
©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Programming Languages and Compilers

Prof. Dr. Uwe Kastens

WS 2013 / 2014

PLaC-0.1
©

 2
00

8
be

i P
ro

f.
D

r.
 U

w
e

K
as

te
ns

0. Introduction

Objectives

PLaC-0.2

Lectures

Tutorials

Homeworks

Exercises
Running project

Forms of teaching:

The participants are taught to

• understand properties and notions of programming languages

• understand fundamental techniques of language implementation, and
to use generating tools and standard solutions ,

• apply compiler techniques for design and implementation of specification
languages and domain specific languages

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Contents

Week Chapter

1 0. Introduction

2 1. Language Properties and Compiler tasks

3 - 4 2. Symbol Specification and Lexical Analysis

5 - 7 3. Context-free Grammars and Syntactic Analysis

8 - 10 4. Attribute Grammars and Semantic Analysis

11 5. Binding of Names

12 6. Type Specification and Analysis

13 7. Specification of Dynamic Semantics

13 8. Source-to-Source Translation

9. Domain Specific Languages

Summary

PLaC-0.3

Prerequisites

from Lecture Topic here needed for

Foundations of Programming Languages:

4 levels of language properties Language specification,
compiler tasks

Context-free grammars Grammar design,
syntactic analysis

Scope rules Name analysis

Data types Type specification and analysis

Modeling:
Finite automata Lexical analysis

Context-free grammars Grammar design,
syntactic analysis

PLaC-0.4

©
 2

00
7

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

References

Material for this course PLaC: http://ag-kastens.upb.de/lehre/material/plac
for the Master course Compilation Methods : http://ag-kastens.upb.de/lehre/material/compii

Modellierung : http://ag-kastens.upb.de/lehre/material/model
Grundlagen der Programmiersprachen : http://ag-kastens.upb.de/lehre/material/gdp

John C. Mitchell: Concepts in Programming Languages , Cambridge University Press, 2003

R. W. Sebesta: Concepts of Programming Languages , 4. Ed., Addison-Wesley, 1999

U. Kastens: Übersetzerbau , Handbuch der Informatik 3.3, Oldenbourg, 1990
(not available on the market anymore, available in the library of the University)

A. W. Appel: Modern Compiler Implementation in Java , Cambridge University Press,
2nd Edition, 2002 (available for C and for ML, too)

W. M. Waite, L. R. Carter: An Introduction to Compiler Construction,
Harper Collins, New York, 1993

U. Kastens, A. M. Sloane, W. M. Waite: Generating Software from Specifications ,
Jones and Bartlett Publishers, 2007

PLaC-0.5
©

 2
01

3
be

i P
ro

f.
D

r.
 U

w
e

K
as

te
ns

References forReading

Week Chapter Kastens Waite Eli
Carter Doc.

1 0. Introduction

2 1. Language Properties 1, 2 1.1 - 2.1
and Compiler tasks

3 - 4 2. Symbol Specification 3 2.4 +
and Lexical Analysis 3.1 - 3.3

5 - 7 3. Context-free Grammars 4 4, 5, 6 +
and Syntactic Analysis

8 - 10 4. Attribute Grammars 5 +
and Semantic Analysis

11 5. Binding of Names 6.2 7 +

12 6. Type Specification and Analysis (6.1) +

13 7. Specification of Dynamic Semantics

13 8. Source-to-Source Translation

9. Domain Specific Languages

PLaC-0.5a

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Course material in the Web
PLaC-0.6

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Commented slide in the course material
PLaC-0.7

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Organization of the course
PLaC-0.8

©
 2

00
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

What does a compiler compile?

A compiler transforms correct sentences of its source language into sentences of its
target language such that their meaning is unchanged. Examples:

Source language: Target language:

Programming language Machine language
C++ Sparc code

Programming language Abstract machine
Java Java Bytecode

Programming language Programming language (source-to-source)
C++ C

Domain specific language Application language
LaTeX HTML
Data base language (SQL) Data base system calls

Application generator:
Domain specific language Programming language

SIM Toolkit language Java

Some languages are interpreted rather than compiled:
Lisp, Prolog, Script languages like PHP, JavaScript, Perl

PLaC-0.9

©
 2

00
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

What is compiled here?
PLaC-0.10

 class Average

 { private:

 int sum, count;

 public:

 Average (void)

 { sum = 0; count = 0; }

 void Enter (int val)

{ sum = sum + val; count++; }

 float GetAverage (void)

 { return sum / count; }

 };

_Enter__7Averagei:

 pushl %ebp

 movl %esp,%ebp

 movl 8(%ebp),%edx

 movl 12(%ebp),%eax

 addl %eax,(%edx)

 incl 4(%edx)

 L6:

 movl %ebp,%esp

 popl %ebp

 ret

class Average
{ private
 int sum, count;
 public
 Average ()
 { sum = 0; count = 0; }
 void Enter (int val)
 { sum = sum + val; count++; }
 float GetAverage ()
 { return sum / count; }
};

1: Enter: (int) --> void
 Access: []
 Attribute 'Code' (Length 49)
 Code: 21 Bytes Stackdepth: 3 Locals: 2
 0: aload_0
 1: aload_0
 2: getfield cp4
 5: iload_1
 6: iadd
 7: putfield cp4
 10: aload_0
 11: dup
 12: getfield cp3
 15: iconst_1
 16: iadd

©
 2

00
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

What is compiled here?
PLaC-0.11

 program Average;

 var sum, count: integer;

 aver: integer;

 procedure Enter (val: integer);

 begin sum := sum + val;

 count := count + 1;

 end;

 begin

 sum := 0; count := 0;

 Enter (5); Enter (7);

 aver := sum div count;

 end.

void ENTER_5 (char *slnk , int VAL_4)

 {

 {/* data definitions: */

 /* executable code: */

 {

 SUM_1 = (SUM_1)+(VAL_4);

 COUNT_2 = (COUNT_2)+(1);

 ;

 }

 }}/* ENTER_5 */

\documentstyle[12pt]{article}
\begin{document}
\section{Introduction}
This is a very short document.
It just shows
\begin{itemize}
\item an item, and
\item another item.
\end{itemize}
\end{document}

%%Page: 1 1
1 0 bop 164 315 a Fc(1)81
b(In)n(tro)r(duction)
164 425 y Fb(This)16
b(is)g(a)h(v)o(ery)e(short)
i(do)q(cumen)o(t.)j(It)c(just)g
(sho)o(ws)237 527 y Fa(\017)24 b
Fb(an)17 b(item,)
c(and)237 628 y Fa(\017)24 b
Fb(another)17 b(item.)
961 2607 y(1)p
eop

©
 2

00
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Languages for specification and modeling

SDL (CCITT) UML
Specification and Description Language: Unified Modeling Language:

PLaC-0.12
©

 2
00

6
be

i P
ro

f.
D

r.
 U

w
e

K
as

te
ns

Domain Specific Languages (DSL)

A language designed for a specific application domain.
Application Generator : Implementation of a DSL by a program generator

Examples:

• Simulation of mechatronic feedback systems

• Robot control

• Collecting data from instruments

• Testing car instruments

• Game description language :

PLaC-0.13

game BBall
{ size 640 480;

background "pics/backgroundbb.png";
Ball einball; int ballsize;

initial {
ballsize=36;

}

 events {
pressed SPACE:
{ einball = new Ball(<100,540>, <100,380>);

©
 2

00
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Programming languages as source or target languages
PLaC-0.14

Programming languages as source languages:

• Program analysis
call graphs, control-flow graph, data dependencies,
e. g. for the year 2000 problem

• Recognition of structures and patterns
e. g. for Reengineering

Programming languages as target languages:

• Specifications (SDL, OMT, UML)

• graphic modeling of structures

• DSL, Application generator

=> Compiler task: Source-to-source compilation

©
 2

01
2

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Semester project as running example
PLaC-0.15

The SetLan translator is implemented using the methods
and tools introduced in this course.

The participants of this course get an implementation of a
sub-language of SetLan as a starting point for their
work towards their individual extension of the language
and the implementation.

SetLan: A Language for Set Computation

SetLan is a domain-specific language for programming with sets .
Constructs of the the language are dedicated to describe sets and
computations using sets. The language allows to define types for sets and
variables and expressions of those types. Specific loop constructs allow to
iterate through sets. These constructs are embedded in a simple
imperative language.

A source-to-source translator translates SetLan programs into Java
programs.

{
set a, b; int i;
i = 1;
a = [i, 3, 5];
b = [3, 6, 8];
print a+b; printLn;
print a*b <= b;
printLn;

}

