application languages.

• Exercise 3 Recognize patterns in the target programs compiled from simple source programs.

Questions:

What are reasons to compile into other than machine languages?

©
 2

00
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
What is compiled here?

PLaC-0.10

 class Average

 { private:

 int sum, count;

 public:

 Average (void)

 { sum = 0; count = 0; }

 void Enter (int val)

{ sum = sum + val; count++; }

 float GetAverage (void)

 { return sum / count; }

 };

_Enter__7Averagei:

 pushl %ebp

 movl %esp,%ebp

 movl 8(%ebp),%edx

 movl 12(%ebp),%eax

 addl %eax,(%edx)

 incl 4(%edx)

 L6:

 movl %ebp,%esp

 popl %ebp

 ret

class Average
{ private
 int sum, count;
 public
 Average ()
 { sum = 0; count = 0; }
 void Enter (int val)
 { sum = sum + val; count++; }
 float GetAverage ()
 { return sum / count; }
};

1: Enter: (int) --> void
 Access: []
 Attribute 'Code' (Length 49)
 Code: 21 Bytes Stackdepth: 3 Locals: 2
 0: aload_0
 1: aload_0
 2: getfield cp4
 5: iload_1
 6: iadd
 7: putfield cp4
 10: aload_0
 11: dup
 12: getfield cp3
 15: iconst_1
 16: iadd

Lecture Programming Languages and Compilers WS 2013/14 / Slide 010

Objectives:

Recognize examples for compilations

In the lecture:

Anwer the questions below.

Questions:

• Which source and target language are shown here?

• How did you recognize them?

©
 2

00
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

What is compiled here?
PLaC-0.11

 program Average;

 var sum, count: integer;

 aver: integer;

 procedure Enter (val: integer);

 begin sum := sum + val;

 count := count + 1;

 end;

 begin

 sum := 0; count := 0;

 Enter (5); Enter (7);

 aver := sum div count;

 end.

void ENTER_5 (char *slnk , int VAL_4)

 {

 {/* data definitions: */

 /* executable code: */

 {

 SUM_1 = (SUM_1)+(VAL_4);

 COUNT_2 = (COUNT_2)+(1);

 ;

 }

 }}/* ENTER_5 */

\documentstyle[12pt]{article}
\begin{document}
\section{Introduction}
This is a very short document.
It just shows
\begin{itemize}
\item an item, and
\item another item.
\end{itemize}
\end{document}

%%Page: 1 1
1 0 bop 164 315 a Fc(1)81
b(In)n(tro)r(duction)
164 425 y Fb(This)16
b(is)g(a)h(v)o(ery)e(short)
i(do)q(cumen)o(t.)j(It)c(just)g
(sho)o(ws)237 527 y Fa(\017)24 b
Fb(an)17 b(item,)
c(and)237 628 y Fa(\017)24 b
Fb(another)17 b(item.)
961 2607 y(1)p
eop

Lecture Programming Languages and Compilers WS 2013/14 / Slide 011

Objectives:

Recognize examples for compilations

In the lecture:

Anwer the questions below.

Questions:

• Which source and target language are shown here?

• How did you recognize them?

©
 2

00
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Languages for specification and modeling

SDL (CCITT) UML
Specification and Description Language: Unified Modeling Language:

PLaC-0.12 Lecture Programming Languages and Compilers WS 2013/14 / Slide 012

Objectives:

Be aware of specification languages

In the lecture:

Comments on SDL and UML

Suggested reading:

Text

Questions:

What kind of tools are needed for such specification languages?

©
 2

00
6

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Domain Specific Languages (DSL)

A language designed for a specific application domain.
Application Generator : Implementation of a DSL by a program generator

Examples:

• Simulation of mechatronic feedback systems

• Robot control

• Collecting data from instruments

• Testing car instruments

• Game description language :

PLaC-0.13

game BBall
{ size 640 480;

background "pics/backgroundbb.png";
Ball einball; int ballsize;

initial {
ballsize=36;

}

 events {
pressed SPACE:
{ einball = new Ball(<100,540>, <100,380>);

Lecture Programming Languages and Compilers WS 2013/14 / Slide 013

Objectives:

Understand DSL by examples

In the lecture:

Explain the examples

Suggested reading:

• C.W. Krueger: Software Reuse, ACM Computing Surveys 24, June 1992

• Conference on DSL (USENIX), Santa Babara, Oct. 1997

• ACM SIGPLAN Workshop on DSL (POPL), Paris, Jan 1997

Questions:

Give examples for tools that can be used for such languages.

©
 2

00
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Programming languages as source or target languages

PLaC-0.14

Programming languages as source languages:

• Program analysis
call graphs, control-flow graph, data dependencies,
e. g. for the year 2000 problem

• Recognition of structures and patterns
e. g. for Reengineering

Programming languages as target languages:

• Specifications (SDL, OMT, UML)

• graphic modeling of structures

• DSL, Application generator

=> Compiler task: Source-to-source compilation

Lecture Programming Languages and Compilers WS 2013/14 / Slide 014

Objectives:

Understand programming languages in different roles

In the lecture:

• Comments on the examples

• Role of program analysis in software engineering

• Role of Source-to-source compilation in software engineering

Questions:

Give examples for the use of program analysis in software engineering.

©
 2

01
2

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Semester project as running example
PLaC-0.15

The SetLan translator is implemented using the methods
and tools introduced in this course.

The participants of this course get an implementation of a
sub-language of SetLan as a starting point for their
work towards their individual extension of the language
and the implementation.

SetLan: A Language for Set Computation

SetLan is a domain-specific language for programming with sets .
Constructs of the the language are dedicated to describe sets and
computations using sets. The language allows to define types for sets and
variables and expressions of those types. Specific loop constructs allow to
iterate through sets. These constructs are embedded in a simple
imperative language.

A source-to-source translator translates SetLan programs into Java
programs.

{
set a, b; int i;
i = 1;
a = [i, 3, 5];
b = [3, 6, 8];
print a+b; printLn;
print a*b <= b;
printLn;

}

Lecture Programming Languages and Compilers WS 2013/14 / Slide 015

Objectives:

Get an idea of the task

In the lecture:

• Comment the task description.

• Explain the role of the running example.

Assignments:

In the tutorial

• Explain the application domain.

• What may a game description contain?

• Give examples for typical language constructs.

• Explore the language.

• Use the language.

