
©
 2

01
0

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

1. Language properties - compiler tasks
Meaning preserving transformation

A compiler transforms any correct sentence of its source language into a sentence of its
target language such that its meaning is unchanged .

A meaning is defined only for all correct programs => compiler task: error handling

Static language properties are analyzed at compile time, e. g. definitions of Variables,
types of expressions; => determine the transformation, if the program compilable

Dynamic properties of the program are determined and checked at runtime,
e. g. indexing of arrays => determine the effect, if the program executable
(However, just-in-time compilation for Java: bytecode is compiled at runtime.)

source language

target language

compilation

execution

meaning
described for
abstract machine

language
definition

machine
description

same results

on real machine

execution
on abstract machine

on both paths

PLaC-1.1
©

 2
00

3
be

i P
ro

f.
D

r.
 U

w
e

K
as

te
ns

Levels of language properties - compiler tasks

• a. Notation of tokens lexical analysis
keywords, identifiers, literals
formal definition: regular expressions

• b. Syntactic structure syntactic analysis
formal definition: context-free grammar

• c. Static semantics semantic analysis, transformation
binding names to program objects, typing rules
usually defined by informal texts,
formal definition: attribute grammar

• d. Dynamic semantics transformation, code generation
semantics, effect of the execution of constructs
usually defined by informal texts
in terms of an abstract machine,
formal definition: denotational semantics

Definition of target language (target machine) transformation, code generation
assembly

PLaC-1.2

©
 2

00
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Example: Tokens and structure
PLaC-1.3

Character sequence

int count = 0; double sum = 0.0; while (count<maxVect) { sum = sum+vect[count]; count++;}

int count = 0; double sum = 0.0; while (count<maxVect) { sum = sum+vect[count]; count++;}

Tokens

Expressions

StatementsDeclarations

Structure

©
 2

00
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Example: Names, types, generated code

0 iconst_0
1 istore_1
2 dconst_0
3 dstore_2
4 goto 19
7 dload_2
8 getstatic #5 <vect[]>
11 iload_1

12 faload
13 f2d
14 dadd
15 dstore_2
16 iinc 1 1
19 iload_1
20 getstatic #4 <maxVect>
23 if_icmplt 7

generated Bytecode

PLaC-1.4

int count = 0; double sum = 0.0; while (count<maxVect) { sum = sum+vect[count]; count++;}

Static properties: names and types

int double int int
boolean

. . .k1: (count, local variable, int)
k2: (sum, local variable, double)

k3: (maxVect, member variable, int)
k4: (vect, member variable, double array)

Structure

©
 2

00
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Compiler tasks

Structuring

Translation

Encoding

Syntactic analysis

Transformation

Assembly

Semantic analysis

Code generation

Scanning

Conversion

Parsing

Tree construction

Name analysis

Type analysis

Data mapping

Action mapping

Execution-order

Register allocation
Instruction selection

Instruction encoding
Internal Addressing
External Addressing

Lexical analysis

PLaC-1.5
©

 2
00

3
be

i P
ro

f.
D

r.
 U

w
e

K
as

te
ns

Compiler structure and interfaces

Lexical analysis

Syntactic analysis

Semantic analysis

Transformation

Optimization

Code generation

Peephole optimization

Assembly

Source program

Token sequence

Abstract program tree

Intermediate language

Abstract

Target program

Analysis (frontend)

Synthesis (backend)

machine program

PLaC-1.6

©
 2

00
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Software qualities of the compiler
PLaC-1.7

• Correctness Compiler translates correct programs correctly;
rejects wrong programs and gives error messages

• Efficiency Storage and time used by the compiler

• Code efficiency Storage and time used by the generated code;
compiler task: optimization

• User support Compiler task: Error handling
(recognition, message, recovery)

• Robustness Compiler gives a reasonable reaction on every input;
does not break on any program

©
 2

00
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Strategies for compiler construction
PLaC-1.8

• Obey exactly to the language definition

• Use generating tools

• Use standard components

• Apply standard methods

• Validate the compiler against a test suite

• Verify components of the compiler

©
 2

00
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Generate from specifications

Typical compiler tasks solved by generators:

Specification Generator Implemented
algorithm

Environment

Interfaces

Pattern:

Specifications Cooperating
generators Compiler

integrated system Eli:

PLaC-1.9

Regular expressions Scanner generator Finite automaton

Context-free grammar Parser generator Stack automaton

Attribute grammar Attribute evaluator Tree walking algorithm
generator

Code patterns Code selection Pattern matching
generator

©
 2

00
7

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Compiler Frameworks (Selection)

Amsterdam Compiler Kit: (Uni Amsterdam)
The Amsterdam Compiler Kit is fast, lightweight and retargetable compiler suite and
toolchain written by Andrew Tanenbaum and Ceriel Jacobs.
Intermediate language EM, set of frontends and backends

ANTLR: (Terence Parr, Uni San Francisco)
ANother Tool for Language Recognition, (formerly PCCTS) is a language tool
that provides a framework for constructing recognizers, compilers, and
translators from grammatical descriptions containing Java, C#, C++, or
Python actions

CoCo: (Uni Linz)
Coco/R is a compiler generator, which takes an attributed grammar of a source
language and generates a scanner and a parser for this language. The scanner
works as a deterministic finite automaton. The parser uses recursive descent.

Eli: (Unis Boulder, Paderborn, Sydney)
Combines a variety of standard tools that implement powerful compiler construction
strategies into a domain-specific programming environment called Eli. Using this
environment, one can automatically generate complete language implementations from
application-oriented specifications.

SUIF: (Uni Stanford)
The SUIF 2 compiler infrastructure project is co-funded by DARPA and NSF.
It is a free infrastructure designed to support collaborative research in optimizing
and parallelizing compilers.

PLaC-1.9a

©
 2

00
7

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Environment of compilers

Li
br

ar
ie

s

Preprocessor

Compiler

Linker

Compilation units

Source programs

Code files

Executable program

Preprocessor cpp substitutes text macros in
source programs, e.g.

#include <stdio.h>
#include "module.h"

#define SIZE 32
#define SEL(ptr,fld) ((ptr)->fld)

Separate compilation of compilation units

• with interface specification,
consistency checks,
and language specific linker:
Modula, Ada, Java

• without ...;
checks deferred to system linker:
C, C++

PLaC-1.10
©

 2
00

5
be

i P
ro

f.
D

r.
 U

w
e

K
as

te
ns

Interpreter and Debugger

Debugger

Executable program

Interactive commands

Input
Output

Source program

Core dump

Interpreter

Analysis part

abstract machine

Source program

Input Output

PLaC-1.10a

©
 2

00
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Compilation and interpretation of Java programs

Compiler

Source modules

Bytecode prozessor
in softwareClass

loader
Just-In-Time
Compiler

(JIT)

Class files
in Java Bytecode
(intermediate language)

needed class files
are loaded dynamically -
local or via Internet

Machine code

Interpreter
Java Virtual Machine
JVM

Input Output

Java

PLaC-1.11

