© 2007 bei Prof. Dr. Uwe Kastens

PLaC-2.1

2. Symbol specifications and lexical analysis

Notations of tokens is specified by regular expressions

keywords (for , class), operators and delimiters (+, ==, ; , {),
identifiers (getSize , maxint), literals (42, \n')

Token classes :

Lexical analysis isolates tokens within a stream of characters and encodes them:

Tokens

i sk e

fom] =~ [[JL L]

i

© 2003 bei Prof. Dr. Uwe Kastens

PLaC-2.3

Avoid context dependent token specifications

Tokens should be recognized in isolation
e. G. all occurrences of the identifier a get the same encoding:
{inta;..a=5;..{floata;..a=3.1,;..}}
distinction of the two different variables would require
information from semantic analysis

typedef problemin C :
The C syntax requires lexical distinction
typedef int *T; T (*B); X (*Y);
cause syntactically different structures: declaration of variable B and call of function X.
Requires feedback from semantic analysis to lexical analysis.

of type-names and other names:

Identifiers in PL/1 may coincide with keywords
if if =then then then :=else else else :=then
Lexical analysis needs feedback from syntactic analysis to distinguish them.

Token separation in FORTRAN:
.Deletion or insertion of blanks does not change the meaning.“
DO24K=15 begin of a loop, 7 tokens
DO24K=15 assignment to the variable DO24K 3 tokens
Token separation is determined late.

© 2007 bei Prof. Dr. Uwe Kastens

PLaC-2.2

Lexical Analysis
Input: Program represented by a sequence of characters

Tasks: Compiler modul:

Input reader
Scanner (central phase, finite state machine)

Recognize and classify tokens
Skip irrelevant characters

Encode tokens:

Identifier modul
Literal modules
String storage

Store token information
Conversion

Output: Program represented by a sequence of encoded tokens

© 2003 bei Prof. Dr. Uwe Kastens

PLaC-2.4
Representation of tokens
Uniform encoding of tokens by triples:

Syntax code attribute source position

to locate error messages
of later compiler phases

value or reference
into data module

terminal code of
the concrete syntax

Examples : double sum = 5.6e-5;

while (count < maxVect)

{ sum = sum + vect[count];
DoubleToken 12,1
Ident 138 12,8
Assign 12,12
FloatNumber 16 12,14
Semicolon 12,20
WhileToken 13,1
OpenParen 13,7
Ident 139 13,8
LessOpr 13,14
Ident 137 13,16
CloseParen 13, 23
OpenBracket 14,1

Ident 138 14, 3

© 2005 bei Prof. Dr. Uwe Kastens

PLaC-2.5

Specification of token notations

Example: identifiers
Ident = Letter (Letter | Digit)*

regular regular
—p
grammar expression
Ident :=Letter X
X = Letter X syntax
X .= Digit X diagram
X = @
Ident: I:
finite state
machine

transformation

f Letter
. Letter| - shown in this
lecture
t Digit

PLaC-2.7
Naive transformation
1. Transform a syntax diagram a —

into a non-det. FSM by naively s ,/N
exchanging nodes and arcs (r >

2. Transform a non-det. FSM into a

det. FSM: 0

Merge equivalents sets of nodes e {23 @s o © o}

into nodes. Q_,Q_,Q 'Q_,D
b a i e

© 2011 bei Prof. Dr. Uwe Kastens

Syntax diagram deterministic finite state machine

set of nodes my state q

sets of nodes mg and m, transition g ---> r with character a

connected with the same character a

© 2003 bei Prof. Dr. Uwe Kastens

regular expression A

PLaC-2.6
Regular expressions mapped to syntax diagrams

Transformation rules:

syntax diagram for A

empty > empty
a 4>@—> single character
BC — B—» C——» sequence

—» B
B|C — alternative

. C
B* "

> repetition, may be empty
L el

B Y B— repetition, non-empty

. construct new sets of nodes (states)

© 2011 bei Prof. Dr. Uwe Kastens

PLaC-2.7a

Construction of deterministic finite state machines

Syntax diagram deterministic finite state machine

set of nodes my, state q

sets of nodes mg and m, transitions q --->r with character a

connected with the same character a

Construction:

. enumerate nodes ; exit of the diagram gets the number 0

initial set of nodes m; contains all nodes that are reachable from the begin of the diagram;

my represents the initial state 1 . states

and transitions: Mg my
- chose state g with m,, chose a character a 0
- consider the set of nodes with character a, s.t. their labels k are in my, a
- consider all nodes that_ are directly reachable from those nodes; kqu nOm,
let m, be the set of their labels
- create a state r for m, and a transition from g to r under a.

nodes
repeat step 3 until no new states or transitions can be created

. astate gis afinal state iff Ois in my,

© 2007 bei Prof. Dr. Uwe Kastens

PLaC-2.7b
Properties of the transformation

1. Syntax diagrams can express languages
more compact than regular expressions
can:

A regular expression for { a, ab, b} needs
more than one occurrence of aor b -
a syntax diagram doesn't.

(aC [b)lb

2. The FSM resulting from a transformation of
PLaC 2.7a may have more states than
necessary .

3. There are transformations that minimize
the number of states of any FSM.

"X,y are
equivalent

© 2003 bei Prof. Dr. Uwe Kastens

PLaC-2.9
Composition of token automata

Construct one finite state machine for each token. Compose them forming a single FSM:

- Identify the initial states of the single automata
and identical structures evolving from there (transitions with the same character and states).

» Keep the final states of single automata distinct, they classify the tokens.
+ Add automata for comments and irrelevant characters (white space)

ILE Example: tokens of Lax

(i ‘\’ﬁ [Waite, Goos:

Compiler Construction]

character classes:

a all but*

c all but*or)

d digits

| all letters but E
s +-*<>;)1
b blank tab newline

© 2007 bei Prof. Dr. Uwe Kastens

Example: Floating point numbers in Pascal
Syntax diagram

PLaC-2.8

1 2 3 4 7
ol e e
5

{3,4,04 {567 {7} {7,
d E + - d d d

{1+ {1,2,4} {3}
d d . E d

deterministic finite state machine

@CC%J

0}

Y

© 2003 bei Prof. Dr. Uwe Kastens

Rule of the longest match

An automaton may contain transitions from final states:

When does the automaton stop?

Rule of the longest match:
» The automaton continues as long as there is a transition with the next character.
« After having stopped it sets back to the most recently passed final state.
« If no final state has been passed an error message is issued.

Consequence: Some kinds of tokens have to be separated explicitly.

Check the concrete grammar for tokens that may occur adjacent!

PLaC-2.10

© 2003 bei Prof. Dr. Uwe Kastens

© 2003 bei Prof. Dr. Uwe Kastens

Scanner: Aspects of implementation

Runtime is proportional to the number of characters in the program
Operations per character must be fast

Table driven automata are too slow:
Loop interprets table, 2-dimensional array access, branches

Directly programmed automata is faster; transform transitions into control flow:

O—O
o
O

sequence

repeat loop

branch, switch

« Fast loops for sequences of irrelevant blanks .

« Implementation of character classes :
bit pattern or indexing - avoid slow operations with sets of characters.

Do not copy characters from input buffer - maintain a pointer into the buffer, instead.

PLaC-2.11

- otherwise the Scanner dominates compilation time

Identifier module and literal modules

Uniform interface for all scanner support modules:
Input parameters: pointer to token text and its length;
Output parameters: syntax code, attribute

- Identifier module encodes identifier occurrences bijective (1:1), and
recognizes keywords
Implementation: hash vector, extensible table, collision lists

- Literal modules for floating point numbers, integral numbers, strings

Variants for representation in memory:
token text; value converted into compiler data; value converted into target data

Caution:
Avoid overflow on conversion!
Cross compiler: compiler representation may differ from target representation

« Character string memory:
stores strings without limits on their lengths,
used by the identifier module and the literal modules

PLaC-2.12

© 2007 bei Prof. Dr. Uwe Kastens

© 2003 bei Prof. Dr. Uwe Kastens

PLaC-2.11b
Characteristics of Input Data

Table 7

Characteristics of the Input Data

P4 SYNPUT
QOccurrences Characters Occurrences Characters
11404 2766 -

Single spaces

Identifiers B411 2 significant numbers of characters
Keywords 4183 7674

>3 spaces 3850 19880

. 2708 1BB0

= 1378 g

Integers 1354

(1245
] 1248
. 3 1032
comments 669
[B4
! G54

W. M. Waite:

The Cost of Lexical Analysis.
Software- Practice and Experience,
16(5):473-488, May 1986.

PLaC-2.13

Scanner generators

generate the central function of lexical analysis
GLA University of Colorado, Boulder; component of the Eli system
Lex Unix standard tool
Flex Successor of Lex
Rex GMD Karlsruhe

Token specification: regular expressions

GLA library of precoined specifications;

recognizers for some tokens may be programmed

Lex, Flex, Rex transitions may be made conditional

Interface:

GLA as described in this chapter; cooperates with other Eli components

Lex, Flex, Rex actions may be associated with tokens (statement sequences)
interface to parser generator Yacc

Implementation:

GLA directly programmed automaton in C

Lex, Flex, Rex table-driven automaton in C

Rex table-driven automaton in C or in Modula-2

Flex, Rex faster, smaller implementations than generated by Lex

