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3. Context-free Grammars and Syntactic Analysis
PLaC-3.1

Input: token sequence

Tasks:
Parsing : construct a derivation according to the concrete syntax ,
Tree construction:  build a structure tree according to the abstract syntax ,
Error handling:  detection of an error, message, recovery

Result: abstract program tree

Abstract program tree (condensed derivation tree):
represented by a

• data structure in memory  for the translation phase to operate on,

• linear sequence of nodes on a file  (costly in runtime),

• sequence of calls  of functions of the translation phase.

Compiler module parser:
deterministic stack automaton, augmented by actions for tree construction
top-down parsers: leftmost derivation; tree construction top-down or bottom-up
bottom-up parsers: rightmost derivation backwards; tree construction bottom-up
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Objectives:

Relation between parsing and tree construction

In the lecture:

• Explain the tasks, use example on PLaC-1.3.

• Sources of prerequisites:

• context-free grammars: "Grundlagen der Programmiersprachen (2nd Semester), or "Berechenbarkeit und formale
Sprachen" (3rd Semester),

• Tree representation in prefix form, postfix form: "Modellierung" (1st Semester).

Suggested reading:

Kastens / Übersetzerbau, Section 4.1
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Generating the structuring phase from specifications (Eli)
PLaC-3.1a

compiler designer generators compiler
specifications

non-lit. tokens
(.gla)

concrete syntax
(.con)

mapping
(.map)

abstract syntax
(.lido)

Eli

scanner
generator
(GLA)

parser
generator
(PGS)

attribute
evaluator
generator
(Liga)

abstr. progr. tree

lex. ana

Scanner
ident.

literals

token sequence

parser

tree construction

sem. ana.

synt. ana

Map
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Objectives:

Understand how generators build the structuring phase

In the lecture:

Explain

• the flow of information from the specifications to the generators,

• the generated products in the compiler.

Suggested reading:

Kastens / Übersetzerbau, Section 4.1
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3.1 Concrete and abstract syntax

concrete syntax abstract syntax

- context-free grammar - context-free grammar
- defines the structure of source programs - defines abstract program trees
- is unambiguous - is usually ambiguous
- specifies derivation and parser - translation phase is based on it
- parser actions specify the tree construction   --->- tree construction

- some chain productions have only syntactic purpose
Expr ::= Fact      have no action no node created

- symbols are mapped {Expr,Fact}  -> to one abstract symbol Exp

- same action at structural equivalent productions: - creates tree nodes
Expr ::= Expr AddOpr Fact &BinEx
Fact ::= Fact MulOpr Opd  &BinEx

- semantically relevant chain productions, e.g. - are kept (tree node is created)
ParameterDecl ::= Declaration

- terminal symbols - only semantically relevant ones are kept
identifiers, literals, identifiers, literals
keywords, special symbols

- concrete syntax and symbol mapping specify - abstract syntax (can be generated)

PLaC-3.2
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Objectives:

Distinguish roles and properties of concrete and abstract syntax

In the lecture:

• Use the expression grammar of PLaC-3.3, PLaC-3.4 for comparison.

• Construct abstract syntax systematically.

• Context-free grammars specify trees - not only strings! Is also used in software engineering to specify interfaces.

Suggested reading:

Kastens / Übersetzerbau, Section 4.1

Assignments:

• Generate abstract syntaxes from concrete syntaxes and symbol classes.

• Use Eli for that task. Exercise 10

Questions:

• Why is no information lost, when an expression is represented by an abstract program tree?

• Give examples for semantically irrelevant chain productions outside of expressions.

• Explain: XML-based languages are defined by context-free grammars. Their sentences are textual representations of
trees.
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Example: concrete expression grammar

Expr

Fact

Opd

a

Fact MulOpr

*Opd ( )Expr

Expr Fact

Opd

b

AddOpr

+Fact

Opd c

p2

p3

p4

p6

p9 p5

p1

p2

p4

p6

p7 p4

p6

derivation tree for a * (b + c)

name production action

p1: Expr ::= Expr AddOpr Fact BinEx
p2: Expr ::= Fact
p3: Fact ::= Fact MulOpr Opd BinEx
p4: Fact ::= Opd
p5: Opd ::= '(' Expr  ')'
p6: Opd ::= Ident IdEx
p7: AddOpr ::= '+' PlusOpr
p8: AddOpr ::= '-' MinusOpr
p9: MulOpr ::= '*' TimesOpr
p10: MulOpr ::= '/' DivOpr

+, - lower precedence
*, / higher precedence

PLaC-3.3
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Objectives:

Illustrate comparison of concrete and abstract syntax

In the lecture:

• Repeat concepts of "GdP" (slide GdP-2.5): Grammar expresses operator precedences and associativity.

• The derivation tree is constructed by the parser - not necessarily stored as a data structure.

• Chain productions have only one non-terminal symbol on their right-hand side.

Suggested reading:

Kastens / Übersetzerbau, Section 4.1

Suggested reading:

slide GdP-2.5

Questions:

• How does a grammar express operator precedences and associativity?

• What is the purpose of the chain productions in this example.

• What other purposes can chain productions serve?
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Patterns for expression grammars
PLaC-3.3a

Expression grammars are systematically constructed,
such that structural properties  of expressions are defined:

one level of precedence , binary
operator,left-associative:

A ::= A Opr B
A ::= B

one level of precedence ,
unary  Operator , prefix:

A ::= Opr A
A ::= B

one level of precedence ,
unary  Operator , postfix:

A ::= A Opr
A ::= B

Elementary operands : only derived
from the nonterminal of the highest
precedence  level (be H here):

H ::= Ident

Expressions in parentheses: only
derived  from the nonterminal of the
highest precedence  level (assumed to be
H here); contain  the nonterminal of the
lowest precedence level  (be A here):

H ::= '(' A ')'

one level of precedence , binary
operator,right-associative:

A ::= B Opr A
A ::= B

Lecture Programming Languages and Compilers WS 2013/14 / Slide 303a

Objectives:

Be able to apply the patterns

In the lecture:

Explain the patterns

Assignments:

Apply the patterns to understand given and construct new expression grammars.
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Example: abstract expression grammar

name production

BinEx: Exp    ::= Exp BinOpr Exp
IdEx: Exp    ::= Ident
PlusOpr: BinOpr ::= '+'
MinusOpr: BinOpr ::= '-'
TimesOpr: BinOpr ::= '*'
DivOpr: BinOpr ::= '/'

symbol classes: Exp = { Expr, Fact, Opd }
BinOpr = { AddOpr, MulOpr }

Actions  of the concrete syntax: productions  of the abstract syntax to create tree nodes for
no action  at a concrete chain production: no tree node  is created

PLaC-3.4

Exp

a

Exp BinOpr

*

Exp

Exp Exp

b

BinOpr

+ c

BinEx

IdEx TimesOpr BinEx

IdEx PlusOpr IdEx

abstract program tree for a * (b + c)
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Objectives:

Illustrate comparison of concrete and abstract syntax

In the lecture:

• Repeat concepts of "GdP" (slide GdP-2.9):

• Compare grammars and trees.

• Actions create nodes of the abstract program tree.

• Symbol classes shrink node pairs that represent chain productions into one node

Suggested reading:

Kastens / Übersetzerbau, Section 4.1

Suggested reading:

slide GdP-2.9

Questions:

• Is this abstract grammar unambiguous?

• Why is that irrelevant?
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3.2 Design of concrete grammars
PLaC-3.4a

Objectives

The concrete grammar for parsing

• is parsable: fulfills the grammar condition  of the chosen
parser generator;

• specifies the intended language  - or a small super set of it;

• is provably related to the documented grammar ;

• can be mapped to  a suitable abstract grammar .

Lecture Programming Languages and Compilers WS 2013/14 / Slide 304a

Objectives:

Guiding objectives

In the lecture:

The objectives are explained.
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A strategy for grammar development
PLaC-3.4aa

1. Examples : Write at least one example for every intended language construct. Keep the
examples for checking the grammar and the parser.

2. Sub-grammars : Decompose a non-trivial task into topics covered by sub-gammars, e.g.
statements, declarations, expressions, over-all structure.

3. Top-down : Begin with the start symbol of the (sub-)grammar, and refine each nonterminal
according to steps 4 - 7 until all nonterminals of the (sub-)grammar are refined.

4. Alternatives : Check whether the language construct represented by the current
nonterminal, say Statement, shall occur in structurally different alternatives, e.g. while-
statement, if-statement, assignment. Either introduce chain productions, like
Statement ::= WhileStatement | IfStatement | Assignment.
or apply steps 5 - 7 for each alternative separately.

5. Consists of : For each (alternative of a) nonterminal representing a language construct
explain its immediate structure in words, e.g. „A Block is a declaration sequence followed
by a statement sequence, both enclosed in curly braces.“ Refine only one structural level.
Translate the description into a production. If a sub-structure is not yet specified introduce
a new nonterminal with a speaking name for it, e.g.
Block ::= ’{’ DeclarationSeq StatementSeq ’}’.

6. Natural structure : Make sure that step 5 yields a „natural“ structure, which supports
notions used for static or dynamic semantics, e.g. a range for valid bindings.

7. Useful patterns : In step 5 apply patterns for description of sequences, expressions, etc.

Lecture Programming Languages and Compilers WS 2013/14 / Slide 304aa

Objectives:

Develop CFGs systematically

In the lecture:

• Apply the strategy for a little task.

• Apply the strategy in context of the running project.

• Apply the patterns of slides GPS-2.10, GPS-2.10, 12, 14, 15.

• The strategy is applicable for the concrete and the abstract syntax.

Suggested reading:

Kastens / Übersetzerbau, Section 4.1

Suggested reading:

slide GdP-2.10ff
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Grammar design for an existing language
PLaC-3.4b

• Take the grammar of the language specification literally .

• Only conservative modifications  for parsability or for mapping to abstract syntax.

• Describe all modifications .
(see ANSI C Specification in the Eli system description
http://www.uni-paderborn.de/fachbereich/AG/agkastens/eli/examples/eli_cE.html)

• Java  language specification (1996):
Specification grammar is not LALR(1).
5 problems are described and how to solve them.

• Ada  language specification (1983):
Specification grammar is LALR(1)
- requirement of the language competition

• ANSI C, C++:
several ambiguities and LALR(1) conflicts, e.g.
„dangling else “,
„typedef problem “:

A (*B);
is a declaration of variable B, if A is a type name,
otherwise it is a call of function A

Lecture Programming Languages and Compilers WS 2013/14 / Slide 304b

Objectives:

Avoid document modifications

In the lecture:

• Explain the conservative strategy.

• Java gives a solution for the dangling else problem.

• For typedef problem see PLaC-2.3.
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Grammar design together with language design
PLaC-3.4c

Read grammars  before writing a new grammar.

Apply grammar patterns systematically  (cf. GPS-2.5, GPS-2.8)

• repetitions

• optional constructs

• precedence, associativity of operators

Syntactic structure should reflect semantic structure :

E. g. a range in the sense of scope rules should be represented by a single
subtree of the derivation tree (of the abstract tree).

Violated in Pascal:

functionDeclaration ::= functionHeading block
functionHeading ::= ‘function‘ identifier formalParameters ‘:‘ resultType ‘;‘

formalParameters together with block form a range,
but identifier does not belong to it

Lecture Programming Languages and Compilers WS 2013/14 / Slide 304c

Objectives:

Grammar design rules

In the lecture:

• Refer to GdP slides.

• Explain semantic structure.

• Show violation of the example.
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Syntactic restrictions versus semantic conditions
PLaC-3.4d

Express a restriction syntactically  only if
it can be completely covered with reasonable complexity :

• Restriction can not be decided syntactically :
e.g. type check in expressions:

BoolExpression ::= IntExpression ‘<‘ IntExpression

• Restriction can not always be decided syntactically :
e. g. disallow array type to be used as function result

Type ::= ArrayType | NonArrayType | Identifier
ResultType ::= NonArrayType

If a type identifier may specify an array type,
a semantic condition is needed, anyhow

• Syntactic restriction is unreasonably complex :
e. g. distinction of compile-time expressions from ordinary
expressions requires duplication of the expression syntax.

Lecture Programming Languages and Compilers WS 2013/14 / Slide 304d

Objectives:

How to express restrictions

In the lecture:

• Examples are explained.

• Semantic conditions are formulated with attribute grammar concepts, see next chapter.

Assignments:

Discuss further examples for restrictions.
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Eliminate ambiguities
PLaC-3.4e

unite syntactic constructs - distinguish them semantically

Examples:

• Java: ClassOrInterfaceType ::= ClassType | InterfaceType
InterfaceType ::= TypeName
ClassType ::= TypeName

replace first production by
ClassOrInterfaceType ::= TypeName
semantic analysis distinguishes between class type and interface type

• Pascal: factor ::= variable | ... | functionDesignator
variable ::= entireVariable | ...
entireVariable ::= variableIdentifier
variableIdentifier ::= identifier (**)
functionDesignator ::= functionIdentifier (*)

| functionIdentifer ’(’ actualParameters ’)’
functionIdentifier ::= identifier

eliminate marked (*) alternative
semantic analysis checks whether (**) is a function identifier

Lecture Programming Languages and Compilers WS 2013/14 / Slide 304e

Objectives:

Typical ambiguities

In the lecture:

• Same notation with different meanings;

• ambiguous, if they occur in the same context.

• Conflicting notations may be separated by several levels of productions (Pascal example)

Questions:
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Unbounded lookahead
PLaC-3.4f

The decision for a reduction  is determined by a distinguishing token  that may
be arbitrarily far to the right :

Example , forward  declarations as could have been defined in Pascal:

functionDeclaration ::=
‘function‘ forwardIdent formalParameters ‘:‘ resultType ‘;‘ ‘forward‘

| ‘function‘ functionIdent formalParameters ‘:‘ resultType ‘;‘ block

The distinction between forwardIdent  and functionIdent  would require to see
the forward  or the begin  token.

Replace forwardIdent  and functionIdent  by the same nonterminal;
distinguish semantically.

Lecture Programming Languages and Compilers WS 2013/14 / Slide 304f

Objectives:

Typical situation

In the lecture:

Explain the problem and the solution using the example

Questions:
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3.3 Recursive descent parser
PLaC-3.5

case decision set for p1 :
Variable();
accept(assignSym);
Expr();
break;

case decision set for p2 :
accept(whileSym);
Expr() ;
accept(doSym);
Stmt() ;
break;

void Stmt ()
{ switch (CurrSymbol)

{

default: Fehlerbehandlung();
} }

top-down  (construction of the derivation  tree), predictive  method

Systematic transformation of a context-free grammar into a set of functions:

non-terminal symbol X function X
alternative productions for X branches in the function body
decision set of production pi decision for branch pi
non-terminal occurrence X ::= ... Y ... function call Y()
terminal occurrence X ::= ... t ... accept a token t and read the next token

Productions  for Stmt :

p1: Stmt  ::=
Variable ':=' Expr

p2: Stmt  ::=
'while' Expr  'do' Stmt

Lecture Programming Languages and Compilers WS 2013/14 / Slide 305

Objectives:

Understand the construction schema

In the lecture:

Explanation of the method:

• Demonstrate the construction of a left-derivation and the top-down construction of a derivation tree by this animation.

• Relate grammar constructs to function constructs.

• Each function plays the role of an acceptor for a symbol.

• accept function for reading and checking of the next token (scanner).

• Computation of decision sets on PLaC-3.6.

• Decision sets must be pairwise disjoint!

Suggested reading:

Kastens / Übersetzerbau, Section 4.2

Questions:

• A parser algorithm is based on a stack automaton. Where is the stack of a recursive descent parser? What corresponds
to the states of the stack automaton?

• Where can actions be inserted into the functions to output production sequences in postfix or in prefix form?
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Grammar conditions for recursive descent

Definition: A context-free grammar is strong LL(1) , if for any pair of productions  that have the
same symbol on their left-hand sides , A ::= u and A ::= v, the decision sets are disjoint :

DecisionSet (A ::= u) ∩ DecisionSet (A ::= v) = ∅
with

DecisionSet (A ::= u)  := if nullable (u) then First (u) ∪ Follow (A)  else First (u)

nullable (u)  holds iff a derivation u ⇒* ε exists

First (u) := { t ∈ T | v ∈V* exists and a derivation u ⇒* t v }

Follow (A) := { t ∈ T | u,v ∈V* exist, A ∈N and a derivation S ⇒* u A t v }

PLaC-3.6

p1: Prog ::= Block # begin
p2: Block ::= begin  Decls Stmts end begin
p3: Decls ::= Decl ; Decls new
p4: Decls ::= Ident begin
p5: Decl ::= new  Ident new
p6: Stmts ::= Stmts ; Stmt begin  Ident
p7: Stmts ::= Stmt begin  Ident
p8: Stmt ::= Block begin
p9: Stmt ::= Ident := Ident Ident

Prog begin
Block begin # ; end
Decls new Ident begin
Decl new ;
Stmts begin  Ident ; end
Stmt begin  Ident ; end

Example:
production DecisionSet

non-terminal
First (X) Follow (X)X

Lecture Programming Languages and Compilers WS 2013/14 / Slide 306

Objectives:

Strong LL(1) can easily be checked

In the lecture:

• Explain the definitions using the example.

• First set: set of terminal symbols, which may begin some token sequence that is derivable from u.

• Follow set: set of terminal symbols, which may follow an A in some derivation.

• Disjoint decision sets imply that decisions can be made deterministically using the next input token.

• For k=1: Strong LL(k) is equivalent to LL(k).

Suggested reading:

Kastens / Übersetzerbau, Section 4.2, LL(k) conditions, computation of First sets and Follow sets

Questions:

The example grammar is not strong LL(1).

• Show where the condition is violated.

• Explain the reason for the violation.

• What would happen if we constructed a recursive descent parser although the condition is violated?
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Computation rules for nullable, First, and Follow
PLaC-3.6a

Definitions:

nullable(u)  holds iff a derivation u ⇒* ε exists

First(u) := { t ∈ T | v ∈V* exists and a derivation u ⇒* t v }

Follow(A) := { t ∈ T | u,v ∈V* exist, A ∈N and a derivation S ⇒* u A v such that t ∈ First(v) }

with G = (T, N, P, S); V = T ∪ N; t ∈ T; A ∈ N; u,v ∈V*

Computation rules:

nullable(ε) = true; nullable(t) = false; nullable(uv) = nullable(u) ∧ nullable(v);
nullable(A) = true iff ∃ A::=u ∈ P ∧ nullable(u)

First(ε) = ∅; First(t) = {t};
First(uv) = if nullable(u) then First(u) ∪ First(v) else First(u)
First(A) = First(u1) ∪...∪ First(un) for all A::=ui ∈ P

Follow(A):
if A=S then # ∈ Follow(A)
if Y::=uAv ∈ P then First(v) ⊆ Follow(A) and if nullable(v) then Follow(Y) ⊆ Follow(A)

Lecture Programming Languages and Compilers WS 2013/14 / Slide 306a

Objectives:

Compute First- and Follow-sets

In the lecture:

• Explain and apply computation rules

Suggested reading:

Kastens / Übersetzerbau, Section 4.2, LL(k) conditions, computation of First sets and Follow sets
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Grammar transformations for LL(1)
PLaC-3.7

Consequences of strong LL(1) condition:
A strong LL(1) grammar can not have

• alternative productions that begin
with the same symbols:

• productions that are directly or
indirectly left-recursive:

u, v, w ∈ V*
X ∈ N does not occur in the

original grammar

Simple grammar transformations that
keep the defined language invariant:

left-factorization:

non-LL(1) productions transformed

A ::= v u A ::= v X
A ::= v w X ::= u

X ::= w

elimination of direct recursion:

A ::= A u A ::= v X
A ::= v X ::= u X

X ::=
special case empty v:

A ::= A u A ::= u A
A ::= A ::=

Lecture Programming Languages and Compilers WS 2013/14 / Slide 307

Objectives:

Understand transformations and their need

In the lecture:

• Argue why strong LL(1) grammars can not have such productions.

• Show why the transformations remove those problems.

• Replacing left-recursion by right recursion would usually distort the structure.

• There are more general rules for indirect recursion.

Questions:

• Apply recursion elimination for expression grammars.
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LL(1) extension for EBNF constructs
PLaC-3.7a

EBNF constructs can avoid violation of strong LL(1) condition:

EBNF construct:

Production:

additional
LL(1)-condition:

in recursive
descent parser:

Option [ u ] Repetition ( u )*

A ::= v [ u ] w A ::= v ( u )* w

if nullable(w)
then First(u) ∩  (First(w) ∪  Follow(A)) = ∅
else  First(u) ∩  First(w) = ∅

v v
if (CurrToken in First(u)) { u } while (CurrToken in First(u)) { u }
w w

Repetition ( u )+ left as exercise

Lecture Programming Languages and Compilers WS 2013/14 / Slide 307a

Objectives:

Understand transformations and their need

In the lecture:

• Show EBNF productions in recursive descent parsers.

Questions:

• Write a strong LL(1) expression grammar using EBNF.
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Comparison: top-down vs. bottom-up

Information a stack automaton has when it decides to apply production  A ::= x :

top-down, predictive bottom-up
leftmost derivation rightmost derivation backwards

A bottom-up parser has seen more of the input when it decides to apply a production.

Consequence: bottom-up  parsers and their grammar classes are more powerful .

PLaC-3.8

A

x
u v

contents of
the stack

input

k
lookahead

accepted

A

x
u

input
k

lookahead
accepted

direction of
tree construction

Lecture Programming Languages and Compilers WS 2013/14 / Slide 308

Objectives:

Understand the decision basis of the automata

In the lecture:

Explain the meaning of the graphics:

• role of the stack: contains states of the automaton,

• accepted input: will not be considered again,

• lookahead: the next k symbols, not yet accepted

• leftmost derivation: leftmost non-terminal is derived next; rightmost correspondingly,

• consequences for the direction of tree construction,

Abbreviations

• LL: (L)eft-to-right, (L)eftmost derivation,

• LR: (L)eft-to-right, (R)ightmost derivation,

• LALR: (L)ook(A)head LR

Suggested reading:

Kastens / Übersetzerbau, Section Text zu Abb. 4.2-1, 4.3-1

Questions:

Use the graphics to explain why a bottom-up parser without lookahead (k=0) is reasonable, but a top-down parser is not.
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Leftmost and rightmost derivations
PLaC-3.9

S

u A v

=>*

=>*

=>

=>

tt A v

tt x v

tt ss v

=>*

=>*

=>

tt ss ee

u ss ee

u x ee

u A ee

leftmost rightmost

forw
ard

produce
ba

ck
w

ar
d

re
du

ce

S

=>*

u, v, x ∈ V*

tt, ss, ee ∈ T*

A ∈ N
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Objectives:

Understand rightmost derivation backward

In the lecture:

• Explain the two derivation patterns.
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Derivation tree: top-down vs. bottom-up construction
PLaC-3.9a

p0: P ::= D
P1: D ::= FF
P2: D ::= FB
P3: FF ::= ’fun’ FI ’(’ Ps ’)’ ’fwd’
P4: FB ::= ’fun’ FI ’(’ Ps ’)’ B
P5: Ps ::= Ps PI
P6: Ps ::=
p7: B ::= ’{’ ’}’
p8: FI ::= Id
p9: PI ::= Id

P
D
FF
fun FI ( Ps ) fwd

Id
Ps PI
Ps PI

Id
Id

fun Id ( Id Id ) fwd

p0
p1
p3
p8
p5
p5
p6
p9
p9

P
D
FF

Ps ) fwd
PI

Ps Id
PI

Ps Id
FI (

fun id

fun Id ( Id Id ) fwd

p0
p1
p3
p5
p9
p5
p9
p6
p8
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Objectives:

Understand derivation tree construction

In the lecture:

Use this animation to explain

• On the left: construction of a left-derivation.

• The magenta production names indicate that the decision can not be made on the base of the derivation so far and the
next input tokens.

• On the right: construction of a derivation backward (bottom-up).

• No decision problem occurs.

• It is a right-derivation constructed backward.
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LR(0) -Automaton
PLaC-3.9b

1

red.p9
12

red.p7
15

red.p4
16

14

red.p5
13

red.p8
11

red.p2
10

red.p1
9

red.p0
8

red.p3
7

6

5

red.p6
4

3

2

fun

FI

(

)

Ps Id

Id

PI

fwd

B

{ }

D

FF

FB

fun Id(Id Id)fwd
Id(Id Id)fwd

(Id Id)fwd
(Id Id)fwd

Id Id)fwd
Id Id)fwd

Id)fwd
Id)fwd
Id)fwd

)fwd
)fwd
)fwd

fwd
#
#
#

1
1 2
1 2 11
1 2 3
1 2 3 4
1 2 3 4 5
1 2 3 4 5 12
1 2 3 4 5 13
1 2 3 4 5
1 2 3 4 5 12
1 2 3 4 5 13
1 2 3 4 5
1 2 3 4 5 6
1 2 3 4 5 6 7
1 9
1 8

p8

p6

p9
p5

p9
p5

p3
p1
p0

reduction stack input
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Objectives:

Understand understand how LR automata work

In the lecture:

• See PLaC-3.12 for explanations of the operations shift and reduce.

• Execute the automaton.
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3.4 LR parsing

LR(k) grammars introduced 1965 by Donald Knuth; non-practical until subclasses were defined.

LR parsers construct the derivation tree bottom-up, a right-derivation backwards.

LR(k) grammar condition  can not be checked directly, but
a context-free grammar is LR(k), iff the (canonical) LR(k) automaton is deterministic .

We consider only 1 token lookahead: LR(1).

Comparison of LL and LR states:

The stacks  of LR(k) and LL(k) automata contain states .

The construction of LR and LL states is based on the notion of items  (see next slide).

Each state  of an automaton represents LL: one item LR: a set of items
An LL item corresponds to a position in a case branch of a recursive function.

PLaC-3.10
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Objectives:

Introduction

In the lecture:

• Explain the comparison.



©
 2

00
7 

be
i P

ro
f. 

D
r.

 U
w

e 
K

as
te

ns

LR(1) items

An item  represents the progress of analysis with respect to one production:

[  A  ::=  u .  v R  ] e. g.   [ B ::= ( . D ; S ) {#}]

. marks the position of analysis:accepted and reduced . to be accepted

R expected right context:
a set of terminals  which may follow in the input
when the complete production is accepted.
(general k>1: R contains sequences of terminals not longer than k)

Items can distinguish different right contexts: [ A ::= u . v  R ] and [ A ::= u . v  R’ ]

Reduce item:

[  A  ::=  u v . R  ] e. g.   [ B ::= (  D ; S ) . {#}]

characterizes a reduction using this production if the next input token is in R.

The automaton uses R only for the decision on reductions!

A state  of an LR automaton represents a set of items

PLaC-3.11
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Objectives:

Fundamental notions of LR automata

In the lecture:

Explain

• items are also called situations,

• meaning of an item,

• lookahead in the input and right context in the automaton.

• There is no right context set in case of an LR(0) automaton.

Suggested reading:

Kastens / Übersetzerbau, Section 4.3

Questions:

• What contains the right context set in case of a LR(3) automaton?
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LR(1) states and operations

A state of an LR automaton represents a set of items
Each item represents a way in which analysis may
proceed from that state.

A shift transition  is made under
a token read  from input or
a non-terminal  symbol

obtained from a preceding reduction.
The state is pushed.

A reduction  is made according to a reduce item.
n states are popped for a production of length n.

Operations: shift read and push the next state on the stack
reduce reduce with a certain production, pop n states from the stack
error error recognized, report it, recover
stop input accepted

PLaC-3.12

B ::= ( . D ; S ) {#}

D ::= . D ; a {;}

D ::= . a { ;}

2

B ::= ( D . ; S ) {#}
D ::= D . ; a {;}

D
4

D ::= a . {;}

a

red. p33
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Objectives:

Understand LR(1) states and operations

In the lecture:

Explain

• Sets of items,

• shift transitions,

• reductions.

Suggested reading:

Kastens / Übersetzerbau, Section 4.3

Questions:

• Explain: A state is encoded by a number. A state represents complex information which is important for construction
of the automaton.
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Example for a LR(1) automaton
PLaC-3.13

B ::= . ( D ; S ) {#}

B ::= ( . D ; S ) {#}
D ::= . D ; a {;}
D ::= . a {;}

B ::= ( D . ; S ) {#}
D ::= D . ; a {;}

B ::= ( D ; . S ) {#}
D ::= D ; . a {;}
S ::= . b ; S {)}
S ::= . b {)}

B ::= ( D ; S . ) {#}

B ::= ( D ; S ) . {#}

D ::= a . {;}

D ::= D ; a . {;}

S ::= b . ; S {)}
S ::= b . {)}

S ::= b ; . S {)}
S ::= . b ; S {)}
S ::= . b {)}

S ::= b ; S . {)}

(

D

;

S

)

a

a

b

b

;

S

1

2
3

4

5

6

7

8

9

10

11

red. p1, stop

red. p3

red. p2

red. p5

red. p4

Grammar:
p1 B ::= ( D ; S )
p2 D ::= D ; a
p3 D ::= a
p4 S ::= b ; S
p5 S ::= b

In state 7 a decision is
required on next input:

• if ; then shift

• if ) then reduce p5

In states 3, 6, 9, 11 a
decision is not
required:

• reduce on any input
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Objectives:

Example for states, transitions, and automaton construction

In the lecture:

Use the example to explain

• the start state,

• the creation of new states,

• transitions into successor states,

• transitive closure of item set,

• push and pop of states,

• consequences of left-recursive and right-recursive productions,

• use of right context to decide upon a reduction,

erläutern.

Suggested reading:

Kastens / Übersetzerbau, Section 4.3

Questions:

• Describe the subgraphs for left-recursive and right-recursive productions. How do they differ?

• How does a LR(0) automaton decide upon reductions?
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Construction of LR(1) automata
Algorithm :1. Create the start state.

2. For each created state compute the transitive closure of its items.
3. Create transitions and successor states as long as new ones can be created.

Start state :
Closure of [ S ::=  . u   {#} ]
S ::= u   is the unique start production ,
# is an (artificial) end symbol  (eof)

Transitive closure  is to be applied to each state q:
Consider all items in q with the analysis position
before a non-terminal B:
[ A1 ::= u 1 . B v1  R1 ] ... [ A n ::= u n . B vn  Rn ],
then for each production B ::= w
[ B ::= .  w First (v 1 R1)∪...∪First (v n Rn)]
has to be added to state q.

Successor states :
For each symbol x  (terminal or non-terminal),
which occurs in some items after the analysis position ,
a transition  is created to a successor state .
That contains corresponding items
with the analysis position
advanced behind the x  occurrence.

B ::= . ( D ; S ) {#}1

B ::= ( . D ; S ) {#}

B ::= ( . D ; S ) {#}
D ::= . D ; a {;}∪{;}
D ::= . a {;}∪{;}

2

before:

after:

2

PLaC-3.14

B ::= ( . D ; S ) {#}
D ::= . D ; a {;}
D ::= . a {;}

B ::= ( D . ; S ) {#}
D ::= D . ; a {;} D ::= a . {;}

D a

2

3
4
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Objectives:

Understand the method

In the lecture:

Explain using the example on PLaC-3.13:

• transitive closure,

• computation of the right context sets,

• relation between the items of a state and those of one of its successor

Suggested reading:

Kastens / Übersetzerbau, Section 4.3

Questions:

• Explain the role of the right context.

• Explain its computation.
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Operations of LR(1) automata
PLaC-3.15

Example:

stack input reduction

1 ( a ; a ; b ; b ) #
1 2 a ; a ; b ; b ) #
1 2 3 ; a ; b ; b ) # p3
1 2 ; a ; b ; b ) #
1 2 4 ; a ; b ; b ) #
1 2 4 5 a ; b ; b ) #
1 2 4 5 6 ; b ; b ) # p2
1 2 ; b ; b ) #
1 2 4 ; b ; b ) #
1 2 4 5 b ; b ) #
1 2 4 5 7 ; b ) #
1 2 4 5 7 8 b ) #
1 2 4 5 7 8 7 ) # p5
1 2 4 5 7 8 ) #
1 2 4 5 7 8 9 ) # p4
1 2 4 5 ) #
1 2 4 5 10 ) #
1 2 3 5 10 11 # p1
1 #

shift x  (terminal or non-terminal):
from current state q
under x into the successor state q‘  ,
push q‘

reduce p:
apply production p  B ::= u ,
pop as many  states ,
as there are symbols in u , from the
new current state make a shift with B

error:
the current state has no transition
under the next input token,
issue a message  and recover

stop:
reduce start production,
see # in the input
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Objectives:

Understand how the automaton works

In the lecture:

Explain operations

Questions:

• Why does the automaton behave differently on a-sequences than on b-sequences?

• Which behaviour is better?
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Left recursion versus right recursion
PLaC-3.16

left recursive  productions:

p2: D ::= D ; a
p3: D ::= a

right recursive  productions:

p4: S ::= b ; S
p5: S ::= b

2 3

5
6

a

D

;

a

4

red. p2

red. p3

reduction immediately after
each ; a is accepted

5 7

8

9

b

b
;

S

red. p4

red. p5
if next is )

the states for all ; b are
pushed before the first reduction
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Objectives:

Understand the difference

In the lecture:

Explain

• why right recursion fills the stack deeply,

• why left recursion is advantagous.
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LR conflicts

An LR(1) automaton that has conflicts is not deterministic .
Its grammar is not LR(1) ;
correspondingly defined for any other LR class.

2 kinds of conflicts:

reduce-reduce conflict:
A state contains two reduce items, the
right context sets  of which are not disjoint :

shift-reduce conflict :
 A state contains
a shift item  with the analysis position in front of a  t  and
a reduce item with t in its right context set .

PLaC-3.17

...
A ::= u .   R1
B ::= v .   R2
...

R1, R2
not
disjoint

...
A ::= u .t v   R1
B ::= w .      R2
...

t ∈ R2
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Objectives:

Understand LR conflicts

In the lecture:

Explain: In certain situations the given input token t can not determine

• Reduce-reduce: which reduction is to be taken;

• Shift-reduce: whether the next token is to be shifted, a reduction is to be made.

Suggested reading:

Kastens / Übersetzerbau, Section 4.3

Questions:

• Why can a shift-shift conflict not exist?

• In LR(0) automata items do not have a right-context set. Explain why a state with a reduce item may not contain any
other item.
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Shift-reduce conflict for „dangling else“ ambiguity
PLaC-3.18

S ::= . Stmt {#}
Stmt ::= . if ... then Stmt {#}
Stmt ::= . if ... then Stmt else Stmt {#}
Stmt ::= . a {#}

Stmt ::= if ... then . Stmt {#}
Stmt ::= if ... then . Stmt else Stmt {#}
Stmt ::= . if ... then Stmt {# else}
Stmt ::= . if ... then Stmt else Stmt {# else}
Stmt ::= . a {# else}

Stmt ::= if ... then Stmt . {# else}
Stmt ::= if ... then Stmt . else Stmt {# else}

Stmt ::= if ... then . Stmt {# else}
Stmt ::= if ... then . Stmt else Stmt {# else}
Stmt ::= . if ... then Stmt {# else}
Stmt ::= . if ... then Stmt else Stmt {# else}
Stmt ::= . a {# else}

if
then...

if
then...

Stmt

1

3

5

6

Stmt

a

Stmt

a

if

a

else

shift-reduce conflict
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Objectives:

See a conflict in an automaton

In the lecture:

Explain

• the construction

• a solution of the conflict: The automaton can be modified such that in state 6, if an else is the next input token, it is
shifted rather than a reduction is made. In that case the ambiguity is solved such that the else part is bound to the inner
if. That is the structure required in Pascal and C. Some parser generators can be instructed to resolve conflicts in this
way.

Suggested reading:

Kastens / Übersetzerbau, Section 4.3
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Decision of ambiguity
PLaC-3.19

Stmt

if  Cond then  Stmt

if  Cond then  Stmt else  Stmt

Stmt

if  Cond then  Stmt

if  Cond then  Stmt else  Stmt

dangling else ambiguity:

desired solution for Pascal, C, C++, Java

Stmt ::= if ... then Stmt . {# else}
Stmt ::= if ... then Stmt . else Stmt {# else}

6 else

shift-reduce conflict

Stmt

State 6 of the automaton can be modified such that
an input token else is shifted  (instead of causing a reduction);

yields the desired behaviour.

Some parser generators allow such modifications.
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Objectives:

Understand modification of automaton

In the lecture:

Explain why the desired effect is achieved.
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Simplified LR grammar classes
PLaC-3.20

LR(1):
too many states  for practical use, because right-contexts distinguish many states.
Strategy:  simplify right-contexts sets; fewer states ; grammar classes less powerful

LALR(1):
construct LR(1) automaton,
identify LR(1) states  if their items
differ only in their right-context sets,
unite the sets for those items;

yields the states of the LR(0) automaton
augmented by the "exact“ LR(1) right-context.

State-of-the-art parser generators
accept LALR(1)

LR(0):
all items without right-context
Consequence: reduce items only in singleton sets

SLR(1):
LR(0) states ; in reduce items
use larger right-context sets for decision:

[ A ::= u .  Follow (A) ]

C ::= z .

A ::= u . v
B ::= x . y
C ::= z . Follow(C)

A ::= u . v R1
B ::= x . y R2
C ::= z . R3

A ::= u . v R1‘
B ::= x . y R2‘
C ::= z . R3‘

q r

A ::= u . v R1 ∪ R1‘
B ::= x . y R2 ∪ R2‘
C ::= z . R3 ∪ R3‘

qr

q, r identified:
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Objectives:

Understand relations between LR classes

In the lecture:

Explain:

• LALR(1), SLR(1), LR(0) automata have the same number of states,

• compare their states,

• discuss the grammar classes for the example on slide PLaC-3.13.

Suggested reading:

Kastens / Übersetzerbau, Section 4.3

Questions:



©
 2

01
3 

be
i P

ro
f. 

D
r.

 U
w

e 
K

as
te

ns

Hierarchy of grammar classes

context-free

unambiguous

LR(k)

LR(1)

LALR(1)

SLR(1)

LR(0)

LL(k)

strong LL(1) = LL(1)

strict inclusions

increasing
precision of right
context sets

same

increasing

number of
states

PLaC-3.21
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Objectives:

Understand the hierarchy

In the lecture:

Explain:

• the reasons for the strict inclusions,

Suggested reading:

Kastens / Übersetzerbau, Section 4.3

Questions:

• Assume that the LALR(1) construction for a given grammar yields conflicts. Classify the potential reasons using the LR
hierarchy.
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Reasons for LALR(1) conflicts

context-free

unambiguous

LR(k)

LR(1)

LALR(1)

PLaC-3.21a

ambiguous most cases

unbounded lookahead  needed

fixed length lookahead > 1  needed

merge of LR(1) states rare cases
introduces conflicts

Grammar condition does not hold:

LALR(1) parser generator can not distinguish these cases.
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Objectives:

Distinguish cases

In the lecture:

The cases are explained.
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LR(1) but not LALR(1)
PLaC-3.21b

Identification of LR(1) states  causes non-disjoint right-context sets.

Artificial example:

Grammar:
Z ::= S
S ::= A a
S ::= B c
S ::= b A c
S ::= b B a
A ::= d.
B ::= d.

Z ::= . S {#}
S ::= . A a {#}
S ::= . B c {#}
S ::= . b A c {#}
S ::= . b B a {#}
A ::= . d {a}
B ::= . d {c}

S ::= b . A c {#}
S ::= b . B a {#}
A ::= . d {c}
B ::= . d {a}

A ::= d . {a}
B ::= d . {c}

A ::= d . {c}
B ::= d . {a}

A ::= d . {a, c}
B ::= d . {a, c}

b

d

d

LR(1) states

LALR(1) state

identified
states

Avoid the distinction between A and B - at least in one of the contexts.
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Objectives:

Understand source of conflicts

In the lecture:

Explain the pattern, and why identification of states causes a conflict.
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Table driven implementation of LR automata
PLaC-3.22

sq: shift into state q

rp: reduce production p

e: error

~: not reachable

terminals nonterminals

st
at

es

sq

rp

e

~
sq

~

LR parser tables

don’t care

~

t

e
s
r

nonterminal table

• has no reduce entries  and no error entries
(only shift  and don’t-care  entries)
reason:
a reduction to A reaches a state from where
a shift under A exists (by construction)

unreachable entries in terminal table:
if t is erroneus input in state r, then
state s will not be reached with input t

B ::= u . A v R
A ::= . w First(vR)

B ::= u A . v R

A ::= w . First(vR)

A

q

r

s

∉

t error
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Objectives:

Understand properties of LR tables

In the lecture:

Explanation of

• pair of tables and their entries,

• unreachable entries,

Questions:

• Why are there no error entries in the nonterminal part?

• Why are there unreachable entries?
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Implementation of LR automata
PLaC-3.23

Compress tables :

• merge rows or columns  that differ only in irrelevant entries; method: graph coloring

• extract a separate error matrix  (bit matrix); increases the chances for merging

• normalize the values of rows or columns ; yields smaller domain; supports merging

• eliminate LR(0) reduce states ; new operation in predecessor state: shift-reduce
eliminates about 30% of the states in practical cases

About 10-20% of the original table sizes  can be achieved!

Directly programmed  LR-automata are possible - but usually too large.

terminals nonterminals
st

at
es

sq

rp

e ~

sq

~

LR(0) reduce state:

...
C ::= u . t R
...

C ::= u t . Rt

Lecture Programming Languages and Compilers WS 2013/14 / Slide 323

Objectives:

Implementation of LR tables

In the lecture:

Explanation of

• compression techniques, derived from general table compression,

• Singleton reduction states yield an effective optimization.

Questions:

• Why are there no error entries in the nonterminal part?

• Why are there unreachable entries?

• Why does a parser need a shift-reduce operation if the optimization of LR(0)-reduction states is applied?
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Parser generators
PGS Univ. Karlsruhe; in Eli LALR(1), table-driven
Cola Univ. Paderborn; in Eli LALR(1), optional: table-driven or directly programmed
Lalr Univ. / GMD Karlsruhe LALR(1), table-driven
Yacc Unix tool LALR(1), table-driven
Bison Gnu LALR(1), table-driven
Llgen Amsterdam Compiler Kit LL(1), recursive descent
Deer Univ. Colorado, Bouder LL(1), recursive descent

Form of grammar specification:
EBNF: Cola, PGS, Lalr; BNF: Yacc, Bison

Error recovery:
simulated continuation, automatically generated: Cola, PGS, Lalr
error productions, hand-specified: Yacc, Bison

Actions:
statements in the implementation language
at the end of productions: Yacc, Bison
anywhere in productions: Cola, PGS, Lalr

Conflict resolution:
modification of states (reduce if ...) Cola, PGS, Lalr
order of productions: Yacc, Bison
rules for precedence and associativity: Yacc, Bison

Implementation languages:
C: Cola, Yacc, Bison C, Pascal, Modula-2, Ada :  PGS, Lalr

PLaC-3.24
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Objectives:

Overview over parser generators

In the lecture:

• Explain the significance of properties

Suggested reading:

Kastens / Übersetzerbau, Section 4.5
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3.5 Syntax Error Handling
General criteria

PLaC-3.25

• recognize error as early as possible
LL and LR can do that:
no transitions after error position

• report the symptom in terms of the source text
rather than in terms of the state of the parser

• continue parsing short after the error position
analyze as much as possible

• avoid avalanche errors

• build a tree that has a correct structure
later phases must not break

• do not backtrack, do not undo actions,
not possible for semantic actions

• no runtime penalty for correct programs
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Objectives:

Accept strong requirements

In the lecture:

• The reasons for and the consequences of the requirements are discussed.

• Some of the requirements hold for error handling in general - not only that of the syntactic analysis.
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Error position

Error recovery : Means that are taken by the parser after recognition of a syntactic error
in order to continue parsing

Correct prefix : The token sequence w ∈T* is a correct prefix in the language L(G),
if there is an u ∈T* such that w u ∈L(G); i. e. w can be extended to a sentence in L(G).

Error position : t is the (first) error position in the input w t x  , where t ∈T and w, x ∈T*,
if w is a correct prefix  in L(G) and w t is not a correct prefix .

LL and LR parsers recognize an error at the error position;
they can not accept t in the current state.

PLaC-3.26

int compute (int i) { a = i * / c; return i;}

w t

Example:
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Objectives:

Error position from the view of the parser

In the lecture:

Explain the notions with respect to parser actions using the examples.

Questions:

Assume the programmer omitted an opening parenthesis.

• Where is the error position?

• What is the symptom the parser recognizes?
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Error recovery

Continuation point :
A token d at or behind the error position t such that
parsing of the input continues at d .

Error repair
with respect to a consistent derivation
- regardless the intension of the programmer!

Let the input be w t x with the
error position at t and let w t x = w y d z,
then the recovery (conceptually) deletes y  and inserts v ,
such that w v d is a correct prefix  in L(G),
with d ∈T and w, y, v, z ∈T*.

PLaC-3.27

a = i * / c;...

a = i * c;...
a = i * / c;...
a = i *e/ c;...

a = i * / c;...

a = i * e ;...

w y d z w y zd w y zd

delete / insert  error identifier e delete / c

Examples:

and insert  error id. e

w t x =
w y d z
w v d z

error position

continuation
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Objectives:

Understand error recovery

In the lecture:

Explain the notions with respect to parser actions using the examples.

Questions:

Assume the programmer omitted an opening parenthesis.

• What could be a suitable repair?
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Recovery method: simulated continuation

Problem : Determine a continuation point close to the error position and reach it.
Idea: Use parse stack to determine a set D of tokens as potential continuation points.

Steps of the method:

1. Save the contents of the parse stack  when an error is recognized.

2. Compute a set D ⊆ T of tokens that may be used as continuation point  (anchor set )
Let a modified parser run to completion:
Instead of reading a token from input it is inserted into D; (modification given below)

3. Find a continuation point d : Skip input tokens until a token of D is found.

4. Reach the continuation point d :
Restore the saved parser stack as the current stack.
Perform dedicated transitions until d is acceptable.
Instead of reading tokens (conceptually) insert tokens.
Thus a correct prefix is constructed.

5. Continue normal parsing .

Augment parser construction for steps 2 and 4 :
For each parser state select a transition and its token,
such that the parser empties its stack and terminates as fast as possible.
This selection can be generated automatically .
The quality of the recovery can be improved by deletion/insertion of elements in D.

PLaC-3.28

error
pos.

contin.
point

(1)

(2)

(3)

(4)

(5)
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Objectives:

Error recovery can be generated

In the lecture:

• Explain the idea and the steps of the method.

• The method yields a correct parse for any input!

• Other, less powerful methods determine sets D statically at parser construction time, e. g. semicolon and curly bracket
for errors in statements.

Questions:

• How does this method fit to the general requirements for error handling?


