© 2007 bei Prof. Dr. Uwe Kastens

PLaC-2.1

2. Symbol specifications and lexical analysis

Notations of tokens is specified by regular expressions

Token classes : keywords (for , class), operators and delimiters (+, ==, ; , {),
identifiers (getSize , maxint), literals (42, \n')

Lexical analysis isolates tokens within a stream of characters and encodes them:

Tokens

int count = Hﬂuble sun @H while| (count<maxVect) [{ sum = svave:ﬁ:cunt]; coumti+;}

Lecture Programming Languages and Compilers WS 2011/12 / Slide 201

Objectives:
Introduction of the task of lexical analysis

In the lecture:
Explain the example

© 2007 bei Prof. Dr. Uwe Kastens

PLaC-2.2

Lexical Analysis

Input: Program represented by a sequence of characters
Tasks: Compiler modul:
Input reader

Recognize and classify tokens Scanner (central phase, finite state machine)
Skip irrelevant characters

Encode tokens:

Identifier modul
Store token information Literal modules
Conversion String storage

Output: Program represented by a sequence of encoded tokens

Lecture Programming Languages and Compilers WS 2011/12 / Slide 202

Objectives:
Understand lexical analysis subtasks

In the lecture:

Explain

= subtasks and their interfaces using example of PLaC-201,
« different forms of comments,

= sparation of tokens in FORTRAN,

Suggested reading:
Kastens /7 Ubersetzerbau, Section 3, 3.3.1

© 2003 bei Prof. Dr. Uwe Kastens

PLaC-2.3

Avoid context dependent token specifications

Tokens should be recognized in isolation
e. G. all occurrences of the identifier a get the same encoding:
{inta;..a=5;..{floata;..a=3.1;..}}
distinction of the two different variables would require
information from semantic analysis

typedef problem in C
The C syntax requires lexical distinction of type-names and other names:
typedef int *T; T (*B); X (*Y);
cause syntactically different structures: declaration of variable B and call of function X.
Requires feedback from semantic analysis to lexical analysis.

Identifiers in PL/1 may coincide with keywords
if if =then then then :=else else else :=then
Lexical analysis needs feedback from syntactic analysis to distinguish them.

Token separation in FORTRAN:
.Deletion or insertion of blanks does not change the meaning.”
DO24K=15 begin of a loop, 7 tokens
DO24K=15 assignment to the variable DO24K 3 tokens
Token separation is determined late.

Lecture Programming Languages and Compilers WS 2011/12 / Slide 203

Objectives:
Recognize difficult specifications

In the lecture:

Explain

= isolated recognition and encoding of tokens,
« feedback of information,

= unusual notation of keywords,

= separation of tokens in FORTRAN,

Suggested reading:
Kastens / Ubersetzerbau, Section 3, 3.3.1

Questions:

= Give examples of context dependent information about tokens, which the lexical analysis can not know.

= Some decisions on the notation of tokens and the syntax of a language may complicate lexical analysis. Give examples.
= Explain the typedef problem in C.

© 2003 bei Prof. Dr. Uwe Kastens

Representation of tokens

Uniform encoding of tokens by triples:

Syntax code

terminal code of
the concrete syntax

Examples :

DoubleToken
Ident

Assign
FloatNumber
Semicolon
WhileToken
OpenParen
Ident
LessOpr
Ident
CloseParen
OpenBracket
Ident

attribute source position
value or reference to locate error messages
into data module of later compiler phases

double sum = 5.6e-5;
while (count < maxVect)
{ sum = sum + vect[count];

12,1
138 12,8
12,12
16 12,14
12, 20
13,1
13,7
139 13,8
13, 14
137 13, 16
13, 23
14,1
138 14, 3

PLaC-2.4

Lecture Programming Languages and Compilers WS 2011/12 / Slide 204

Objectives:
Understand token representation

In the lecture:
Explain the roles of the 3 components using the examples

Suggested reading:
Kastens / Ubersetzerbau, Section 3, 3.3.1

Questions:

= What are the requirements for the encoding of identifiers?

= How does the identifier module meet them?

= Can the values of integer literals be represented as attribute values, or do we have to store them in a data module?
Explain! Consider also cross compilers!

© 2005 bei Prof. Dr. Uwe Kastens

PLaC-2.5

Specification of token notations
Example: identifiers

Ident = Letter (Letter | Digit)*

regular regular
——— .
grammar expression
Ident ::= Letter X /
X = Letter X syntax
” - Digit X diagram
X =
Ident:
b L
finite state
machine
{ Letter transformation
Letter shown in this
2 lecture
t Digit
Lecture Programming Languages and Compilers WS 2011/12 / Slide 205
Objectives:

Equivalent forms of specification

In the lecture:

= Repeat calculi of the lectures "Modellierung" and "Berechenbarkeit und formale Sprachen".
= Our strategy: Specify regular expressions, transform into syntax diagrams, and from there into finite state machines

Suggested reading:

Kastens / Ubersetzerbau, Section 3.1

Questions:

= Give examples for Unix tools which use regular expressions to describe their input.

© 2003 bei Prof. Dr. Uwe Kastens

PLaC-2.6

Regular expressions mapped to syntax diagrams

Transformation rules:

regular expression A syntax diagram for A
empty > empty
a 4>@—> single character
BC » B - C—» sequence
» B
B|C —> alternative
» C
B*

> repetition, may be empty
b el
B T B —» repetition, non-empty

Lecture Programming Languages and Compilers WS 2011/12 / Slide 206

Objectives:
Construct by recursive substitution

In the lecture:
= Explain the construction for floating point numbers of Pascal.

Suggested reading:
Kastens / Ubersetzerbau, Section 3.1

Assignments:
= Apply the technique Exercise 6

Questions:

= If one transforms syntax diagrams into regular expressions, certain structures of the diagram require duplication of
subexpressions. Give examples.

= Explain the analogy to control flows of programs with labels, jumps and loops.

© 2011 bei Prof. Dr. Uwe Kastens

PLaC-2.7

Naive transformation

1. Transform a syntax diagram
into a non-det. FSM by naively
exchanging nodes and arcs

2. Transform a non-det. FSM into a
det. FSM:

Merge equivalents sets of nodes {1} {2.3} SR {6} 0}
OO0
b a i e
Syntax diagram deterministic finite state machine
set of nodes m, state g
sets of nodes mg and m, transition q ---> r with character a
connected with the same character a

Lecture Programming Languages and Compilers WS 2011/12 / Slide 207

Objectives:
Understand the transformation method

In the lecture:
= Explain the naive idea with a small artificial example

Suggested reading:
Kastens / Ubersetzerbau, Section 3.2

Assignments:
= Apply the method Exercise 6

Questions:
= Why does the naive method may yield non-deterministic automata?

© 2011 bei Prof. Dr. Uwe Kastens

PLaC-2.7a

Construction of deterministic finite state machines

Syntax diagram deterministic finite state machine
set of nodes m, state q
sets of nodes mg and m, transitions g --->r with character a

connected with the same character a
Construction:
1. enumerate nodes ; exit of the diagram gets the number 0

2. initial set of nodes m; contains all nodes that are reachable from the begin of the diagram;
mj represents the initial state 1 .

states
3. construct new sets of nodes (states) and transitions: Mg my
- chose state g with my, chose a character a 0 c
- consider the set of nodes with character a, s.t. their labels k are in my, a
- consider all nodes that are directly reachable from those nodes; kOm, nOm,
let m, be the set of their labels
- create a state r for m, and a transition from g to r under a.
nodes

4. repeat step 3 until no new states or transitions can be created

5. astate gis afinal state iff Ois in my,

Lecture Programming Languages and Compilers WS 2011/12 / Slide 207a

Objectives:
Understand the transformation method

In the lecture:
= Explain the method using floating point numbers of Pascal (PLaC-2.8)
= Recall the method presented in the course "Modellierung”.

Suggested reading:
Kastens / Ubersetzerbau, Section 3.2

Assignments:
= Apply the method Exercise 6

Questions:
= Why does the method yield deterministic automata?

© 2007 bei Prof. Dr. Uwe Kastens

Properties of the transformation

PLaC-2.7b

1. Syntax diagrams can express languages

more compact than regular expressions @([b)lb
can:
A regular expression for { a, ab, b} needs
S than on { } Cealap v,

more than one occurrence of aor b -
a syntax diagram doesn't.

2. The FSM resulting from a transformation of
PLaC 2.7a may have more states than
necessary .

3. There are transformations that minimize N

the number of states of any FSM.

"X,y are
equivalent

Lecture Programming Languages and Compilers WS 2011/12 / Slide 207b

Objectives:
Understand the transformation method

In the lecture:
= Explain the properties.
= Recall the algorithm.

Suggested reading:
Kastens / Ubersetzerbau, Section 3.2

Assignments:
= Apply the method Exercise 6

© 2007 bei Prof. Dr. Uwe Kastens

Example: Floating point numbers in Pascal
Syntax diagram

PLaC-2.8

()
s
{1y {1,2,4} {3} {3,4,0t {567t {7} {7, 0}
d d . E d d E + - d d d
d . d E * d

d

deterministic finite state machine

Lecture Programming Languages and Compilers WS 2011/12 / Slide 208

Objectives:
Understand the construction method

In the lecture:
The construction process of the previous slide is explained using this example.

© 2003 bei Prof. Dr. Uwe Kastens

PLaC-2.9

Composition of token automata

Construct one finite state machine for each token. Compose them forming a single FSM:

- Identify the initial states of the single automata
and identical structures evolving from there (transitions with the same character and states).

« Keep the final states of single automata distinct, they classify the tokens.
- Add automata for comments and irrelevant characters (white space)

Example: tokens of Lax
[Waite, Goos:
Compiler Construction]

character classes:

all but *

all but * or)
digits

all letters but E
+-* <>) [N
blank tab newline

onT—Tao0oo®

Lecture Programming Languages and Compilers WS 2011/12 / Slide 209

Objectives:
Construct a multi-token automaton

In the lecture:

Use the example to

= discuss the composition steps,

= introduce the abbreviation by character classes,
= to see a non-trivial complete automaton.

Suggested reading:
Kastens /7 Ubersetzerbau, Section 3.2

Questions:
Describe the notation of Lax tokens and comments in English.

© 2003 bei Prof. Dr. Uwe Kastens

Rule of the longest match

An automaton may contain transitions from final states:

When does the automaton stop?

Rule of the longest match:

« The automaton continues as long as there is a transition with the next character.

- After having stopped it sets back to the most recently passed final state.
« If no final state has been passed an error message is issued.

Consequence: Some kinds of tokens have to be separated explicitly.

Check the concrete grammar for tokens that may occur adjacent!

PLaC-2.10

Lecture Programming Languages and Compilers WS 2011/12 / Slide 210

Objectives:
Understand the consequences of the rule

In the lecture:
= Discuss examples for the rule of the longest match.
= Discuss different cases of token separation.

Suggested reading:
Kastens / Ubersetzerbau, Section 3.2

Questions:
= Point out applications of the rule in the Lax automaton, which arose from the composition of sub-automata.
= Which tokens have to be separated by white space?

© 2003 bei Prof. Dr. Uwe Kastens

Scanner: Aspects of implementation

« Runtime is proportional to the number of characters in the program

PLaC-2.11

« Operations per character must be fast - otherwise the Scanner dominates compilation time

« Table driven automata are too slow:
Loop interprets table, 2-dimensional array access, branches

- Directly programmed automata is faster; transform transitions into control flow:

sequence

O—0
@ repeat loop
O=<

branch, switch

» Fast loops for sequences of irrelevant blanks .

- Implementation of character classes
bit pattern or indexing - avoid slow operations with sets of characters.

« Do not copy characters from input buffer - maintain a pointer into the buffer, instead.

Lecture Programming Languages and Compilers WS 2011/12 / Slide 211

Objectives:
Runtime efficiency is important

In the lecture:
= Advantages of directly programmed automata. Compare to table driven.

Suggested reading:
Kastens / Ubersetzerbau, Section 3.3

Assignments:
= Generate directly programmed automata Exercise 7

Questions:
= Are there advantages for table-driven automata? Check your arguments carefully!

© 2007 bei Prof. Dr. Uwe Kastens

PLaC-2.11b

Characteristics of Input Data

Table 7
Characteristics of the Input Data

P4 SYNPUT
Occurrences Characters Occurrences Characlers

Single spaces 11404 11404 27668 2766
Identifiers Bal1 41560 5799 22744 significant numbers of characters
Keywords 4183 15080 2034 TGT4
>3 spaces 850 80694 1B37 19880
] 2708 2708 1880 LBBO
= 1378 2758 266 1832
Integers 1354 2202 527 573
{ 1245 1245 Tal 7o
j 1248 1245 751 761
o 1032 1032 B4z B42
commentLs 659 13785 8BTS 35066 -
[G54 654 218 218
| 664 654 218 2168
: Ban 635 483 483

546 546 400 400
Sirings 483 2560 303 3017
Space pairs i 840 1] -]
= 438 438 2086 2086
- 453 353 461 461
< 213 426 96 192
+ 203 203 183 183
- B2 a2 B1 g1
Space Lriples 56 16H H42 2528

37 T4 21 42

&= 26 K2 L.} 10
> 18 18 27 27
< 14 L4 29 % 23 i
. 10 10 12 12 W. M. Waite:
5 2 19 i 14 The Cost of Lexical Analysis.
Reals 1] 0 3 14 . .
p 0 a | | Software- Practice and Experience,

16(5):473-488, May 1986.

Lecture Programming Languages and Compilers WS 2011/12 / Slide 211b

Objectives:
Profile how characters contribute to tokens

In the lecture:

= Measurements on occurrences of symbols: Single spaces, identifiers, keywords, squences of spaces are most frequent.
Comments contribute most characters.

Suggested reading:

Kastens /7 Ubersetzerbau, Section 3.3

© 2003 bei Prof. Dr. Uwe Kastens

Identifier module and literal modules

« Uniform interface for all scanner support modules:
Input parameters: pointer to token text and its length;
Output parameters: syntax code, attribute

- Identifier module encodes identifier occurrences bijective (1:1), and
recognizes keywords
Implementation: hash vector, extensible table, collision lists

- Literal modules for floating point numbers, integral numbers, strings

Variants for representation in memory:
token text; value converted into compiler data; value converted into target data

Caution:
Avoid overflow on conversion!
Cross compiler: compiler representation may differ from target representation

« Character string memory:
stores strings without limits on their lengths,
used by the identifier module and the literal modules

PLaC-2.12

Lecture Programming Languages and Compilers WS 2011/12 / Slide 212

Objectives:
Safe and efficient standard implementations are available

In the lecture:

= Give reasons for the implementation techniques.

= Show different representations of floating point numbers.
= Escape characters in strings need conversion.

Suggested reading:
Kastens /7 Ubersetzerbau, Section 3.3

Questions:
= Give examples why the analysis phase needs to know values of integral literals.
= Give examples for representation of literals and their conversion.

© 2003 bei Prof. Dr. Uwe Kastens

Scanner generators

generate the central function of lexical analysis
GLA University of Colorado, Boulder; component of the Eli system
Lex Unix standard tool
Flex Successor of Lex
Rex GMD Karlsruhe

Token specification: regular expressions

GLA library of precoined specifications;
recognizers for some tokens may be programmed

Lex, Flex, Rex transitions may be made conditional

Interface:

GLA as described in this chapter; cooperates with other Eli components

Lex, Flex, Rex actions may be associated with tokens (statement sequences)
interface to parser generator Yacc

Implementation:

GLA directly programmed automaton in C

Lex, Flex, Rex table-driven automaton in C

Rex table-driven automaton in C or in Modula-2

Flex, Rex faster, smaller implementations than generated by Lex

PLaC-2.13

Lecture Programming Languages and Compilers WS 2011/12 / Slide 213

Objectives:
Know about the most common generators

In the lecture:
Explain specific properties mentioned here.

Suggested reading:
Kastens /7 Ubersetzerbau, Section 3.4

Assignments:
Use GLA and Lex Exercise 7

