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0. Introduction

Objectives

PLaC-0.2

Lectures

Tutorials

Homeworks

Exercises
Running project

Forms of teaching:

The participants are taught to

• understand properties and notions of programming languages

• understand fundamental techniques  of language implementation, and
to use generating tools and standard solutions ,

• apply compiler techniques for design and implementation of specification
languages and domain specific languages
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Contents

Week Chapter

1 0. Introduction

2 1. Language Properties and Compiler tasks

3  - 4 2. Symbol Specification and Lexical Analysis

5 - 7 3. Context-free Grammars and Syntactic Analysis

8 - 10 4. Attribute Grammars and Semantic Analysis

11 5. Binding of Names

12 6. Type Specification and Analysis

13 7. Specification of Dynamic Semantics

13 8. Source-to-Source Translation

9. Domain Specific Languages

Summary

PLaC-0.3



Prerequisites

from Lecture Topic here needed for

Foundations of Programming Languages:

4 levels of language properties Language specification,
compiler tasks

Context-free grammars Grammar design,
syntactic analysis

Scope rules Name analysis

Data types Type specification and analysis

Modeling:
Finite automata Lexical analysis

Context-free grammars Grammar design,
syntactic analysis

PLaC-0.4
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References forReading

Week Chapter Kastens Waite Eli
Carter Doc.

1 0. Introduction

2 1. Language Properties 1, 2 1.1 - 2.1
and Compiler tasks

3 - 4 2. Symbol Specification 3 2.4 +
and Lexical Analysis 3.1 - 3.3

5 - 7 3. Context-free Grammars 4 4, 5, 6 +
and Syntactic Analysis

8 - 10 4. Attribute Grammars 5 +
and Semantic Analysis

11 5. Binding of Names 6.2 7 +

12 6. Type Specification and Analysis (6.1) +

13 7. Specification of Dynamic Semantics

13 8. Source-to-Source Translation

9. Domain Specific Languages

PLaC-0.5a
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Course material in the Web
PLaC-0.6
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Commented slide in the course material
PLaC-0.7
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Organization of the course
PLaC-0.8
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What does a compiler compile?

A compiler  transforms correct sentences of its source language  into sentences of its
target language  such that their meaning is unchanged. Examples:

Source language: Target language:

Programming language Machine language
C++ Sparc code

Programming language Abstract machine
Java Java Bytecode

Programming language Programming language (source-to-source)
C++ C

Domain specific language Application language
LaTeX HTML
Data base language (SQL) Data base system calls

Application generator:
Domain specific language Programming language

SIM Toolkit language Java

Some languages are interpreted  rather than compiled:
Lisp, Prolog, Script languages like PHP, JavaScript, Perl

PLaC-0.9
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What is compiled here?
PLaC-0.10

 class Average

     { private:

         int sum, count;

       public:

         Average (void)

           { sum = 0; count = 0; }

         void Enter (int val)

{ sum = sum + val; count++; }

         float GetAverage (void)

           { return sum / count; }

     };

--------------

_Enter__7Averagei:

             pushl %ebp

             movl %esp,%ebp

             movl 8(%ebp),%edx

             movl 12(%ebp),%eax

             addl %eax,(%edx)

             incl 4(%edx)

     L6:

             movl %ebp,%esp

             popl %ebp

             ret

class Average
{ private
    int sum, count;
  public
    Average ()
      { sum = 0; count = 0; }
    void Enter (int val)
      { sum = sum + val; count++; }
    float GetAverage ()
      { return sum / count; }
};
---------------
1: Enter: (int) --> void
   Access: []
   Attribute 'Code' (Length 49)
      Code: 21 Bytes Stackdepth: 3 Locals: 2
      0:    aload_0
      1:    aload_0
      2:    getfield cp4
      5:    iload_1
      6:    iadd
      7:    putfield cp4
      10:   aload_0
      11:   dup
      12:   getfield cp3
      15:   iconst_1
      16:   iadd
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What is compiled here?
PLaC-0.11

 program Average;

       var sum, count: integer;

           aver: integer;

       procedure Enter (val: integer);

           begin sum := sum + val;

                 count := count + 1;

           end;

     begin

       sum := 0; count := 0;

       Enter (5); Enter (7);

       aver := sum div count;

     end.

-----------

void ENTER_5 (char *slnk , int VAL_4)

     {

     {/* data definitions: */

        /* executable code: */

        {

           SUM_1 = (SUM_1)+(VAL_4);

           COUNT_2 = (COUNT_2)+(1);

           ;

        }

     }}/* ENTER_5 */

\documentstyle[12pt]{article}
\begin{document}
\section{Introduction}
This is a very short document.
It just shows
\begin{itemize}
\item an item, and
\item another item.
\end{itemize}
\end{document}

-------------

%%Page: 1 1
1 0 bop 164 315 a Fc(1)81
b(In)n(tro)r(duction)
164 425 y Fb(This)16
b(is)g(a)h(v)o(ery)e(short)
i(do)q(cumen)o(t.)j(It)c(just)g
(sho)o(ws)237 527 y Fa(\017)24 b
Fb(an)17 b(item,)
c(and)237 628 y Fa(\017)24 b
Fb(another)17 b(item.)
961 2607 y(1)p
eop
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Languages for specification and modeling

SDL (CCITT) UML
Specification and Description Language: Unified Modeling Language:

PLaC-0.12
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Domain Specific Languages (DSL)

A language designed for a specific application domain.
Application Generator : Implementation of a DSL by a program generator

Examples:

• Simulation of mechatronic feedback systems

• Robot control

• Collecting data from instruments

• Testing car instruments

• Game description language :

PLaC-0.13

game BBall
{ size 640 480;

background "pics/backgroundbb.png";
Ball einball; int ballsize;

initial {
ballsize=36;

}

  events {
pressed SPACE:
{ einball = new Ball(<100,540>, <100,380>);
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Programming languages as source or target languages
PLaC-0.14

Programming languages as source languages:

• Program analysis
call graphs, control-flow graph, data dependencies,
e. g. for the year 2000 problem

• Recognition of structures and patterns
e. g. for Reengineering

Programming languages as target languages:

• Specifications (SDL, OMT, UML)

• graphic modeling of structures

• DSL, Application generator

=> Compiler task: Source-to-source compilation
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Semester project as running example
PLaC-0.15

The SetLan translator is implemented using the methods
and tools introduced in this course.

The participants of this course get an implementation of a
sub-language of SetLan as a starting point  for their
work towards their individual extension of the language
and the implementation.

SetLan: A Language for Set Computation

SetLan  is a domain-specific language for programming with sets .
Constructs of the the language are dedicated to describe sets and
computations using sets. The language allows to define types for sets and
variables and expressions of those types. Specific loop constructs allow to
iterate through sets. These constructs are embedded in a simple
imperative language.

A source-to-source translator translates SetLan programs into Java
programs.

{
set a, b; int i;
i = 1;
a = [i, 3, 5];
b = [3, 6, 8];
print a+b; printLn;
print a*b <= b;
printLn;

}
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1. Language properties - compiler tasks
Meaning preserving transformation

A compiler  transforms any correct sentence  of its source language  into a sentence of its
target language  such that its meaning is unchanged .

A meaning  is defined only for all correct  programs => compiler task: error handling

Static language properties are analyzed at compile time,  e. g. definitions of Variables,
types of expressions; => determine the transformation, if the program compilable

Dynamic  properties of the program are determined and checked at runtime,
e. g. indexing of arrays => determine the effect, if the program executable
(However, just-in-time compilation for Java: bytecode is compiled at runtime.)

source language

target language

compilation

execution

meaning
described for
abstract machine

language
definition

machine
description

same results

on real machine

execution
on abstract machine

on both paths

PLaC-1.1
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Levels of language properties - compiler tasks

• a. Notation of tokens lexical analysis
keywords, identifiers, literals
formal definition: regular expressions

• b. Syntactic structure syntactic analysis
formal definition: context-free grammar

• c. Static semantics semantic analysis, transformation
binding names to program objects, typing rules
usually defined by informal texts,
formal definition: attribute grammar

• d. Dynamic semantics transformation, code generation
semantics, effect of the execution of constructs
usually defined by informal texts
in terms of an abstract machine,
formal definition: denotational semantics

Definition of target language (target machine) transformation, code generation
assembly

PLaC-1.2
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Example: Tokens and structure
PLaC-1.3

Character sequence

int count = 0; double sum = 0.0; while (count<maxVect) { sum = sum+vect[count]; count++;}

int count = 0; double sum = 0.0; while (count<maxVect) { sum = sum+vect[count]; count++;}

Tokens

Expressions

StatementsDeclarations

Structure
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Example: Names, types, generated code

0 iconst_0
1 istore_1
2 dconst_0
3 dstore_2
4 goto 19
7 dload_2
8 getstatic #5 <vect[]>
11 iload_1

12 faload
13 f2d
14 dadd
15 dstore_2
16 iinc 1 1
19 iload_1
20 getstatic #4 <maxVect>
23 if_icmplt 7

generated Bytecode

PLaC-1.4

int count = 0; double sum = 0.0; while (count<maxVect) { sum = sum+vect[count]; count++;}

Static properties: names and types

int double int int
boolean

. . .k1: (count, local variable, int)
k2: (sum, local variable, double)

k3: (maxVect, member variable, int)
k4: (vect, member variable, double array)

Structure
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Compiler tasks

Structuring

Translation

Encoding

Syntactic analysis

Transformation

Assembly

Semantic analysis

Code generation

Scanning

Conversion

Parsing

Tree construction

Name analysis

Type analysis

Data mapping

Action mapping

Execution-order

Register allocation
Instruction selection

Instruction encoding
Internal Addressing
External Addressing

Lexical analysis

PLaC-1.5
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Compiler structure and interfaces

Lexical analysis

Syntactic analysis

Semantic analysis

Transformation

Optimization

Code generation

Peephole optimization

Assembly

Source program

Token sequence

Abstract program tree

Intermediate language

Abstract

Target program

Analysis (frontend)

Synthesis (backend)

machine program

PLaC-1.6
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Software qualities of the compiler
PLaC-1.7

• Correctness Compiler translates correct programs correctly;
rejects wrong programs and gives error messages

• Efficiency Storage and time used by the compiler

• Code efficiency Storage and time used by the generated code;
compiler task: optimization

• User support Compiler task: Error handling
(recognition, message, recovery)

• Robustness Compiler gives a reasonable reaction on every input;
does not break on any program
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Strategies for compiler construction
PLaC-1.8

• Obey exactly to the language definition

• Use generating tools

• Use standard components

• Apply standard methods

• Validate the compiler against a test suite

• Verify components of the compiler
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Generate from specifications

Typical compiler tasks solved by generators:

Specification Generator Implemented
algorithm

Environment

Interfaces

Pattern:

Specifications Cooperating
generators Compiler

integrated system Eli:

PLaC-1.9

Regular expressions Scanner generator Finite automaton

Context-free grammar Parser generator Stack automaton

Attribute grammar Attribute evaluator Tree walking algorithm
generator

Code patterns Code selection Pattern matching
generator
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Compiler Frameworks (Selection)

Amsterdam Compiler Kit:  (Uni Amsterdam)
The Amsterdam Compiler Kit is fast, lightweight and retargetable compiler suite and
toolchain written by Andrew Tanenbaum and Ceriel Jacobs.
Intermediate language EM, set of frontends and backends

ANTLR: (Terence Parr, Uni San Francisco)
ANother Tool for Language Recognition, (formerly PCCTS) is a language tool
that provides a framework for constructing recognizers, compilers, and
translators from grammatical descriptions containing Java, C#, C++, or
Python actions

CoCo: (Uni Linz)
Coco/R is a compiler generator, which takes an attributed grammar of a source
language and generates a scanner and a parser for this language. The scanner
works as a deterministic finite automaton. The parser uses recursive descent.

Eli: (Unis Boulder, Paderborn, Sydney)
Combines a variety of standard tools that implement powerful compiler construction
strategies into a domain-specific programming environment called Eli. Using this
environment, one can automatically generate complete language implementations from
application-oriented specifications.

SUIF: (Uni Stanford)
The SUIF 2 compiler infrastructure project is co-funded by DARPA and NSF.
It is a free infrastructure designed to support collaborative research in optimizing
and parallelizing compilers.

PLaC-1.9a
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Environment of compilers

Li
br

ar
ie

s

Preprocessor

Compiler

Linker

Compilation units

Source programs

Code files

Executable program

Preprocessor cpp substitutes text macros in
source programs, e.g.

#include <stdio.h>
#include "module.h"

#define SIZE 32
#define SEL(ptr,fld) ((ptr)->fld)

Separate compilation of compilation units

• with interface specification,
consistency checks,
and language specific linker:
Modula, Ada, Java

• without ...;
checks deferred to system linker:
C, C++

PLaC-1.10
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Interpreter and Debugger

Debugger

Executable program

Interactive commands

Input
Output

Source program

Core dump

Interpreter

Analysis part

abstract machine

Source program

Input Output

PLaC-1.10a
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Compilation and interpretation of Java programs

Compiler

Source modules

Bytecode prozessor
in softwareClass

loader
Just-In-Time
Compiler

(JIT)

Class files
in Java Bytecode
(intermediate language)

needed class files
are loaded dynamically -
local or via Internet

Machine code

Interpreter
Java Virtual Machine
JVM

Input Output

Java

PLaC-1.11
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2. Symbol specifications and lexical analysis

int count = 0; double sum = 0.0; while (count<maxVect) { sum = sum+vect[count]; count++;}

Tokens

Notations of tokens  is specified by regular expressions

Token classes : keywords (for , class ), operators and delimiters (+, ==, ; , { ),
identifiers (getSize , maxint ), literals (42 , '\n' )

Lexical analysis  isolates tokens within a stream of characters and encodes them:

PLaC-2.1
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Lexical Analysis

Input: Program represented by a sequence of characters

Tasks: Compiler modul:

Input reader

Recognize and classify tokens Scanner (central phase, finite state machine)
Skip irrelevant characters

Encode tokens:
Identifier modul

Store token information Literal modules
Conversion String storage

Output: Program represented by a sequence of encoded tokens

PLaC-2.2
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Avoid context dependent token specifications
PLaC-2.3

Tokens should be recognized in isolation :
e. G. all occurrences of the identifier a get the same encoding:

{int a; ... a = 5; ... {float a; ... a = 3.1; ...}}
distinction of the two different variables would require
information from semantic analysis

typedef problem in C :
The C syntax requires lexical distinction  of type-names and other names:

typedef int *T; T (*B); X (*Y);
cause syntactically different structures: declaration of variable B and call of function X.
Requires feedback from semantic analysis to lexical analysis.

Identifiers in PL/1 may coincide with keywords :
if  if = then then  then := else else  else := then
Lexical analysis needs feedback from syntactic analysis to distinguish them.

Token separation  in FORTRAN:
„Deletion or insertion of blanks does not change the meaning.“

DO 24 K = 1,5 begin of a loop, 7 tokens
DO 24 K = 1.5 assignment to the variable DO24K, 3 tokens

Token separation is determined late.
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Representation of tokens
PLaC-2.4

Uniform encoding of tokens by triples:

Syntax code attribute source position

terminal code of value or reference to locate error messages
the concrete syntax into data module of later compiler phases

Examples : double sum = 5.6e-5;
while (count < maxVect)
{ sum = sum + vect[count];

DoubleToken 12, 1
Ident 138 12, 8
Assign 12, 12
FloatNumber 16 12, 14
Semicolon 12, 20
WhileToken 13, 1
OpenParen 13, 7
Ident 139 13, 8
LessOpr 13, 14
Ident 137 13, 16
CloseParen 13, 23
OpenBracket 14, 1
Ident 138 14, 3
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Specification of token notations

regular
grammar

regular
expression

syntax
diagram

finite state
machine

Example: identifiers
Ident = Letter (Letter | Digit)*

Letter

Digit

Letter

Ident:

Letter

Digit

Letter1 2

Ident ::= Letter X
X ::= Letter X
X ::= Digit X
X ::=

transformation
shown in this
lecture

PLaC-2.5
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Regular expressions mapped to syntax diagrams

Transformation rules:

regular expression A syntax diagram for A

empty

a

B C

a

B C

B | C

B*

B+

B

C

B

B

empty

single character

sequence

alternative

repetition, may be empty

repetition, non-empty

PLaC-2.6
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Naive transformation

a

b

a d

c

e

b

b

a

a

d

e

e

c

b a

c

d
e

0

1

2

3

4

5

6

{1} {2,3} {4,5} {6} {0}

PLaC-2.7

1. Transform a syntax diagram
into a non-det. FSM  by naively
exchanging nodes and arcs

2. Transform a non-det. FSM into a
det. FSM:
Merge equivalents sets of nodes
into nodes.

Syntax diagram deterministic finite state machine

set of nodes mq state q

sets of nodes mq and mr transition q ---> r with character a
connected with the same character a
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Construction of deterministic finite state machines

Syntax diagram deterministic finite state machine

set of nodes mq state q

sets of nodes mq and mr transitions q ---> r with character a
connected with the same character a

Construction:

1. enumerate nodes ; exit of the diagram gets the number 0

2. initial set of nodes m1 contains all nodes that are reachable from the begin of the diagram;
m1 represents the initial state 1 .

3. construct new sets of nodes (states) and transitions:
- chose state q with mq, chose a character a
- consider the set of nodes with character a, s.t. their labels k are in mq.
- consider all nodes that are directly reachable from those nodes;
  let mr be the set of their labels
- create a state r for mr and a transition from q to r under a.

4. repeat step 3 until no new states or transitions  can be created

5. a state q is a final state  iff 0 is in mq.

PLaC-2.7a

a
k∈mq n∈mr

a

mq mr

q r

states

nodes
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Properties of the transformation
PLaC-2.7b

1. Syntax diagrams  can express languages
more compact  than regular expressions
can:
A regular expression for { a, ab, b} needs
more than one occurrence of a or b -
a syntax diagram doesn’t.

2. The FSM resulting from a transformation of
PLaC 2.7a may have more states than
necessary .

3. There are transformations that minimize
the number of states  of any FSM.

(a ( | b)) | b

a b

a

a

x

y

x, y are
equivalent
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Example: Floating point numbers in Pascal
PLaC-2.8

d . d E d

+

-

1 2 3 4

5

6

7
0

Syntax diagram

1 2 3 4 5 6 7d

d

d

d
d

d

d

.

E

E
+

-

{1} {1, 2, 4} {3} {3, 4, 0} {5, 6, 7} {7} {7, 0}
d d . E d d E + - d d d

deterministic finite state machine
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Composition of token automata

Construct one finite state machine for each token. Compose them forming a single FSM:

• Identify the initial states of the single automata
and identical structures evolving from there (transitions with the same character and states).

• Keep the final states of single automata distinct, they classify the tokens.

• Add automata for comments and irrelevant characters  (white space)

PLaC-2.9

1

2 3 4 5

6

7

8 9

10 11

12

1314

1516

17

18

0

19

20

a

c

* *

)

(

*
l, E

l, E, d

l, E, d

_

b

. d d

.

d

E
+, -

d

d

d=

=

:

=

/

/

s

eof

character classes:
a all but *
c  all but * or )
d digits
l all letters but E
s + - * < > ; , ) [ ] ^
b blank tab newline

Example: tokens of Lax
[Waite, Goos:

Compiler Construction]

d

d E



©
 2

00
3 

be
i P

ro
f. 

D
r.

 U
w

e 
K

as
te

ns

Rule of the longest match

An automaton may contain transitions from final states:

When does the automaton stop?

Rule of the longest match:

•  The automaton continues as long as there is a transition with the next character.

•  After having stopped it sets back to the most recently passed final state.

•  If no final state has been passed an error message is issued.

Consequence: Some kinds of tokens have to be separated explicitly.

Check the concrete grammar for tokens that may occur adjacent!

PLaC-2.10

... ...
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Scanner: Aspects of implementation

• Runtime is proportional to the number of characters in the program

• Operations per character must be fast - otherwise the Scanner dominates compilation time

• Table driven  automata are too slow:
Loop interprets table, 2-dimensional array access, branches

• Directly programmed  automata is faster;  transform transitions into control flow:

• Fast loops  for sequences of irrelevant blanks .

• Implementation of character classes :
bit pattern or indexing - avoid slow operations with sets of characters.

• Do not copy characters  from input buffer - maintain a pointer into the buffer, instead.

sequence

repeat loop

branch, switch

PLaC-2.11
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Characteristics of Input Data
PLaC-2.11b

W. M. Waite:
The Cost of Lexical Analysis.
Software- Practice and Experience,
16(5):473-488, May 1986.

significant numbers of characters
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Identifier module and literal modules

• Uniform interface for all scanner support modules:
Input parameters: pointer to token text and its length;
Output parameters: syntax code, attribute

• Identifier module encodes identifier occurrences bijective (1:1), and
recognizes keywords
Implementation: hash vector, extensible table, collision lists

• Literal modules for floating point numbers, integral numbers, strings

Variants for representation in memory:
token text; value converted into compiler data; value converted into target data

Caution:
Avoid overflow on conversion!
Cross compiler: compiler representation may differ from target representation

• Character string memory:
stores strings without limits on their lengths,
used by the identifier module and the literal modules

PLaC-2.12
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Scanner generators

generate the central function of lexical analysis

GLA University of Colorado, Boulder; component of the Eli system
Lex Unix standard tool
Flex Successor of Lex
Rex GMD Karlsruhe

Token specification: regular expressions

GLA library of precoined specifications;
recognizers for some tokens may be programmed

Lex, Flex, Rex transitions may be made conditional

Interface:

GLA as described in this chapter; cooperates with other Eli components
Lex, Flex, Rex actions may be associated with tokens (statement sequences)

interface to parser generator Yacc

Implementation:

GLA directly programmed automaton in C
Lex, Flex, Rex table-driven automaton in C
Rex table-driven automaton in C or in Modula-2
Flex, Rex faster, smaller implementations than generated by Lex

PLaC-2.13
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3. Context-free Grammars and Syntactic Analysis
PLaC-3.1

Input: token sequence

Tasks:
Parsing : construct a derivation according to the concrete syntax ,
Tree construction:  build a structure tree according to the abstract syntax ,
Error handling:  detection of an error, message, recovery

Result: abstract program tree

Abstract program tree (condensed derivation tree):
represented by a

• data structure in memory  for the translation phase to operate on,

• linear sequence of nodes on a file  (costly in runtime),

• sequence of calls  of functions of the translation phase.

Compiler module parser:
deterministic stack automaton, augmented by actions for tree construction
top-down parsers: leftmost derivation; tree construction top-down or bottom-up
bottom-up parsers: rightmost derivation backwards; tree construction bottom-up
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Generating the structuring phase from specifications (Eli)
PLaC-3.1a

compiler designer generators compiler
specifications

non-lit. tokens
(.gla)

concrete syntax
(.con)

mapping
(.map)

abstract syntax
(.lido)

Eli

scanner
generator
(GLA)

parser
generator
(PGS)

attribute
evaluator
generator
(Liga)

abstr. progr. tree

lex. ana

Scanner
ident.

literals

token sequence

parser

tree construction

sem. ana.

synt. ana

Map
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3.1 Concrete and abstract syntax

concrete syntax abstract syntax

- context-free grammar - context-free grammar
- defines the structure of source programs - defines abstract program trees
- is unambiguous - is usually ambiguous
- specifies derivation and parser - translation phase is based on it
- parser actions specify the tree construction   --->- tree construction

- some chain productions have only syntactic purpose
Expr ::= Fact      have no action no node created

- symbols are mapped {Expr,Fact}  -> to one abstract symbol Exp

- same action at structural equivalent productions: - creates tree nodes
Expr ::= Expr AddOpr Fact &BinEx
Fact ::= Fact MulOpr Opd  &BinEx

- semantically relevant chain productions, e.g. - are kept (tree node is created)
ParameterDecl ::= Declaration

- terminal symbols - only semantically relevant ones are kept
identifiers, literals, identifiers, literals
keywords, special symbols

- concrete syntax and symbol mapping specify - abstract syntax (can be generated)

PLaC-3.2



©
 2

01
3 

be
i P

ro
f. 

D
r.

 U
w

e 
K

as
te

ns

Example: concrete expression grammar

Expr

Fact

Opd

a

Fact MulOpr

*Opd ( )Expr

Expr Fact

Opd

b

AddOpr

+Fact

Opd c

p2

p3

p4

p6

p9 p5

p1

p2

p4

p6

p7 p4

p6

derivation tree for a * (b + c)

name production action

p1: Expr ::= Expr AddOpr Fact BinEx
p2: Expr ::= Fact
p3: Fact ::= Fact MulOpr Opd BinEx
p4: Fact ::= Opd
p5: Opd ::= '(' Expr  ')'
p6: Opd ::= Ident IdEx
p7: AddOpr ::= '+' PlusOpr
p8: AddOpr ::= '-' MinusOpr
p9: MulOpr ::= '*' TimesOpr
p10: MulOpr ::= '/' DivOpr

+, - lower precedence
*, / higher precedence

PLaC-3.3
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Patterns for expression grammars
PLaC-3.3a

Expression grammars are systematically constructed,
such that structural properties  of expressions are defined:

one level of precedence , binary
operator,left-associative:

A ::= A Opr B
A ::= B

one level of precedence ,
unary  Operator , prefix:

A ::= Opr A
A ::= B

one level of precedence ,
unary  Operator , postfix:

A ::= A Opr
A ::= B

Elementary operands : only derived
from the nonterminal of the highest
precedence  level (be H here):

H ::= Ident

Expressions in parentheses: only
derived  from the nonterminal of the
highest precedence  level (assumed to be
H here); contain  the nonterminal of the
lowest precedence level  (be A here):

H ::= '(' A ')'

one level of precedence , binary
operator,right-associative:

A ::= B Opr A
A ::= B
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Example: abstract expression grammar

name production

BinEx: Exp    ::= Exp BinOpr Exp
IdEx: Exp    ::= Ident
PlusOpr: BinOpr ::= '+'
MinusOpr: BinOpr ::= '-'
TimesOpr: BinOpr ::= '*'
DivOpr: BinOpr ::= '/'

symbol classes: Exp = { Expr, Fact, Opd }
BinOpr = { AddOpr, MulOpr }

Actions  of the concrete syntax: productions  of the abstract syntax to create tree nodes for
no action  at a concrete chain production: no tree node  is created

PLaC-3.4

Exp

a

Exp BinOpr

*

Exp

Exp Exp

b

BinOpr

+ c

BinEx

IdEx TimesOpr BinEx

IdEx PlusOpr IdEx

abstract program tree for a * (b + c)
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3.2 Design of concrete grammars
PLaC-3.4a

Objectives

The concrete grammar for parsing

• is parsable: fulfills the grammar condition  of the chosen
parser generator;

• specifies the intended language  - or a small super set of it;

• is provably related to the documented grammar ;

• can be mapped to  a suitable abstract grammar .
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A strategy for grammar development
PLaC-3.4aa

1. Examples : Write at least one example for every intended language construct. Keep the
examples for checking the grammar and the parser.

2. Sub-grammars : Decompose a non-trivial task into topics covered by sub-gammars, e.g.
statements, declarations, expressions, over-all structure.

3. Top-down : Begin with the start symbol of the (sub-)grammar, and refine each nonterminal
according to steps 4 - 7 until all nonterminals of the (sub-)grammar are refined.

4. Alternatives : Check whether the language construct represented by the current
nonterminal, say Statement, shall occur in structurally different alternatives, e.g. while-
statement, if-statement, assignment. Either introduce chain productions, like
Statement ::= WhileStatement | IfStatement | Assignment.
or apply steps 5 - 7 for each alternative separately.

5. Consists of : For each (alternative of a) nonterminal representing a language construct
explain its immediate structure in words, e.g. „A Block is a declaration sequence followed
by a statement sequence, both enclosed in curly braces.“ Refine only one structural level.
Translate the description into a production. If a sub-structure is not yet specified introduce
a new nonterminal with a speaking name for it, e.g.
Block ::= ’{’ DeclarationSeq StatementSeq ’}’.

6. Natural structure : Make sure that step 5 yields a „natural“ structure, which supports
notions used for static or dynamic semantics, e.g. a range for valid bindings.

7. Useful patterns : In step 5 apply patterns for description of sequences, expressions, etc.
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Grammar design for an existing language
PLaC-3.4b

• Take the grammar of the language specification literally .

• Only conservative modifications  for parsability or for mapping to abstract syntax.

• Describe all modifications .
(see ANSI C Specification in the Eli system description
http://www.uni-paderborn.de/fachbereich/AG/agkastens/eli/examples/eli_cE.html)

• Java  language specification (1996):
Specification grammar is not LALR(1).
5 problems are described and how to solve them.

• Ada  language specification (1983):
Specification grammar is LALR(1)
- requirement of the language competition

• ANSI C, C++:
several ambiguities and LALR(1) conflicts, e.g.
„dangling else “,
„typedef problem “:

A (*B);
is a declaration of variable B, if A is a type name,
otherwise it is a call of function A
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Grammar design together with language design
PLaC-3.4c

Read grammars  before writing a new grammar.

Apply grammar patterns systematically  (cf. GPS-2.5, GPS-2.8)

• repetitions

• optional constructs

• precedence, associativity of operators

Syntactic structure should reflect semantic structure :

E. g. a range in the sense of scope rules should be represented by a single
subtree of the derivation tree (of the abstract tree).

Violated in Pascal:

functionDeclaration ::= functionHeading block
functionHeading ::= ‘function‘ identifier formalParameters ‘:‘ resultType ‘;‘

formalParameters together with block form a range,
but identifier does not belong to it
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Syntactic restrictions versus semantic conditions
PLaC-3.4d

Express a restriction syntactically  only if
it can be completely covered with reasonable complexity :

• Restriction can not be decided syntactically :
e.g. type check in expressions:

BoolExpression ::= IntExpression ‘<‘ IntExpression

• Restriction can not always be decided syntactically :
e. g. disallow array type to be used as function result

Type ::= ArrayType | NonArrayType | Identifier
ResultType ::= NonArrayType

If a type identifier may specify an array type,
a semantic condition is needed, anyhow

• Syntactic restriction is unreasonably complex :
e. g. distinction of compile-time expressions from ordinary
expressions requires duplication of the expression syntax.
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Eliminate ambiguities
PLaC-3.4e

unite syntactic constructs - distinguish them semantically

Examples:

• Java: ClassOrInterfaceType ::= ClassType | InterfaceType
InterfaceType ::= TypeName
ClassType ::= TypeName

replace first production by
ClassOrInterfaceType ::= TypeName
semantic analysis distinguishes between class type and interface type

• Pascal: factor ::= variable | ... | functionDesignator
variable ::= entireVariable | ...
entireVariable ::= variableIdentifier
variableIdentifier ::= identifier (**)
functionDesignator ::= functionIdentifier (*)

| functionIdentifer ’(’ actualParameters ’)’
functionIdentifier ::= identifier

eliminate marked (*) alternative
semantic analysis checks whether (**) is a function identifier
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Unbounded lookahead
PLaC-3.4f

The decision for a reduction  is determined by a distinguishing token  that may
be arbitrarily far to the right :

Example , forward  declarations as could have been defined in Pascal:

functionDeclaration ::=
‘function‘ forwardIdent formalParameters ‘:‘ resultType ‘;‘ ‘forward‘

| ‘function‘ functionIdent formalParameters ‘:‘ resultType ‘;‘ block

The distinction between forwardIdent  and functionIdent  would require to see
the forward  or the begin  token.

Replace forwardIdent  and functionIdent  by the same nonterminal;
distinguish semantically.
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3.3 Recursive descent parser
PLaC-3.5

case decision set for p1 :
Variable();
accept(assignSym);
Expr();
break;

case decision set for p2 :
accept(whileSym);
Expr() ;
accept(doSym);
Stmt() ;
break;

void Stmt ()
{ switch (CurrSymbol)

{

default: Fehlerbehandlung();
} }

top-down  (construction of the derivation  tree), predictive  method

Systematic transformation of a context-free grammar into a set of functions:

non-terminal symbol X function X
alternative productions for X branches in the function body
decision set of production pi decision for branch pi
non-terminal occurrence X ::= ... Y ... function call Y()
terminal occurrence X ::= ... t ... accept a token t and read the next token

Productions  for Stmt :

p1: Stmt  ::=
Variable ':=' Expr

p2: Stmt  ::=
'while' Expr  'do' Stmt
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Grammar conditions for recursive descent

Definition: A context-free grammar is strong LL(1) , if for any pair of productions  that have the
same symbol on their left-hand sides , A ::= u and A ::= v, the decision sets are disjoint :

DecisionSet (A ::= u) ∩ DecisionSet (A ::= v) = ∅
with

DecisionSet (A ::= u)  := if nullable (u) then First (u) ∪ Follow (A)  else First (u)

nullable (u)  holds iff a derivation u ⇒* ε exists

First (u) := { t ∈ T | v ∈V* exists and a derivation u ⇒* t v }

Follow (A) := { t ∈ T | u,v ∈V* exist, A ∈N and a derivation S ⇒* u A t v }

PLaC-3.6

p1: Prog ::= Block # begin
p2: Block ::= begin  Decls Stmts end begin
p3: Decls ::= Decl ; Decls new
p4: Decls ::= Ident begin
p5: Decl ::= new  Ident new
p6: Stmts ::= Stmts ; Stmt begin  Ident
p7: Stmts ::= Stmt begin  Ident
p8: Stmt ::= Block begin
p9: Stmt ::= Ident := Ident Ident

Prog begin
Block begin # ; end
Decls new Ident begin
Decl new ;
Stmts begin  Ident ; end
Stmt begin  Ident ; end

Example:
production DecisionSet

non-terminal
First (X) Follow (X)X
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Computation rules for nullable, First, and Follow
PLaC-3.6a

Definitions:

nullable(u)  holds iff a derivation u ⇒* ε exists

First(u) := { t ∈ T | v ∈V* exists and a derivation u ⇒* t v }

Follow(A) := { t ∈ T | u,v ∈V* exist, A ∈N and a derivation S ⇒* u A v such that t ∈ First(v) }

with G = (T, N, P, S); V = T ∪ N; t ∈ T; A ∈ N; u,v ∈V*

Computation rules:

nullable(ε) = true; nullable(t) = false; nullable(uv) = nullable(u) ∧ nullable(v);
nullable(A) = true iff ∃ A::=u ∈ P ∧ nullable(u)

First(ε) = ∅; First(t) = {t};
First(uv) = if nullable(u) then First(u) ∪ First(v) else First(u)
First(A) = First(u1) ∪...∪ First(un) for all A::=ui ∈ P

Follow(A):
if A=S then # ∈ Follow(A)
if Y::=uAv ∈ P then First(v) ⊆ Follow(A) and if nullable(v) then Follow(Y) ⊆ Follow(A)
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Grammar transformations for LL(1)
PLaC-3.7

Consequences of strong LL(1) condition:
A strong LL(1) grammar can not have

• alternative productions that begin
with the same symbols:

• productions that are directly or
indirectly left-recursive:

u, v, w ∈ V*
X ∈ N does not occur in the

original grammar

Simple grammar transformations that
keep the defined language invariant:

left-factorization:

non-LL(1) productions transformed

A ::= v u A ::= v X
A ::= v w X ::= u

X ::= w

elimination of direct recursion:

A ::= A u A ::= v X
A ::= v X ::= u X

X ::=
special case empty v:

A ::= A u A ::= u A
A ::= A ::=
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LL(1) extension for EBNF constructs
PLaC-3.7a

EBNF constructs can avoid violation of strong LL(1) condition:

EBNF construct:

Production:

additional
LL(1)-condition:

in recursive
descent parser:

Option [ u ] Repetition ( u )*

A ::= v [ u ] w A ::= v ( u )* w

if nullable(w)
then First(u) ∩  (First(w) ∪  Follow(A)) = ∅
else  First(u) ∩  First(w) = ∅

v v
if (CurrToken in First(u)) { u } while (CurrToken in First(u)) { u }
w w

Repetition ( u )+ left as exercise
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Comparison: top-down vs. bottom-up

Information a stack automaton has when it decides to apply production  A ::= x :

top-down, predictive bottom-up
leftmost derivation rightmost derivation backwards

A bottom-up parser has seen more of the input when it decides to apply a production.

Consequence: bottom-up  parsers and their grammar classes are more powerful .

PLaC-3.8

A

x
u v

contents of
the stack

input

k
lookahead

accepted

A

x
u

input
k

lookahead
accepted

direction of
tree construction
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Leftmost and rightmost derivations
PLaC-3.9

S

u A v

=>*

=>*

=>

=>

tt A v

tt x v

tt ss v

=>*

=>*

=>

tt ss ee

u ss ee

u x ee

u A ee

leftmost rightmost

forw
ard

produce
ba

ck
w

ar
d

re
du

ce

S

=>*

u, v, x ∈ V*

tt, ss, ee ∈ T*

A ∈ N
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Derivation tree: top-down vs. bottom-up construction
PLaC-3.9a

p0: P ::= D
P1: D ::= FF
P2: D ::= FB
P3: FF ::= ’fun’ FI ’(’ Ps ’)’ ’fwd’
P4: FB ::= ’fun’ FI ’(’ Ps ’)’ B
P5: Ps ::= Ps PI
P6: Ps ::=
p7: B ::= ’{’ ’}’
p8: FI ::= Id
p9: PI ::= Id

P
D
FF
fun FI ( Ps ) fwd

Id
Ps PI
Ps PI

Id
Id

fun Id ( Id Id ) fwd

p0
p1
p3
p8
p5
p5
p6
p9
p9

P
D
FF

Ps ) fwd
PI

Ps Id
PI

Ps Id
FI (

fun id

fun Id ( Id Id ) fwd

p0
p1
p3
p5
p9
p5
p9
p6
p8
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LR(0) -Automaton
PLaC-3.9b

1

red.p9
12

red.p7
15

red.p4
16

14

red.p5
13

red.p8
11

red.p2
10

red.p1
9

red.p0
8

red.p3
7

6

5

red.p6
4

3

2

fun

FI

(

)

Ps Id

Id

PI

fwd

B

{ }

D

FF

FB

fun Id(Id Id)fwd
Id(Id Id)fwd

(Id Id)fwd
(Id Id)fwd

Id Id)fwd
Id Id)fwd

Id)fwd
Id)fwd
Id)fwd

)fwd
)fwd
)fwd

fwd
#
#
#

1
1 2
1 2 11
1 2 3
1 2 3 4
1 2 3 4 5
1 2 3 4 5 12
1 2 3 4 5 13
1 2 3 4 5
1 2 3 4 5 12
1 2 3 4 5 13
1 2 3 4 5
1 2 3 4 5 6
1 2 3 4 5 6 7
1 9
1 8

p8

p6

p9
p5

p9
p5

p3
p1
p0

reduction stack input
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3.4 LR parsing

LR(k) grammars introduced 1965 by Donald Knuth; non-practical until subclasses were defined.

LR parsers construct the derivation tree bottom-up, a right-derivation backwards.

LR(k) grammar condition  can not be checked directly, but
a context-free grammar is LR(k), iff the (canonical) LR(k) automaton is deterministic .

We consider only 1 token lookahead: LR(1).

Comparison of LL and LR states:

The stacks  of LR(k) and LL(k) automata contain states .

The construction of LR and LL states is based on the notion of items  (see next slide).

Each state  of an automaton represents LL: one item LR: a set of items
An LL item corresponds to a position in a case branch of a recursive function.

PLaC-3.10
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LR(1) items

An item  represents the progress of analysis with respect to one production:

[  A  ::=  u .  v R  ] e. g.   [ B ::= ( . D ; S ) {#}]

. marks the position of analysis:accepted and reduced . to be accepted

R expected right context:
a set of terminals  which may follow in the input
when the complete production is accepted.
(general k>1: R contains sequences of terminals not longer than k)

Items can distinguish different right contexts: [ A ::= u . v  R ] and [ A ::= u . v  R’ ]

Reduce item:

[  A  ::=  u v . R  ] e. g.   [ B ::= (  D ; S ) . {#}]

characterizes a reduction using this production if the next input token is in R.

The automaton uses R only for the decision on reductions!

A state  of an LR automaton represents a set of items

PLaC-3.11
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LR(1) states and operations

A state of an LR automaton represents a set of items
Each item represents a way in which analysis may
proceed from that state.

A shift transition  is made under
a token read  from input or
a non-terminal  symbol

obtained from a preceding reduction.
The state is pushed.

A reduction  is made according to a reduce item.
n states are popped for a production of length n.

Operations: shift read and push the next state on the stack
reduce reduce with a certain production, pop n states from the stack
error error recognized, report it, recover
stop input accepted

PLaC-3.12

B ::= ( . D ; S ) {#}

D ::= . D ; a {;}

D ::= . a { ;}

2

B ::= ( D . ; S ) {#}
D ::= D . ; a {;}

D
4

D ::= a . {;}

a

red. p33
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Example for a LR(1) automaton
PLaC-3.13

B ::= . ( D ; S ) {#}

B ::= ( . D ; S ) {#}
D ::= . D ; a {;}
D ::= . a {;}

B ::= ( D . ; S ) {#}
D ::= D . ; a {;}

B ::= ( D ; . S ) {#}
D ::= D ; . a {;}
S ::= . b ; S {)}
S ::= . b {)}

B ::= ( D ; S . ) {#}

B ::= ( D ; S ) . {#}

D ::= a . {;}

D ::= D ; a . {;}

S ::= b . ; S {)}
S ::= b . {)}

S ::= b ; . S {)}
S ::= . b ; S {)}
S ::= . b {)}

S ::= b ; S . {)}

(

D

;

S

)

a

a

b

b

;

S

1

2
3

4

5

6

7

8

9

10

11

red. p1, stop

red. p3

red. p2

red. p5

red. p4

Grammar:
p1 B ::= ( D ; S )
p2 D ::= D ; a
p3 D ::= a
p4 S ::= b ; S
p5 S ::= b

In state 7 a decision is
required on next input:

• if ; then shift

• if ) then reduce p5

In states 3, 6, 9, 11 a
decision is not
required:

• reduce on any input
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Construction of LR(1) automata
Algorithm :1. Create the start state.

2. For each created state compute the transitive closure of its items.
3. Create transitions and successor states as long as new ones can be created.

Start state :
Closure of [ S ::=  . u   {#} ]
S ::= u   is the unique start production ,
# is an (artificial) end symbol  (eof)

Transitive closure  is to be applied to each state q:
Consider all items in q with the analysis position
before a non-terminal B:
[ A1 ::= u 1 . B v1  R1 ] ... [ A n ::= u n . B vn  Rn ],
then for each production B ::= w
[ B ::= .  w First (v 1 R1)∪...∪First (v n Rn)]
has to be added to state q.

Successor states :
For each symbol x  (terminal or non-terminal),
which occurs in some items after the analysis position ,
a transition  is created to a successor state .
That contains corresponding items
with the analysis position
advanced behind the x  occurrence.

B ::= . ( D ; S ) {#}1

B ::= ( . D ; S ) {#}

B ::= ( . D ; S ) {#}
D ::= . D ; a {;}∪{;}
D ::= . a {;}∪{;}

2

before:

after:

2

PLaC-3.14

B ::= ( . D ; S ) {#}
D ::= . D ; a {;}
D ::= . a {;}

B ::= ( D . ; S ) {#}
D ::= D . ; a {;} D ::= a . {;}

D a

2

3
4
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Operations of LR(1) automata
PLaC-3.15

Example:

stack input reduction

1 ( a ; a ; b ; b ) #
1 2 a ; a ; b ; b ) #
1 2 3 ; a ; b ; b ) # p3
1 2 ; a ; b ; b ) #
1 2 4 ; a ; b ; b ) #
1 2 4 5 a ; b ; b ) #
1 2 4 5 6 ; b ; b ) # p2
1 2 ; b ; b ) #
1 2 4 ; b ; b ) #
1 2 4 5 b ; b ) #
1 2 4 5 7 ; b ) #
1 2 4 5 7 8 b ) #
1 2 4 5 7 8 7 ) # p5
1 2 4 5 7 8 ) #
1 2 4 5 7 8 9 ) # p4
1 2 4 5 ) #
1 2 4 5 10 ) #
1 2 3 5 10 11 # p1
1 #

shift x  (terminal or non-terminal):
from current state q
under x into the successor state q‘  ,
push q‘

reduce p:
apply production p  B ::= u ,
pop as many  states ,
as there are symbols in u , from the
new current state make a shift with B

error:
the current state has no transition
under the next input token,
issue a message  and recover

stop:
reduce start production,
see # in the input
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Left recursion versus right recursion
PLaC-3.16

left recursive  productions:

p2: D ::= D ; a
p3: D ::= a

right recursive  productions:

p4: S ::= b ; S
p5: S ::= b

2 3

5
6

a

D

;

a

4

red. p2

red. p3

reduction immediately after
each ; a is accepted

5 7

8

9

b

b
;

S

red. p4

red. p5
if next is )

the states for all ; b are
pushed before the first reduction



©
 2

01
0 

be
i P

ro
f. 

D
r.

 U
w

e 
K

as
te

ns

LR conflicts

An LR(1) automaton that has conflicts is not deterministic .
Its grammar is not LR(1) ;
correspondingly defined for any other LR class.

2 kinds of conflicts:

reduce-reduce conflict:
A state contains two reduce items, the
right context sets  of which are not disjoint :

shift-reduce conflict :
 A state contains
a shift item  with the analysis position in front of a  t  and
a reduce item with t in its right context set .

PLaC-3.17

...
A ::= u .   R1
B ::= v .   R2
...

R1, R2
not
disjoint

...
A ::= u .t v   R1
B ::= w .      R2
...

t ∈ R2
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Shift-reduce conflict for „dangling else“ ambiguity
PLaC-3.18

S ::= . Stmt {#}
Stmt ::= . if ... then Stmt {#}
Stmt ::= . if ... then Stmt else Stmt {#}
Stmt ::= . a {#}

Stmt ::= if ... then . Stmt {#}
Stmt ::= if ... then . Stmt else Stmt {#}
Stmt ::= . if ... then Stmt {# else}
Stmt ::= . if ... then Stmt else Stmt {# else}
Stmt ::= . a {# else}

Stmt ::= if ... then Stmt . {# else}
Stmt ::= if ... then Stmt . else Stmt {# else}

Stmt ::= if ... then . Stmt {# else}
Stmt ::= if ... then . Stmt else Stmt {# else}
Stmt ::= . if ... then Stmt {# else}
Stmt ::= . if ... then Stmt else Stmt {# else}
Stmt ::= . a {# else}

if
then...

if
then...

Stmt

1

3

5

6

Stmt

a

Stmt

a

if

a

else

shift-reduce conflict
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Decision of ambiguity
PLaC-3.19

Stmt

if  Cond then  Stmt

if  Cond then  Stmt else  Stmt

Stmt

if  Cond then  Stmt

if  Cond then  Stmt else  Stmt

dangling else ambiguity:

desired solution for Pascal, C, C++, Java

Stmt ::= if ... then Stmt . {# else}
Stmt ::= if ... then Stmt . else Stmt {# else}

6 else

shift-reduce conflict

Stmt

State 6 of the automaton can be modified such that
an input token else is shifted  (instead of causing a reduction);

yields the desired behaviour.

Some parser generators allow such modifications.
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Simplified LR grammar classes
PLaC-3.20

LR(1):
too many states  for practical use, because right-contexts distinguish many states.
Strategy:  simplify right-contexts sets; fewer states ; grammar classes less powerful

LALR(1):
construct LR(1) automaton,
identify LR(1) states  if their items
differ only in their right-context sets,
unite the sets for those items;

yields the states of the LR(0) automaton
augmented by the "exact“ LR(1) right-context.

State-of-the-art parser generators
accept LALR(1)

LR(0):
all items without right-context
Consequence: reduce items only in singleton sets

SLR(1):
LR(0) states ; in reduce items
use larger right-context sets for decision:

[ A ::= u .  Follow (A) ]

C ::= z .

A ::= u . v
B ::= x . y
C ::= z . Follow(C)

A ::= u . v R1
B ::= x . y R2
C ::= z . R3

A ::= u . v R1‘
B ::= x . y R2‘
C ::= z . R3‘

q r

A ::= u . v R1 ∪ R1‘
B ::= x . y R2 ∪ R2‘
C ::= z . R3 ∪ R3‘

qr

q, r identified:
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Hierarchy of grammar classes

context-free

unambiguous

LR(k)

LR(1)

LALR(1)

SLR(1)

LR(0)

LL(k)

strong LL(1) = LL(1)

strict inclusions

increasing
precision of right
context sets

same

increasing

number of
states

PLaC-3.21
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Reasons for LALR(1) conflicts

context-free

unambiguous

LR(k)

LR(1)

LALR(1)

PLaC-3.21a

ambiguous most cases

unbounded lookahead  needed

fixed length lookahead > 1  needed

merge of LR(1) states rare cases
introduces conflicts

Grammar condition does not hold:

LALR(1) parser generator can not distinguish these cases.
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LR(1) but not LALR(1)
PLaC-3.21b

Identification of LR(1) states  causes non-disjoint right-context sets.

Artificial example:

Grammar:
Z ::= S
S ::= A a
S ::= B c
S ::= b A c
S ::= b B a
A ::= d.
B ::= d.

Z ::= . S {#}
S ::= . A a {#}
S ::= . B c {#}
S ::= . b A c {#}
S ::= . b B a {#}
A ::= . d {a}
B ::= . d {c}

S ::= b . A c {#}
S ::= b . B a {#}
A ::= . d {c}
B ::= . d {a}

A ::= d . {a}
B ::= d . {c}

A ::= d . {c}
B ::= d . {a}

A ::= d . {a, c}
B ::= d . {a, c}

b

d

d

LR(1) states

LALR(1) state

identified
states

Avoid the distinction between A and B - at least in one of the contexts.
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Table driven implementation of LR automata
PLaC-3.22

sq: shift into state q

rp: reduce production p

e: error

~: not reachable

terminals nonterminals

st
at

es

sq

rp

e

~
sq

~

LR parser tables

don’t care

~

t

e
s
r

nonterminal table

• has no reduce entries  and no error entries
(only shift  and don’t-care  entries)
reason:
a reduction to A reaches a state from where
a shift under A exists (by construction)

unreachable entries in terminal table:
if t is erroneus input in state r, then
state s will not be reached with input t

B ::= u . A v R
A ::= . w First(vR)

B ::= u A . v R

A ::= w . First(vR)

A

q

r

s

∉

t error
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Implementation of LR automata
PLaC-3.23

Compress tables :

• merge rows or columns  that differ only in irrelevant entries; method: graph coloring

• extract a separate error matrix  (bit matrix); increases the chances for merging

• normalize the values of rows or columns ; yields smaller domain; supports merging

• eliminate LR(0) reduce states ; new operation in predecessor state: shift-reduce
eliminates about 30% of the states in practical cases

About 10-20% of the original table sizes  can be achieved!

Directly programmed  LR-automata are possible - but usually too large.

terminals nonterminals
st

at
es

sq

rp

e ~

sq

~

LR(0) reduce state:

...
C ::= u . t R
...

C ::= u t . Rt
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Parser generators
PGS Univ. Karlsruhe; in Eli LALR(1), table-driven
Cola Univ. Paderborn; in Eli LALR(1), optional: table-driven or directly programmed
Lalr Univ. / GMD Karlsruhe LALR(1), table-driven
Yacc Unix tool LALR(1), table-driven
Bison Gnu LALR(1), table-driven
Llgen Amsterdam Compiler Kit LL(1), recursive descent
Deer Univ. Colorado, Bouder LL(1), recursive descent

Form of grammar specification:
EBNF: Cola, PGS, Lalr; BNF: Yacc, Bison

Error recovery:
simulated continuation, automatically generated: Cola, PGS, Lalr
error productions, hand-specified: Yacc, Bison

Actions:
statements in the implementation language
at the end of productions: Yacc, Bison
anywhere in productions: Cola, PGS, Lalr

Conflict resolution:
modification of states (reduce if ...) Cola, PGS, Lalr
order of productions: Yacc, Bison
rules for precedence and associativity: Yacc, Bison

Implementation languages:
C: Cola, Yacc, Bison C, Pascal, Modula-2, Ada :  PGS, Lalr

PLaC-3.24
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3.5 Syntax Error Handling
General criteria

PLaC-3.25

• recognize error as early as possible
LL and LR can do that:
no transitions after error position

• report the symptom in terms of the source text
rather than in terms of the state of the parser

• continue parsing short after the error position
analyze as much as possible

• avoid avalanche errors

• build a tree that has a correct structure
later phases must not break

• do not backtrack, do not undo actions,
not possible for semantic actions

• no runtime penalty for correct programs
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Error position

Error recovery : Means that are taken by the parser after recognition of a syntactic error
in order to continue parsing

Correct prefix : The token sequence w ∈T* is a correct prefix in the language L(G),
if there is an u ∈T* such that w u ∈L(G); i. e. w can be extended to a sentence in L(G).

Error position : t is the (first) error position in the input w t x  , where t ∈T and w, x ∈T*,
if w is a correct prefix  in L(G) and w t is not a correct prefix .

LL and LR parsers recognize an error at the error position;
they can not accept t in the current state.

PLaC-3.26

int compute (int i) { a = i * / c; return i;}

w t

Example:
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Error recovery

Continuation point :
A token d at or behind the error position t such that
parsing of the input continues at d .

Error repair
with respect to a consistent derivation
- regardless the intension of the programmer!

Let the input be w t x with the
error position at t and let w t x = w y d z,
then the recovery (conceptually) deletes y  and inserts v ,
such that w v d is a correct prefix  in L(G),
with d ∈T and w, y, v, z ∈T*.

PLaC-3.27

a = i * / c;...

a = i * c;...
a = i * / c;...
a = i *e/ c;...

a = i * / c;...

a = i * e ;...

w y d z w y zd w y zd

delete / insert  error identifier e delete / c

Examples:

and insert  error id. e

w t x =
w y d z
w v d z

error position

continuation
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Recovery method: simulated continuation

Problem : Determine a continuation point close to the error position and reach it.
Idea: Use parse stack to determine a set D of tokens as potential continuation points.

Steps of the method:

1. Save the contents of the parse stack  when an error is recognized.

2. Compute a set D ⊆ T of tokens that may be used as continuation point  (anchor set )
Let a modified parser run to completion:
Instead of reading a token from input it is inserted into D; (modification given below)

3. Find a continuation point d : Skip input tokens until a token of D is found.

4. Reach the continuation point d :
Restore the saved parser stack as the current stack.
Perform dedicated transitions until d is acceptable.
Instead of reading tokens (conceptually) insert tokens.
Thus a correct prefix is constructed.

5. Continue normal parsing .

Augment parser construction for steps 2 and 4 :
For each parser state select a transition and its token,
such that the parser empties its stack and terminates as fast as possible.
This selection can be generated automatically .
The quality of the recovery can be improved by deletion/insertion of elements in D.

PLaC-3.28

error
pos.

contin.
point

(1)

(2)

(3)

(4)

(5)



4. Attribute grammars and semantic analysis

Input: abstract program tree

Tasks: Compiler module:

name analysis environment module

properties of program entities definition module

type analysis, operator identification signature module

Output: attributed program tree

Standard implementations and generators for compiler modules

Operations of the compiler modules are called at nodes of the abstract program tree

Model: dependent computations in trees

Specification: attribute grammars

generated: a tree walking algorithm  that calls functions of semantic modules
in specified contexts  and in an admissible order

PLaC-4.1
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4.1 Attribute grammars

Attribute grammar (AG): specifies dependent computations in abstract program trees;
declarative : explicitly specified dependences only; a suitable order of execution is computed

Computations solve the tasks of semantic analysis (and transformation)

Generator  produces a plan for tree walks
that execute calls of the computations,
such that the specified dependences are obeyed,
computed values are propagated through the tree

Result: attribute evaluator ; applicable for any tree specified by the AG

PLaC-4.2

RULE: Decls ::= Decls Decl  COMPUTE
Decls[1].size =

Add (Decls[2].size, Decl.size);
END;
RULE: Decls ::= Decl  COMPUTE

Decls.size = Decl.size;
END;
RULE: Decl ::= Type Name  COMPUTE

Decl.size = Type.size;
END;

Decls
size 16

Decls
size 12

Decls
size 4

Decl
size 4

Decl
size 8

Decl
size 4

Example: AG specifies size of declarations tree with dependent attributes
evaluated
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Basic concepts of attribute grammars (1)
PLaC-4.3

An AG specifies dependences  between computations :
expressed by attributes  associated to grammar symbols

RULE p: Y ::= u X v COMPUTE
Y.b = f(X.a);
X.a = g(...);

END;

Attributes represent: properties of symbols  and
pre- and post-conditions of computations :
post-condition = f (pre-condition)
f(X.a) uses the result of g(...); hence
X.a = g(...) is specified to be executed before f(X.a)

An AG specifies computations in trees expressed by
computations associated to productions of the abstract
syntax

RULE q: X ::= w COMPUTE
f(...); g(...);

END;

computations f(...) and g(...) are executed in every tree
context of type q

X

q

w

f(...)
g(...)

a tree context of type q:

Y

p

u

f(...)
g(...)

a tree context of type p:

X va

b
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Basic concepts of attribute grammars (2)
PLaC-4.4

attributes may specify
dependences without propagating any value;
specifies the order of effects of computations:

X.GotType = ResetTypeOf(...);
Y.Type = GetTypeOf(...) <- X.GotType;

ResetTypeOf will be called before GetTypeOf

dependent computations in adjacent contexts:

RULE q: Y ::= u X v COMPUTE
Y.b = f(X.a);

END;
RULE p: X ::= w COMPUTE

X.a = g(...);
END;

Y

q

u

f(...)

adjacent contexts

X
va

b

p
g(...)

w

of types q and p:
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Definition of attribute grammars

An attribute grammar  AG = (G, A, C) is defined by

• a context-free grammar G  (abstract syntax)

• for each symbol X  of G a set of attributes A(X) ,
written X.a if a ∈ A(X)

• for each production (rule) p  of G
a set of computations  of one of the forms

X.a = f ( ... Y.b ... ) or g (... Y.b ... )
where X and Y occur in p

Consistency and completeness  of an AG:

Each A(X) is partitioned into two disjoint subsets: AI(X) and AS(X)

AI(X): inherited attributes  are computed in rules p where X is on the right -hand side of p

AS(X): synthesized attributes are computed in rules p where X is on the left -hand side of p

Each rule p: Y::= ... X... has exactly one computation
for each attribute of AS(Y), for the symbol on the left-hand side of p, and
for each attribute of AI(X), for each symbol occurrence on the right-hand side of p

PLaC-4.5

AI(X)

AS(X)

q

Y ::= u X v

p
X ::= w

u v

w

Y
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AG Example: Compute expression values

The AG specifies: The value of each expression is computed and printed at the root:

PLaC-4.6

ATTR value: int;

RULE: Root ::=  Expr  COMPUTE

printf ("value is %d\n",

Expr.value);

END;

TERM Number: int;

RULE: Expr ::= Number COMPUTE

Expr.value = Number;

END;

RULE: Expr ::= Expr Opr Expr

COMPUTE

Expr[1].value = Opr.value;

Opr.left  = Expr[2].value;

Opr.right = Expr[3].value;

END;

SYMBOL Opr: left, right: int;

RULE: Opr ::=  '+'  COMPUTE

Opr.value  =

ADD (Opr.left, Opr.right);

END;

RULE: Opr ::=  '*'  COMPUTE

Opr.value =

MUL (Opr.left, Opr.right);

END;

A (Expr) = AS(Expr) = {value}

AS(Opr) = {value}
AI(Opr) = {left, right}

A(Opr) = {value, left, right}
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AG Binary numbers

Attributes : L.v, B.v value
L.lg number of digits in the sequence L
L.s, B.s scaling of B or the least significant digit of L

RULE p1: D ::= L '.' L COMPUTE
D.v = ADD (L[1].v, L[2].v);
L[1].s = 0;
L[2].s = NEG (L[2].lg);

END;
RULE p2: L ::= L B COMPUTE

L[1].v = ADD (L[2].v, B.v);
B.s = L[1].s;
L[2].s = ADD (L[1].s, 1);
L[1].lg = ADD (L[2].lg, 1);

END;
RULE p3: L ::= B COMPUTE

L.v = B.v;
B.s = L.s;
L.lg = 1;

END;
RULE p4: B ::= '0' COMPUTE

B.v = 0;
END;
RULE p5: B ::= '1' COMPUTE

B.v = Power2 (B.s);
END;

PLaC-4.7

scaled binary value:

B.v = 1 * 2 B.s
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An attributed tree for AG Binary numbers
PLaC-4.8

v
s

lg

v
s

vD

L

B

5.25
D

.25
-2

2L5
0

3L

4
1

2L

4
2

1L

0
-1

1L

4
2

B

0
1

B

1
0

B

0
-1

B

.25
-2

B

1

0

1

0

1

p1

p2

p2

p2

p3

p3

p5

p5
p5

p4
p4

attributes:

dependence
established by
a computation
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Dependence graphs for AG Binary numbers
PLaC-4.9

L
lg

s

v

D
v

p1

p2

L
lg

s

v

L
lg

s

v

L
lg

s

v

B s
v

L
lg

s

v B s
v

B s
v

p3 p4

p5

B s
v

If a tree exists, that
has a path from X.a to
X.b at some node of
Type X, the graphs
have an indirect
dependence

X.a X.b
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Attribute partitions
PLaC-4.10

The sets AI(X) and AS(X) are partitioned  each such that

AI (X, i)  is computed before the i-th visit  of X

AS (X, i)  is computed during the i-th visit  of X

upper context of X
p:  Y ::= u X v dependences

between
attributes

context switch
on  tree walk

lower context of X
q : X ::= w

AI (X,1)               AI (X,2)

AS (X,1)             AS (X,2)

Y

u v

w

Necessary precondition for the existence of such a partition:
No node in any tree has direct or indirect dependences that contradict the
evaluation  order  of the sequence of sets:AI (X, 1), AS (X, 1), ..., AI (X, k), AS (X, k)
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Construction of attribute evaluators

For a given attribute grammar an attribute evaluator is constructed:

• It is applicable to any tree  that obeys the abstract syntax specified in the rules of the AG.

• It performs a tree walk  and executes computations  in visited contexts.

• The execution order obeys the attribute dependences .

Pass-oriented strategies for the tree walk: AG class:

k times depth-first left-to-right LAG (k)
k times depth-first right-to-left RAG (k)
alternatingly left-to-right / right-to left AAG (k)
once bottom-up (synth. attributes only) SAG

AG is checked if attribute dependences
fit to desired pass-oriented strategy; see LAG(k) check.

non-pass-oriented strategies:
visit-sequences : OAG
an individual plan for each rule of the abstract syntax

A generator fits the plans to the dependences of the AG.

PLaC-4.11

  B C

D          E

A

  B C

D          E

A
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Hierarchy of AG classes
PLaC-4.11a

LAG(k) RAG(k)

AAG(k)

SAG

OAG

visit-seq.AG

non-circular AG

Attribute Grammar

(a set of visit-sequences exists)

(no dependence cycle in any apt)

ANCAG
(absolutely non-circular)
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Visit-sequences
PLaC-4.12

vsp3: L ::= B

L.lg=1; ↑1; B.s=L.s; ↓B,1; L.v=B.v; ↑2

Example out of the AG for binary numbers:

L
lg

s

v

B s
v

p3

A visit-sequence (dt. Besuchssequenz) vsp for each production  of the
tree grammar:

p: Xo ::= X1 ... Xi ... Xn

A visit-sequence is a sequence of operations :

↓ i, j  j-th visit of the i-th subtree

↑ j  j-th return to the ancestor  node

evalc  execution of a computation  c associated to p
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Interleaving of visit-sequences
PLaC-4.13

 AI (X,1)              AI (X,2)

AS (X,1)             AS (X,2)

upper
context

lower
context

Visit-sequences for adjacent contexts are
executed interleaved.

The attribute partition  of the common
nonterminal specifies the interface  between the
upper and lower visit-sequence:

  B C

D          E

A

p: A::= BC

q: C::= DE

vsp:  ... ↓C,1 ...↓B,1 ...↓C,2 ...↑1

vsq:  ... ↓D,1 ... ↑1 ... ↓E,1 ... ↑2

Example in the tree: interleaved visit-sequences:

Implementation :one procedure for each section of a visit-sequence upto ↑
a call  with a switch over applicable productions for ↓
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Visit-sequences for the AG Binary numbers

vsp1: D ::= L '.' L

↓L[1],1 ;  L[1].s=0; ↓L[1],2 ; ↓L[2],1 ;  L[2].s=NEG(L[2].lg);

↓L[2],2 ;  D.v=ADD(L[1].v, L[2].v); ↑1

vsp2: L ::= L B

↓L[2],1 ; L[1].lg=ADD(L[2].lg,1); ↑1

L[2].s=ADD(L[1].s,1); ↓L[2],2 ;  B.s=L[1].s; ↓B,1; L[1].v=ADD(L[2].v, B.v); ↑2

vsp3: L ::= B

L.lg=1; ↑1;  B.s=L.s; ↓B,1;  L.v=B.v; ↑2

vsp4: B ::= '0'

B.v=0; ↑1

vsp5: B ::= '1'

B.v=Power2(B.s); ↑1

Implementation :
Procedure  vs<i><p> for each section  of a vsp to a ↑i
a call with a switch over alternative rules for ↓X,i

PLaC-4.14

v
s

lg

v
s

L

B

visited
twice

visited
once
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Visit-Sequences for AG Binary numbers (tree patterns)
PLaC-4.14a
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Tree walk for AG Binary numbers
PLaC-4.15
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0
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attributes:

tree walk
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LAG (k) condition

An AG is a LAG(k), if :

For each symbol X there is an attribute partition  A (X,1), ..., A (X, k),
such that the attributes in A (X, i) can be computed in the i-th depth-first left-to-right pass .

Crucial dependences:

In every dependence graph every dependence

• Y.a -> X.b where  X and Y occur on the right-hand side  and Y is right of X  implies that
Y.a belongs to an earlier pass than X.b , and

• X.a -> X.b where  X occurs on the right-hand side  implies that
X.a belongs to an earlier pass than X.b

PLaC-4.16

X Y
b a

A(X,j) A(Y,i)
j > i

X
a b

A(X,i) A(X,j)
i < j

∈ ∈ ∈ ∈

A dependency
from right to left

A dependence
at one symbol
on the right-hand
side

Necessary and sufficient condition over dependence graphs - expressed graphically:
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LAG (k) algorithm
Algorithm checks whether  there is a k>=1  such that an AG is LAG(k) .

Method :
compute iteratively A(1) , ..., A(k) ;
in each iteration try to allocate all remaining attributes to the current pass, i.e. A(i) ;
remove those which can not be evaluated in that pass

Algorithm:

Set i=1  and Cand= all attributes

repeat
set A(i) = Cand ; set Cand to empty;

while  still attributes can be removed from A(i)  do
remove an attribute X.b  from A(i)  and add it to Cand if

- there is a crucial dependence
Y.a  -> X.b  s.t.

X and Y are on the right-hand side, Y to the right of X and Y.a  in A(i) or
X.a  -> X.b  s.t. X is on the right-hand side and X.a  is in A(i)

- X.b  depends on an attribute that is not yet in any A(i)

if Cand is empty: exit: the AG is LAG(k)  and all attributes are assigned to their passes
if A(i)  is empty: exit: the AG is not LAG(k) for any k
else: set i = i + 1

PLaC-4.17

X Y
b a

X
a b
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AG not LAG(k) for any k
PLaC-4.17a

S

AC

A

a
b

c
d

a
b

p0: S ::= A

p1: A ::= C A

p2: C ::= ','

p3: A ::= '.'

AC a
b

c
d

p1: A ::= C A

p2: C ::= ','

A.a can be allocated to the first left-to-right pass.
C.c, C.d, A.b can not be allocated to any pass.

The AG is RAG(1), AAG(2) and
can be evaluated by visit-sequences.
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AG not evaluable in passes
PLaC-4.17b

S

A c
d

a
b

p0: S ::= A

p1: A ::= ',' A

p2: A ::= '.'

p1: A ::= ',' A

A c
d

a
b

A c
d

a
b

No attribute can be
allocated to any pass for
any strategy.

The AG can be evaluated
by visit-sequences.



Generators for attribute grammars

LIGA University of Paderborn OAG

FNC-2 INRIA ANCAG (superset of OAG)

CoCo Universität Linz LAG(k)

Properties of the generator LIGA

• integrated in the Eli system , cooperates with other Eli tools

• high level specification language  Lido

• modular and reusable AG components

• object-oriented constructs usable for abstraction of computational patterns

• computations are calls of functions  implemented outside the AG

• side-effect computations  can be controlled by dependencies

• notations for remote attribute access

• visit-sequence  controlled attribute evaluators, implemented in C

• attribute storage optimization

PLaC-4.18
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Explicit left-to-right depth-first propagation
ATTR pre, post: int;
RULE: Root ::= Block COMPUTE
  Block.pre = 0;
END;
RULE: Block ::= '{' Constructs '}' COMPUTE
  Constructs.pre = Block.pre;
  Block.post = Constructs.post;
END;
RULE: Constructs ::= Constructs Construct COMPUTE
  Constructs[2].pre = Constructs[1].pre;
  Construct.pre = Constructs[2].post;
  Constructs[1].post = Construct.post;
END;
RULE: Constructs ::= COMPUTE
  Constructs.post = Constructs.pre;
END;
RULE: Construct ::= Definition COMPUTE
  Definition.pre = Construct.pre;
  Construct.post = Definition.post;
END;
RULE: Construct ::= Statement COMPUTE
  Statement.pre = Construct.pre;
  Construct.post = Statement.post;
END;

RULE:Definition ::= 'define' Ident ';' COMPUTE
  Definition.printed =
     printf ("Def %d defines %s in line %d\n",
             Definition.pre, StringTable (Ident), LINE);
  Definition.post =
     ADD (Definition.pre, 1) <- Definition.printed;
END;
RULE: Statement ::= 'use' Ident ';' COMPUTE
  Statement.post = Statement.pre;
END;
RULE: Statement ::= Block COMPUTE
  Block.pre = Statement.pre;
  Statement.post = Block.post;
END;

Definitions  are
enumerated and
printed from left to right.

The next Definition
number is propagated
by a pair of attributes at
each node:

pre  (inherited)
post  (synthesized)

The value is initialized
in the Root  context and

incremented in the
Definition  context.

The computations for
propagation are
systematic and
redundant.

PLaC-4.19
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Left-to-right depth-first propagation using a CHAIN
PLaC-4.20

CHAIN count : int;

RULE: Root ::= Block COMPUTE
CHAINSTART Block.count = 0;

END;

RULE: Definition ::= 'define' Ident ';'
COMPUTE

Definition.print =
printf ("Def %d defines %s in line %d\n",

Definition.count, /* incoming */
StringTable (Ident), LINE);

Definition.count = /* outgoing */
ADD (Definition.count, 1)
<- Definition.print;

END;

A CHAIN specifies a
left-to-right depth-first
dependency through a
subtree.

One CHAIN name;
attribute pairs are
generated where needed.

CHAINSTART initializes the
CHAIN in the root context
of the CHAIN.

Computations on the
CHAIN are strictly bound
by dependences.

Trivial computations  of
the form X.pre = Y.pre in
CHAIN order can be
omitted . They are
generated where needed.
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Dependency pattern INCLUDING
PLaC-4.21

ATTR depth: int;

RULE: Root ::= Block COMPUTE
Block.depth = 0;

END;

RULE: Statement ::= Block COMPUTE
Block.depth  =

ADD ( INCLUDING Block.depth , 1);
END;

RULE: Definition ::= 'define' Ident COMPUTE
  printf ("%s defined on depth %d\n",
           StringTable (Ident),

INCLUDING Block.depth );
END;

The nesting depths of
Blocks  are computed.

An attribute  at the root of
a subtree is accessed
from within the subtree .

Propagation  from
computation to the uses
are generated as needed.

No explicit computations
or attributes are needed
for the remaining rules
and symbols.

INCLUDING Block.depth
accesses the depth attribute of the next upper node of
type Block .
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Dependency pattern CONSTITUENTS
PLaC-4.22

RULE: Root ::= Block COMPUTE
Root.DefDone =

CONSTITUENTS Definition.DefDone ;
END;

RULE: Definition ::= 'define' Ident ';'
COMPUTE

Definition.DefDone =
printf ("%s defined in line %d\n",

StringTable (Ident), LINE);
END;

RULE: Statement ::= 'use' Ident ';' COMPUTE
printf ("%s used in line %d\n",

StringTable (Ident), LINE)
<- INCLUDING Root.DefDone ;

END;

A CONSTITUENTS
computation accesses
attributes from the
subtree below its context.

Propagation  from
computation to the
CONSTITUENTSconstruct is
generated where needed.

The shown combination
with INCLUDING is a
common dependency
pattern.

All printf  calls in
Definition  contexts are
done before any in a
Statement  context.

CONSTITUENTS Definition.DefDone  accesses the
DefDone  attributes of all Definition nodes in the
subtree below this context
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5. Binding of Names
5.1 Fundamental notions

Program entity : An identifiable  entity that has individual properties , is used potentially at
several places in the program . Depending on its kind  it may have one or more runtime
instances; e. g. type, function, variable, label, module, package.

Identifiers : a class of tokens that are used to identify program entities; e. g. minint

Name:  a composite construct used to identify a program entity , usually contains an
identifier; e. g. Thread.sleep

Static binding: A binding is established between a name and a program entity . It is valid in a
certain area of the program text , the scope of the binding.  There the name identifies the
program entity. Outside of its scope the name is unbound or bound to a different entity.
Scopes are expressed in terms of program constructs like blocks, modules, classes, packets

Dynamic binding : Bindings are established in the run-time  environment; e. g. in Lisp.

A binding may be established

• explicitly by a definition ; it usually defines properties  of the program entity;
we then destinguish defining and applied occurrences  of a name;
e. g. in C: float x = 3.1; y = 3*x; or in JavaScript: var x;

• implicitly by using the name ; properties of the program entity may be defined by the
context; e. g. bindings of global and local variables in PHP

PLaC-5.1
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5.2 Scope rules
PLaC-5.2

Scope rules : a set of rules that specify for a given language how bindings are established
and where they hold.

2 variants of fundamental hiding rules  for languages with nested structures.
Both are based on definitions that explicitly introduce bindings :

Algol rule :
The definition of an identifier b is valid in
the whole smallest enclosing range ;
but not in inner ranges  that have a
definition of b, too.

e. g. in Algol 60, Pascal, Java

C rule :
The definition of an identifier b is valid in
the smallest enclosing range from the
position of the definition  to the end;
but not in inner ranges  that have
another definition of b
from the position of that definition to the
end.

e. g. in C, C++, Java

{
int a;
{

int b = a;
float a;
a = b+1;

}
a = 5;

}

Algol
rule

C
rule

a a a a



©
 2

00
4 

be
i P

ro
f. 

D
r.

 U
w

e 
K

as
te

ns

Defining occurrence before applied occurrences
PLaC-5.3

The C rule enforces the defining occurrence of a binding precedes all its applied occurrences.

In Pascal, Modula, Ada the Algol rule  holds. An additional rule  requires that the defining
occurrence of a binding precedes all its applied occurrences.

Consequences :

• specific constructs for forward references of functions  which may call each other
recursively:
forward  function declaration in Pascal;
function declaration in C before the function definition,
exemption form the def-before-use-rule in Modula

• specific constructs for types  which may contain references  to each other recursively :
forward type references allowed for pointer types in Pascal, C, Modula

• specific rules for labels to allow forward jumps :
label declaration in Pascal before the label definition,
Algol rule for labels in C

• (Standard) Pascal  requires declaration parts  to be structured as a sequence of
declarations for constants, types, variables and functions, such that the former may be used
in the latter. Grouping by coherence criteria  is not possible.

Algol rule  is simpler, more flexible  and allows for individual ordering  of definitions
according to design criteria.
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Multiple definitions
PLaC-5.4

Usually a definition  of an identifier is required to be unique  in each range. That rule
guarantees that at most one binding holds for a given (plain) identifier in a given range.

Deviations from that rule :

• Definitions for the same binding are allowed to be repeated, e. g. in C
external int maxElement ;

• Definitions for the same binding are allowed to accumulate properties of the program entity,
e. g. AG specification language LIDO: association of attributes to symbols:
SYMBOL AppIdent: key: DefTableKey;
...
SYMBOL AppIdent: type: DefTableKey;

• Separate name spaces  for bindings of different kinds of program entities. Occurrences of
identifiers are syntactically distinguished and associated to a specific name space, e. g.
in Java bindings of packets and types are in different name spaces:
import Stack.Stack;
in C labels, type tags and other bindings have their own name space each.

• Overloading  of identifiers: different program entities are bound to one identifier  with
overlapping scopes. They are distinguished by static semantic information  in the
context, e. g. overloaded functions distinguished by the signature of the call (number and
types of actual parameters).
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Explicit Import and Export
PLaC-5.5

Bindings may be explicitly imported to or exported from a range  by specific language
constructs. Such features have been introduced in languages like Modula-2 in order to
support modular decomposition and separate compilation .

Modula-2 defines two different import/export features
1. Separately compiled modules :

DEFINITION MODULE Scanner; interface of a separately compiled module
FROM Input IMPORT Read, EOL; imported bindings
EXPORT QUALIFIED Symbol, GetSym; exported bindings
TYPE Symbol = ...; definitions of exported bindings
PROCEDURE GetSym;

END Scanner;
IMPLEMENTATION MODULE Scanner BEGIN ... END Scanner;

2. Local modules, embedded in the block structure  establish scope boundaries:

VAR a, b: INTEGER;
...
MODULE m;

IMPORT a;
EXPORT x;
VAR x: REAL;

BEGIN ... END m;
...

a b x
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Bindings as properties of entities
PLaC-5.6

Program entities may have a property that is a set of bindings,
e. g. the entities exported by a module interface or the fields of a struct type in C:

typedef struct {int x, y;} Coord ;

Coord  anchor[5];
anchor[0]. x = 42;

The type Coord  has the bindings of its fields as its property; anchor[0]  has the type
Coord ; x  is bound in its set of bindings.

Language constructs like the with -statement of Pascal insert such sets of bindings into the
bindings of nested blocks:

type Coord  = record x, y: integer; end;
var anchor: array [0..4] Coord;

a, x: real;
begin ...

with anchor[0] do
begin ...

x := 42;
end;

...
end;

Bindings of the type Coord  are
inserted into the textually nested
scopes; hence the field x  hides
the variable x .
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Inheritance with respect to binding
PLaC-5.7

Inheritance is a relation between object
oriented classes . It defines the basis for
dynamic binding of method calls . However,
static binding rules  determine the
candidates for dynamic binding  of method
calls.

A class has a set of bindings as its property .

It consists of the bindings defined in the class
and those inherited  from classes and
interfaces.

An inherited binding may be hidden  by a
local definition.

That set of bindings is used for identifying
qualified names (cf. struct  types):

D d = new D; d.f();

A class may be embedded in a context  that
provides bindings. An unqualified name as in
f()  is bound in the class’s local and
inherited  sets, and then  in the bindings of
the textual context  (cf. with -statement).

class A
{ void f(){...}

class C
extends D implements I

{ void tr(){ f(); h();}
}

}

class D
extends E

{ void f(){...}
void g(){...}
...

}

class E
{ void f(){...}

void h(){...}
...

}

interface I
{ public void k();
}
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5.3 An environment module for name analysis
PLaC-5.8

The compiler represents a program entity by a key . It references a description of the
entity’s properties.

Name analysis task : Associate the key of a program entity to each occurrence of an
identifier  according to scope rules  of the language (consistent renaming).
the pair (identifier, key) represents a binding.

Bindings  that have a common scope  are composed to sets .

An environment  is a linear sequence of sets of bindings  e1, e2, e3, ... that are
connected by a hiding relation : a binding (a, k) in ei hides a binding (a,h) in ej if i < j.

Scope rules  can be modeled using the concept of environments .

The name analysis task  can be implemented  using a module  that implements
environments  and operations on them.
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Environment module

Implements the abstract data type Environment :
hierarchically nested sets of Binding s (identifier, environment, key)
(The binding pair (i,k) is extended by the environment to which the binding belongs.)

Functions :

NewEnv () creates a new Environment e, to be used as root of a hierarchy

NewScope (e 1) creates a new Environment e2 that is nested in e1.
Each binding of e1 is also a binding of e2 if it is not hidden there.

BindIdn (e, id) introduces a binding (id, e, k) if e has no binding for id;
then k is a new key representing a new entity;
in any case the result is the binding triple (id, e, k)

BindingInEnv (e, id) yields a binding triple (id, e1, k) of e or a surrounding
environment of e; yields NoBinding if no such binding exists.

BindingInScope (e, id) yields a binding triple (id, e, k) of e, if contained directly in e,
NoBinding otherwise.

PLaC-5.9



Data structure of the environment module (1)
PLaC-5.10

c k7

b k6

a k8                  a k4                    a k1

b k5                 b k2

c k9                                             c k3

Environment tree

Root

current
Environment

Lists of local Bindings

 ki: key of the defined entity



Data structure of the environment module (2)
PLaC-5.10a

c k7

b k6

a k8                  a k4                    a k1

b k5                 b k2

c k9                                             c k3

a

b

 c

Environment tree

Root

current
Environment

Lists of local Bindings

vector of stacks indexed by
identifier codes

a stack for each  identifier

 ki: key of the defined entity
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Environment operations in tree contexts

Operations in tree contexts  and the order they are called can model scope rules :

Root  context:
Root.Env = NewEnv ();

Range context that may contain definitions:
Range.Env = NewScope (INCLUDING (Range.Env, Root.Env));

accesses the next enclosing Range or Root

defining occurrence of an identifier IdDefScope :
IdDefScope.Bind = BindIdn (INCLUDING Range.Env, IdDefScope.Symb);

applied occurrence of an identifier IdUseEnv :
IdUseEnv.Bind = BindingInEnv (INCLUDING Range.Env, IdUseEnv.Symb);

Preconditions for specific scope rules:
Algol rule: all BindIdn()  of all surrounding ranges before any BindingInEnv()
C rule: BindIdn()  and BindingInEnv()  in textual order

The resulting bindings are used for checks and transformations , e. g.

• no applied occurrence without a valid defining occurrence,

• at most one definition for an identifier in a range,

• no applied occurrence before its defining occurrence (Pascal).

PLaC-5.11
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Attribute computations for binding of names
PLaC-5.12

Root

Range

Range

Range

IdDefScope

IdUseEnv

Env

Bind Symb

Env

Env

Env Bind Symb

IdDefScope
Bind Symb

IdDefScope
Bind Symb

IdDefScope
Bind Symb

IdUseEnv
Bind Symb

IdUseEnv
Bind Symb

NewEnv,NewScope

BindingInEnv

BindIdn

1

2

3

4

5 6

7



6. Type specification and type analysis
A type  characterizes a set of (simple or structured) values and the applicable operations.

The language design constrains the way how values may interact.

Strongly typed language:
The implementation can guarantee that all type constraints can be checked

static typing (plus run time checks): Java (strong); C, C++, Pascal, Ada (almost strong)
dynamic: script languages like Perl, PHP, JavaScript
no typing:  Prolog, Lisp

Statically typed language:
Programmer declares type property - compiler checks (most languages)
Programmer uses typed entities - compiler infers their type properties (e.g. SML)

Compiler keeps track of the type of any

• defined entity that has a value (e. g. variable); stores type property in the definition module

• program construct elaborates to a value (e. g. expressions); stores type in an attribute

PLaC-6.1

• at compile time (static typing):  compiler finds type errors (developer), or

• at run time (dynamic typing):  run time checks find type errors (tester, user).
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Concepts for type analysis
PLaC-6.2

Type : characterization of a subset of the values in the universe of operands available to
the program. „a triple of int values“

Type denotation : a source-language construct used to denote a user-defined typ
(language-defined types do not require type denotations).

typedef struct {int year, month, day;}  Date;

sameType : a partition defining type denotations that might denote the same type.

Type identifier : a name used in a source-language program to specify a type.
typedef struct {int year, month, day;} Date ;

Typed identifier : a name used in a source-language program to specify an entity
(such as a variable) that can take any value of a given type.

int count ;

Operator : an entity having a signature that relates operand types to a result type.
iAdd : int x int -> int

Indication : a set of operators with different signatures.
{iAdd, fAdd, union, concat}

acceptableAs : a partial order defining the types that can be used in a context where a
specific type is expected. short -> int -> long
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Taxonomy of type systems
PLaC-6.3

[Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and polymorphism.
ACM Computing Surveys, 17(4):471–523, 1985.]

- monomorphism : Every entity has a unique type. Consequence: different operators for
similar operations (e.g. for int  and float  addition)

- polymorphism : An operand may belong to several types.

-- ad hoc polymorphism :

--- overloading : a construct may different meanings depending on the context
in which it appears (e.g. + with 4 different signatures in Algol 60)

--- coercion : implicit conversion of a value into a corresponding value of a different
type, which the compiler can insert wherever it is appropriate (only 2 add operators)

-- universal polymorphism : operations work uniformly on a range of types
that have a common structure

--- inclusion polymorphism : sub-typing as in object-oriented languages

--- parametric polymorphism : polytypes  are type denotations with type parameters,
e.g. (’a x ’a) , (’a list x (’a -> ’b) -> ’b list)
All types derivable from a polytype have the same type abstraction .
Type parameters are substituted by type inference  (SML, Haskell) or

by generic instantiation  (C++, Java)
see GPS 5.9 - 5.10
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Monomorphism and ad hoc polymorphism
PLaC-6.3a

monomorphism
polymorphism

ad hoc polymorphism
overloading
coercion

universal polymorphism
inclusion polymorphism
parametric polymorphism

(2)

(1)

(3)

(4)
(5)

monomorphism (1):
4 different names for addition:

addII: int x int -> int
addIF: int x float -> float
addFI: float x int -> float
addFF: float x float -> float

overloading (2):
1 name for addition +;
4 signatures are distinguished by actual
operand and result types:

+: int x int -> int
+: int x float -> float
+: float x int -> float
+: float x float -> float

coercion (3):
int  is acceptableAs float ,
2 names for two signatures:

addII: int x int -> int
addFF: float x float -> float
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Examples for inclusion polymorphism (4)
PLaC-6.3b

Sub-typing:
S ist a sub-type of type T, S <: T, if each value of S
is acceptable where a value of type T is expected.

Sub-type relation established by
classes in object-oriented language s

Animal

Bird Fish

Lattice  of set types in Pascal:

set of integer (top)

set of 1..6

set of 4..5set of 3..5set of 2..4

set of 4..4set of 3..3

set of bottom

A function  of type fS can be called where
a function of type fT is expected, i.e. fS <: fT, if

fT = paramT -> resultT paramT <: paramS
fS = paramS -> resultS resultS <: resultT

paramT paramS resultS resultT<: <:

fT
fS



Compiler’s definition module

Central data structure, stores properties of program entities
e. g. type of a variable, element type of an array type

A program entity  is identified by the key  of its entry in this data structure.

Operations:

NewKey ( ) yields a new key

ResetP (k, v) sets the property P to have the value v for key k

SetP (k, v, d) as ResetP; but the property is set to d if it has been set before

GetP (k, d) yields the value of the Property P for the key k;
yields the default value d, if P has not been set

Operations are called in tree contexts , dependences control accesses, e. g. SetP before GetP

Implementation of data structure: a property list for every key

Definition module is generated  from specifications of the form

Property name : property type;
ElementNumber: int;

Generated functions: ResetElementNumber , SetElementNumber , GetElementNumber

PLaC-6.4
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Language defined entities
PLaC-6.5

Language-defined  types, operators, and indications are represented by known keys  -
definition table keys, created by initialization and made available as named constants .

Eli’s specification language OIL can be used to specify language defined types, operators,
and indications, e.g.:

OPER
iAdd (intType,intType):intType;
rAdd (floatType,floatType):floatType;

INDICATION
PlusOp : iAdd, rAdd;

COERCION
(intType):floatType;

It results in known keys for two types, two operators, and an indication. The following
identifiers can be used to name those keys in tree computations:

intType, floatType, iAdd, rAdd, PlusOp

RULE: Operator ::= ’+’ COMPUTE Operator.Indic = PlusOp ;END;

The coercion establishes the language-defined relation

intType acceptableAs  floatType
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Language-defined and user-defined types
PLaC-6.6

A language-defined type  is represented by a keyword in a program. The compiler
determines sets an attribute Type.Type :

RULE: Type ::= ’int’ COMPUTE
Type.Type = intType;

END;

The type analysis modules of Eli export a computational role for user-defined types :

TypeDenotation : denotation of a user-defined type. The Type attribute of the symbol
inheriting this role is set to a new definition table key by a module computation.

RULE: Type ::= ArrayType COMPUTE
Type.Type = ArrayType.Type;

END;

SYMBOL ArrayType INHERITS TypeDenotation  END;

RULE: ArrayType ::= Type ’[’ ’]’ END;



©
 2

00
9 

be
i P

ro
f. 

D
r.

 U
w

e 
K

as
te

ns

Classification of identifiers (1)
PLaC-6.7

The type analysis modules export four computational roles to classify identifiers :

TypeDefDefId : definition of a type identifier. The designer must write a computation setting
the Type attribute of this symbol to the type bound to the identifier.

TypeDefUseId : reference to a type identifier defined elsewhere. The Type attribute of this
symbol is set by a module computation to the type bound to the identifier.

TypedDefId : definition of a typed identifier. The designer must write a computation setting
the Type attribute of this symbol to the type bound to the identifier.

TypedUseId : reference to a typed identifier defined elsewhere. The Type attribute of this
symbol is set by a module computation to the type bound to the identifier.

SYMBOL ClassBody INHERITS TypeDenotation  END;
SYMBOL TypIdDef INHERITS TypeDefDefId  END;
SYMBOL TypIdUse INHERITS TypeDefUseId  END;

RULE: ClassDecl ::=
OptModifiers ’class’ TypIdDef OptSuper OptInterfaces ClassBody

COMPUTE TypIdDef.Type = ClassBody.Type;
END;

RULE: Type ::= TypIdUse COMPUTE
Type.Type = TypIdUse.Type;
END;
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Classification of identifiers (2)
PLaC-6.7a

A declaration introduces typed entities; it plays the role TypedDefinition .

TypedDefId  is the role for identifiers in a context where the type of the bound entity is
determined

TypedUseId is the role for identifiers in a context where the type of the bound entity is used.
The role ChkTypedUseId checks whether a type can be determined for the particular entity:

RULE: Declaration ::= Type VarNameDefs ';' COMPUTE
Declaration.Type = Type.Type;

END;

SYMBOL Declaration INHERITS TypedDefinition  END;
SYMBOL VarNameDef  INHERITS TypedDefId  END;
SYMBOL VarNameUse  INHERITS TypedUseId , ChkTypedUseId  END;
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Type analysis for expressions (1): trees
PLaC-6.8

An expression  node represents a program construct that yields a value , and an
expression tree  is a subtree of the AST made up entirely of expression nodes . Type
analysis within an expression tree is uniform; additional specifications are needed only at the
roots and leaves.

The type analysis modules export the role ExpressionSymbol  to classify expression
nodes. It carries two attributes that characterize the node inheriting it:

Type : the type of value delivered by the node. It is always set by a module computation.

Required : the type of value required by the context in which the node appears.
The designer may write a computation to set this inherited attribute in the upper context
if the node is the root of an expression tree; otherwise it is set by a module computation.

A node n is type-correct if (n.Type acceptableAs n.Required ).

PrimaryContext  expands to attribute computations that set the Type attribute of an
expression tree leaf. The first argument must be the grammar symbol representing the
expression leaf, which must inherit the ExpressionSymbol  role. The second argument
must be the result type of the expression leaf.

DyadicContext  characterizes expression nodes with two operands. All four arguments of
DyadicContext are grammar symbols: the result expression, the indication, and the two
operand expressions. The second argument symbol must inherit the OperatorSymbol role;
the others must inherit ExpressionSymbol .
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Type analysis for expressions (2): leaves, operators
PLaC-6.9

The nodes of expression trees are characterized by the roles ExpressionSymbol and
OperatorSymbol . The tree contexts are characterized by the roles PrimaryContext (for
leaf nodes), MonadicContext , DyadicContext , ListContext  (for inner nodes), and
RootContext :

SYMBOL Expr INHERITS ExpressionSymbol  END;
SYMBOL Operator INHERITS OperatorSymbol  END;
SYMBOL ExpIdUse INHERITS TypedUseId  END;

RULE: Expr ::= Integer COMPUTE
PrimaryContext (Expr, intType);

END;
RULE: Expr ::= ExpIdUse COMPUTE

PrimaryContext (Expr, ExpIdUse.Type);
END;
RULE: Expr ::= Expr Operator Expr COMPUTE

DyadicContext (Expr[1], Operator, Expr[2], Expr[3]);
END;
RULE: Operator ::= ’+’ COMPUTE

Operator.Indic = PlusOp;
END;
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Type analysis for expressions (3): Balancing
PLaC-6.9a

The conditional expression of C is an example of a balance context : The type of each
branch (Expr[3],Expr[4] ) has to be acceptable as the type of the whole conditional
expression (Expr[1] ):

RULE: Expr ::= Expr '?' Expr ':' Expr COMPUTE
BalanceContext(Expr[1],Expr[3],Expr[4]) ;

END;

For the condition the pattern of slide PLaC-6.10 applies.

Balancing  can also occur with an arbitrary number of expression s the type of which is
balanced to yield a common type at the root node of that list, e.g. in

SYMBOL CaseExps INHERITS BalanceListRoot, ExpressionSymbolEND;
SYMBOL CaseExp  INHERITS BalanceListElem, ExpressionSymbolEND;

RULE: Expr ::= 'case' Expr 'in' CaseExps 'esac' COMPUTE
TransferContext(Expr[1],CaseExps);

END;

RULE: CaseExps LISTOF CaseExp END;
RULE: CaseExp ::= Expr COMPUTE

TransferContext(CaseExp,Expr);
END;



©
 2

01
2 

be
i P

ro
f. 

D
r.

 U
w

e 
K

as
te

ns

Type analysis for expressions (4)
PLaC-6.10

Each expression tree  has a root . The the RULE context in which the expression root in on
the left-hand side specifies which requirements are imposed to the type of the expression.
In the context of an assignment statement below, both occurrences of Expr  are expression
tree roots:

RULE: Stmt ::= Expr ’:=’ Expr COMPUTE
Expr[2]. Required  = Expr[2]. Type;

END;

In principle there are 2 different cases how the context states requirements on the type of the
Expression root:

• no requirement: Expr.Required = NoKey;  (can be omitted, is set by default)
Expr[1]  in the example above

• a specific type: Expr.Required = computation of some type;
Expr[2]  in the example above
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Operators of user-defined types
PLaC-6.10a

User-defined types may introduce operators that have operands of that type, e.g. the
indexing operator of an array type:

SYMBOL ArrayType INHERITS OperatorDefs  END;

RULE: ArrayType ::= Type ’[’ ’]’ COMPUTE
ArrayType.GotOper =

DyadicOperator (
ArrayAccessor, NoOprName,
ArrayType.Type, intType, Type.Type);

END;

The above introduces an operator definition that has the signature
ArrayType.Type x intType -> Type.Type

and adds it to the operator set of the indication ArrayAccessor .
The context below identifies an operator in that set, using the types of Expr[2]  and
Subscript . Instead of an operator nonterminal the Indication  is given.

SYMBOL Subscript INHERITS ExpressionSymbol END;
RULE: Expr ::= Expr ’[’ Subscript ’]’ COMPUTE

DyadicContext (Expr[1], , Expr[2], Subscript);
Indication (ArrayAccessor);
IF( BadOperator ,

message(ERROR,"Invalid array reference",0,COORDREF));
END;
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Functions and calls
PLaC-6.10b

Functions (methods) can be considered as operators having n => 0 operands (parameters).
Roles: OperatorDefs , ListOperator , and TypeListRoot :

SYMBOL MethodHeader INHERITS OperatorDefs  END;
SYMBOL Parameters INHERITS TypeListRoot  END;

RULE: MethodHeader ::=
OptModifiers Type FctIdDef ’(’ Parameters ’)’ OptThrows COMPUTE
MethodHeader.GotOper =

ListOperator (
FctIdDef.Key, NoOprName,
Parameters, Type.Type);

END;

A call of a function (method) with its arguments is then considered as part of an expression
tree. The function name (FctIdUse ) contributes the Indication :

SYMBOL Arguments INHERITS OperandListRoot  END;
RULE: Expr ::= Expr ’.’ FctIdUse ’(’ Arguments ’)’ COMPUTE

ListContext (Expr[1], , Arguments);
Indication (FctIdUse.Key);
IF(BadOperator,message(ERROR, "Not a function", 0, COORDREF));

END;

The specification allows for overloaded functions.
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Type equivalence: name equivalence
PLaC-6.10c

Two types t  and s are name equivalent  if their names tn and sn are the same or if tn is
defined to be sn or sn defined to be tn. An anonymous type is different from any other type.

Name equivalence  is applied for example in Pascal , and for classes and interfaces in Java .

type a = record x: char; y: real end;
b = record x: char; y: real end;
c = b;

e = record x: char; y: ↑ e end;
f = record x: char; y: ↑ g end;
g = record x: char; y: ↑ f end;

var s, t: record x: char; y: real end;
u: a; v: b; w: c;
k: e; l: f; m: g;

Which types are equivalent?
The value of which variable may be assigned to which variable?
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Type equivalence: structural equivalence
PLaC-6.10d

In general, two types t and s are structurally equivalent if their definitions become the same
when all type identifiers in the definitions of t and in s are recursively substituted by their
definitions. (That may lead to infinite trees.)
Structural equivalence  is applied for example in Algol-68 , and for array types in Java .

The example of the previous slide is interpreted under structural equivalence:

type a = record x: char; y: real end;
b = record x: char; y: real end;
c = b;

e = record x: char; y: ↑ e end;
f = record x: char; y: ↑ g end;
g = record x: char; y: ↑ f end;

var s, t: record x: char; y: real end;
u: a; v: b; w: c;
k: e; l: f; m: g;

Which types are equivalent?
The value of which variable may be assigned to which variable?

Algorithms determine structural equivalence by decomposing the whole set of types into
maximal partitions, which each contain only equivalent types.
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Type analysis for object-oriented languages (1)

Class hierarchy is a type hierarchy:

implicit type coercion: class -> super class
explicit type cast: class -> subclass

Variable of class type may contain
an object (reference) of its subclass

Analyze dynamic method binding; try to decide it statically:

static analysis tries to further restrict the run-time type:

GeometricShape f;...; f = new Circle(...);...; a = f.area();

PLaC-6.11

Circle k = new Circle (...);

GeometricShape f = k;

k = (Circle) f;
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Type analysis for object-oriented languages (2)

Check signature of overriding methods:

calls must be type safe

Java requires the same signature

weaker requirements  would be sufficient (contra variant parameters, language Sather):

Language Eiffel requires covariant parameter types : type unsafe!

PLaC-6.12

X x; A a; P p;
a = x.m (p);

class X { C m (Q q) {  use of q;... return c; } }

class Y { B m (R r) {  use of r;... return b; } }

C c; B b;
Variable:call of dynamically

bound method:

super class

subclass
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Type analysis for functional languages (1)

Static typing and type checking without types in declarations

Type inference : Types of program entities are inferred from the context where they are used

PLaC-6.13

cnt: 'a,
fct: 'b->'c,
choice: ('a * ('b->'c)) -> 'd

(i) 'c= bool
(i) 'b= 'a
(ii) 'd= 'a
(iii) 'a= int

Example in ML:

describe the types of entities using type variables:

form equations that describe the uses of typed entities

solve the system of equations:

fun choice (cnt, fct) =
if fct cnt then cnt else cnt - 1;

(i) (ii) (iii)

choice: (int * (int->bool)) -> int
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Type analysis for functional languages (2)

Parametrically polymorphic types: types having type parameters

Example in ML:

fun map (l, f) =
if null l
then nil
else (f (hd l)) :: map (tl l, f)

polymorphic signature:

map: ('a list * ('a -> 'b)) -> 'b list

Type inference  yields most general type  of the function,
such that all uses of entities in operations are correct;

i. e. as many unbound type parameters as possible

calls with different concrete types, consistently substituted for the type parameter:

map([1,2,3], fn i => i*i) 'a = int, 'b = int
map([1,2,3], even) 'a = int, 'b = bool
map([1,2,3], fn i =(i,i)) 'a = int, 'b = ('a*'a)

PLaC-6.14
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Semantic error handling
PLaC-6.15

Design rules:

Error reports are to be related to the source code :

• Any explicit or implicit requirement of the language definition
needs to be checked by an operation in the tree, e. g.
if (IdUse.Bind == NoBinding) message (...)

• Checks have to be associated to the smallest relevant context
yields precise source position for the report; information is to be
propagated to that context. wrong : „some arguments have wrong types“

• Meaningfull error reports. wrong : „type error“

• Different reports for different violations ;
do not connect symptoms by or

All operations specified for the tree are executed , even if errors occur:

• introduce error values , e. g. NoKey, NoType, NoOpr

• operations that yield results  have to yield a reasonable one in case of error,

• operations have to accept error values as parameters ,

• avoid messages for avalanche errors  by suitable extension of relations,
e. g. every type is compatible with NoType
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7. Specification of Dynamic Semantics
PLaC-7.1

The effect of executing a program  is called its dynamic semantics. It can be described by
composing the effects  of executing the elements of the program, according to its abstract
syntax . For that purpose the dynamic semantics of executable language constructs  are
specified.

Informal specifications are usually formulated in terms of an abstract machine, e. g.

Each variable has a storage cell , suitable to store values of the type of the variable.
An assignment v := e  is executed  by the following steps: determine the storage cell
of the variable v, evaluate the expression  e yielding a value x, an storing x in the
storage cell of v.

The effect of common operators (like arithmetic) is usually not further defined (pragmatics).

The effect of an erroneous program construct is undefined . An erroneous program is not
executable. The language specification often does not explicitly state, what happens if an
erroneous program construct is executed, e. g.

The execution of an input statement is undefined  if the next value of the the input is
not a value of the type  of the variable in the statement.

A formal calculus  for specification of dynamic semantics is denotational semantics .
It maps language constructs to functions , which are then composed  according to the
abstract syntax.
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Denotational semantics
PLaC-7.2

Formal calculus  for specification of dynamic semantics.

The executable constructs of the abstract syntax are mapped on functions , thus
defining their effect.

For a given structure tree the functions associated to the tree nodes are composed
yielding a semantic function of the whole program - statically !

That calculus allows to

• prove dynamic properties  of a program formally,

• reason about the function of the program  - rather than about is operational
execution,

• reason about dynamic properties of language constructs  formally.

A denotational specification  of dynamic semantics of a programming language
consists of:

• specification of semantic domains : in imperative languages they model the
program state

• a function E that maps all expression constructs  on semantic functions

• a function C that maps all statement contructs  on semantic functions
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Semantic domains
PLaC-7.3

Semantic domains describe the domains and ranges of the semantic functions  of a
particular language. For an imperative language the central semantic domain describes the
program state .

Example: semantic domains of a very simple imperative language :

State = Memory × Input × Output program state

Memory = Ident → Value storage

Input = Value* the input stream

Output = Value* the output stream

Value = Numeral | Bool legal values

Consequences  for the language specified using these semantic domains:

• The language can allow only global variables , because a 1:1-mapping is assumed
between identifiers and storage cells. In general the storage has to be modelled:

Memory = Ident → (Location → Value)

• Undefined values  and an error state  are not modelled; hence, behaviour in erroneous
cases  and exeption handling  can not be specified with these domains.
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Mapping of expressions
PLaC-7.4

Let Expr be the set of all constructs of the abstract syntax that represent expressions, then
the function E maps Expr  on functions which describe expression evaluation :

E: Expr → (State → Value)

In this case the semantic expression functions compute a value in a particular state .
Side-effects of expression evaluation can not be modelled this way. In that case the evaluation
function had to return a potentially changed state:

E: Expr → (State → (State × Value))

The mapping E is defined by enumerating the cases of the abstract syntax  in the form

E[ abstract syntax construct ] state = functional expression
E[ X] s = F s

for example:

E [e1 + e2] s = (E [e1] s) + (E [e2] s)
...
E [Number] s = Number
E [Ident] (m, i, o) = m Ident the memory map applied to the identifier
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Mapping of statements
PLaC-7.5

Let Command be the set of all constructs of the abstract syntax  that represent statements,
then the function C maps Command on functions which describe statement execution:

C: Command → (State → State)

In this case the semantic statement functions compute a state transition.
Jumps and labels  in statement execution can not be modelled this way. In that case an
additional functional argument would be needed, which models the continuation after
execution of the specified construct, continuation semantics .

The mapping C is defined by enumerating the cases of the abstract syntax in the form

C[ abstract syntax construct] state = functional expression
C[ X] s = F s

for example:

C [stmt1; stmt2] s = (C [stmt2] ο C [stmt1]) s function composition
C [v := e] (m, i, o) = (M [(E [e] (m, i, o)) / v], i, o)
e is evaluated in the given state and the memory map is changed at the cell of v

C [if ex then stmt1 else stmt2] s = E[ex]s -> C[stmt1]s, C[stmt2]s
C [while ex do stmt] s =

E[ex]s -> (C[while ex do stmt] ο C[stmt])s, s
...
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8. Source-to-source translation
PLaC-8.1

Source-to-source translation :
Translation of a high-level source language  into a high-level target language .

Programming language

Intermediate language

Machine language

Analysis

Transformation

Optimization

Code generation

Compiler:

high-level programming language

high-level programming language

Analysis

Transformation

Specification language (SDL, UML, ...)
Domain specific language (SQL, STK, ...)

Source-to-source translator:

Transformation task :

input : structure tree + properties of constructs (attributes), of entities (def. module)

output :target tree  (attributes) in textual representation



Example: Target tree construction
PLaC-8.2

Assign

Select

Index

Addr Cont

Addr

Cont

Addr

a ->

i ->

s ->

v ->
Definition module:

a -> ...
i -> ...
s -> ...
v -> ...

Variable
Code

Variable
Code

Variable
Code

Stmt
Code

UseIdent
Key

Expr
Code

Expr
Code

UseIdent
Bind

UseIdent
Bind

Selector
Bind

MkAssign ( , )

MkSelect ( , )

MkIndex ( , )

MkAddr ( )

MkCont (MkAddr ( ))

MkCont (MkAddr ( ))

a i

s

v

abstract program tree  a[i].s := v;

Target tree:

with target tree attributes



Attribute grammar for target tree construction

RULE: Stmt ::= Variable ':=' Expr COMPUTE

Stmt.Code = MkAssign (Variable.Code, Expr.Code);

END;

RULE: Variable ::= Variable '.' Selector COMPUTE

Variable[1].Code = MkSelect (Variable[2].Code, Selector.Bind);

END;

RULE: Variable ::= Variable '[' Expr ']' COMPUTE

Variable[1].Code = MkIndex (Variable[2].Code, Expr.Code);

END;

RULE: Variable ::= UseIdent COMPUTE

Variable.Code = MkAddr (UseIdent.Bind);

END;

RULE: Expr ::= UseIdent COMPUTE

Expr.Code = MkCont (MkAddr (UseIdent.Bind));

END;

PLaC-8.3
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Generator for creation of structured target texts
Tool PTG: Pattern-based Text Generator
Creation of structured texts in arbitrary languages. Used as computations in the abstract tree,
and also in arbitrary C programs. Principle shown by examples:

1. Specify output pattern  with insertion points:

ProgramFrame: $
"void main () {\n"
$
"}\n"

     Exit: "exit (" $ int ");\n"

     IOInclude: "#include <stdio.h>"

2. PTG generates a function for each pattern; calls produce target structure:

     PTGNode a, b, c;
a = PTGIOInclude ();
b = PTGExit (5);
c = PTGProgramFrame (a, b);

correspondingly with attribute in the tree

3. Output of the target structure:

     PTGOut (c); or PTGOutFile ("Output.c", c);

PLaC-8.4



©
 2

00
5 

be
i P

ro
f. 

D
r.

 U
w

e 
K

as
te

ns

PTG Patterns for creation of HTML-Texts

concatenation of texts:
Seq: $ $

large heading:
Heading: "<H1>" $1 string "</H1>\n"

small heading:
Subheading: "<H3>" $1 string "</H3>\n"

paragraph:
Paragraph: "<P>\n" $1

Lists and list elements:
List: "<UL>\n" $ "</UL>\n"
Listelement: "<LI>" $ "</LI>\n"

Hyperlink:
Hyperlink: "<A HREF=\"" $1 string "\">" $2 string "</A>"

Text example:

<H1>My favorite travel links</H1>
<H3>Table of Contents</H3>
<UL>
<LI> <A HREF="#position_Maps">Maps</A></LI>
<LI> <A HREF="#position_Train">Train</A></LI>
</UL>

PLaC-8.5
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PTG functions build the target tree (1)
PLaC-8.6

ATTR Code: PTGNode;

SYMBOL Program COMPUTE

PTGOutFile
(CatStrStr (SRCFILE, ".java"),

PTGFrame
(CONSTITUENTS Declaration . Code
 WITH (PTGNode, PTGSeq, IDENTICAL, PTGNull),

 CONSTITUENTS Statement . Code SHIELD Statement
WITH (PTGNode, PTGSeq, IDENTICAL, PTGNull )));

END;

Attributes named
Code propagate
target sub-trees

Write the target
text to a file

PTG pattern with
2 arguments

Access 2 target
sub-trees
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PTG functions build the target tree (2)
PLaC-8.7

RULE: Declaration  ::= Type VarNameDefs ';' COMPUTE
Declaration . Code =

CONSTITUENTSVarNameDef . Code
WITH (PTGNode, PTGSeq, IDENTICAL, PTGNull );

END;

SYMBOLVarNameDef  COMPUTE
SYNT.Code =

IF (EQ (INCLUDING TypedDefinition.Type, intType),
PTGIntDeclaration  (SYNT. NameCode),

...
PTGNULL))));

END;
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Generate and store target names
PLaC-8.8

SYMBOL VarNameDef: NameCode: PTGNode;

SYMBOL VarNameDef COMPUTE
SYNT.NameCode =

PTGAsIs
(StringTable

(GenerateName (StringTable (TERM)))) ;

SYNT.GotTgtName  =
ResetTgtName (THIS.Key, SYNT. NameCode) ;

END;

SYMBOL VarNameUse COMPUTE
SYNT.Code = GetTgtName (THIS.Key, PTGNULL)

<- INCLUDING Program.GotTgtName ;
END;

SYMBOL Program COMPUTE
SYNT.GotTgtName  =

CONSTITUENTS VarNameDef. GotTgtName ;
END;

All names are stored
before any is accessed

Access the name from
the definition module

Store the name in the
definition module

Create a new name
from the source name
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9. Domain Specific Languages (DSL)

(under construction)

PLaC-9.1
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10. Summary
Questions to check understanding

1. Language properties - compiler tasks

1.1. Associate the compiler tasks to the levels of language definition.

1.2. Describe the structure of compilers and the interfaces of the central phases.

1.3. For each phase of compiler frontends describe its task, its input, its output.

1.4. For each phase of compiler frontends explain how generators can contribute to its
implementation.

1.5. What specifications do the generators of (1.4) take and what do they generate?

1.6. What data structures are used in each of the phases of compiler frontends?

1.7. Give examples for feedback between compiler phases.

1.8. Java is implemented differently than many other languages, e.g. C++,
what is the main difference?

PLaC-10.1
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2. Symbol specification and lexical analysis

2.1. Which formal methods are used to specify tokens?

2.2. How are tokens represented after the lexical analysis phase?

2.3. Which information about tokens is stored in data structures?

2.4. How are the components of the token representation used in later phases?

2.5. Describe a method for the construction of finite state machines from syntax diagrams.

2.6. What does the rule of the longest match mean?

2.7. Compare table-driven and directly programmed automata.

2.8. Which scanner generators do you know?

PLaC-10.2
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3. Context-free grammars and syntactic analysis

3.1. Which roles play concrete and abstract syntax for syntactic analysis?

3.2. Describe the underlying principle of recursive descent parsers. Where is the stack?

3.3. What is the grammar condition for recursive descent parsers?

3.4. Explain systematic grammar transformations to achieve the LL(1) condition.

3.5. Why are bottom-up parsers in general more powerful than top-down parsers?

3.6. Which information does a state of a LR(1) automaton represent?

3.7. Describe the construction of a LR(1) automaton.

3.8. Which kinds of conflicts can an LR(1) automaton have?

3.9. Characterize LALR(1) automata in contrast to those for other grammar classes.

3.10. Describe the hierarchy of LR and LL grammar classes.

3.11. Which parser generators do you know?

3.12. Explain the fundamental notions of syntax error handling.

3.13. Describe a grammar situation where an LR parser would need unbounded lookahead.

3.14. Explain: the syntactic structure shall reflect the semantic structure.

PLaC-10.3
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4. Attribute grammars and semantic analysis

4.1. What are the fundamental notions of attribute grammars?

4.2. Under what condition is the set of attribute rules complete and consistent?

4.3. Which tree walk strategies are related to attribute grammar classes?

4.4. What do visit-sequences control? What do they consist of?

4.5. What do dependence graphs represent?

4.6. What is an attribute partition; what is its role for tree walking?

4.7. Explain the LAG(k) condition.

4.8. Describe the algorithm for the LAG(k) check.

4.9. Describe an AG that is not LAG(k) for any k, but is OAG for visit-sequences.

4.10. Which attribute grammar generators do you know?

4.11. How is name analysis for C scope rules specified?

4.12. How is name analysis for Algol scope rules specified?

4.13. How is the creation of target trees specified?

PLaC-10.4
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5. Binding of names

5.1. How are bindings established explicitly and implicitly?

5.2. Explain: consistent renaming according to scope rules.

5.3. What are the consequences if defining occurence before applied occurence is required?

5.4. Explain where multiple definitions of a name could be reasonable?

5.5. Explain class hierarchies with respect to static binding.

5.6. Explain the data structure for representing bindings in the environment module.

5.7. How is the lookup of bindings efficiently implemented?

5.8. How is name analysis for C scope rules specified by attribute computations?

5.9. How is name analysis for Algol scope rules specified by attribute computations?

PLaC-10.5
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6. Type specification and analysis

6.1. What does „statically typed“ and „strongly typed“ mean?

6.2. Distinguish the notions „type“ and „type denotation“?

6.3. Explain the taxonomy of type systems.

6.4. How is overloading and coercion specified in Eli?

6.5. How is overloading resolved?

6.6. Distinguish Eli’s four identifier roles for type analysis?

6.7. How is type analysis for expressions specified in Eli?

6.8. How is name equivalence of types defined? give examples.

6.9. How is structural equivalence of types defined? give examples.

6.10.What are specific type analysis tasks for object-oriented languages?

6.11.What are specific type analysis tasks for functional languages?

PLaC-10.6
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7. , 8. Dynamic semantics and transformation

7.1. What are denotational semantics used for?

7.2. How is a denotational semantic description structured?

7.3. Describe semantic domains for the denotational description of an imperative language.

7.4. Describe the definition of the functions E and C for the denotational description of an
imperative language.

7.5. How is the semantics of a while loop specified in denotational semantics?

7.6. How is the creation of target trees specified by attribute computations?

7.7. PTG is a generator for creating structured texts. Explain its approach.

PLaC-10.7


