
©
 2

00
7

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

2. Symbol specifications and lexical analysis

int count = 0; double sum = 0.0; while (count<maxVect) { sum = sum+vect[count]; count++;}

Tokens

Notations of tokens is specified by regular expressions

Token classes : keywords (for , class), operators and delimiters (+, ==, ; , {),
identifiers (getSize , maxint), literals (42 , '\n')

Lexical analysis isolates tokens within a stream of characters and encodes them:

PLaC-2.1

©
 2

00
7

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Lexical Analysis

Input: Program represented by a sequence of characters

Tasks: Compiler modul:

Input reader

Recognize and classify tokens Scanner (central phase, finite state machine)
Skip irrelevant characters

Encode tokens:
Identifier modul

Store token information Literal modules
Conversion String storage

Output: Program represented by a sequence of encoded tokens

PLaC-2.2

©
 2

00
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Avoid context dependent token specifications
PLaC-2.3

Tokens should be recognized in isolation :
e. G. all occurrences of the identifier a get the same encoding:

{int a; ... a = 5; ... {float a; ... a = 3.1; ...}}
distinction of the two different variables would require
information from semantic analysis

typedef problem in C :
The C syntax requires lexical distinction of type-names and other names:

typedef int *T; T (*B); X (*Y);
cause syntactically different structures: declaration of variable B and call of function X.
Requires feedback from semantic analysis to lexical analysis.

Identifiers in PL/1 may coincide with keywords :
if if = then then then := else else else := then
Lexical analysis needs feedback from syntactic analysis to distinguish them.

Token separation in FORTRAN:
„Deletion or insertion of blanks does not change the meaning.“

DO 24 K = 1,5 begin of a loop, 7 tokens
DO 24 K = 1.5 assignment to the variable DO24K, 3 tokens

Token separation is determined late.

©
 2

00
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Representation of tokens
PLaC-2.4

Uniform encoding of tokens by triples:

Syntax code attribute source position

terminal code of value or reference to locate error messages
the concrete syntax into data module of later compiler phases

Examples : double sum = 5.6e-5;
while (count < maxVect)
{ sum = sum + vect[count];

DoubleToken 12, 1
Ident 138 12, 8
Assign 12, 12
FloatNumber 16 12, 14
Semicolon 12, 20
WhileToken 13, 1
OpenParen 13, 7
Ident 139 13, 8
LessOpr 13, 14
Ident 137 13, 16
CloseParen 13, 23
OpenBracket 14, 1
Ident 138 14, 3

©
 2

00
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Specification of token notations

regular
grammar

regular
expression

syntax
diagram

finite state
machine

Example: identifiers
Ident = Letter (Letter | Digit)*

Letter

Digit

Letter

Ident:

Letter

Digit

Letter1 2

Ident ::= Letter X
X ::= Letter X
X ::= Digit X
X ::=

transformation
shown in this
lecture

PLaC-2.5

©
 2

00
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Regular expressions mapped to syntax diagrams

Transformation rules:

regular expression A syntax diagram for A

empty

a

B C

a

B C

B | C

B*

B+

B

C

B

B

empty

single character

sequence

alternative

repetition, may be empty

repetition, non-empty

PLaC-2.6

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Naive transformation

a

b

a d

c

e

b

b

a

a

d

e

e

c

b a

c

d
e

0

1

2

3

4

5

6

{1} {2,3} {4,5} {6} {0}

PLaC-2.7

1. Transform a syntax diagram
into a non-det. FSM by naively
exchanging nodes and arcs

2. Transform a non-det. FSM into a
det. FSM:
Merge equivalents sets of nodes
into nodes.

Syntax diagram deterministic finite state machine

set of nodes mq state q

sets of nodes mq and mr transition q ---> r with character a
connected with the same character a

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Construction of deterministic finite state machines

Syntax diagram deterministic finite state machine

set of nodes mq state q

sets of nodes mq and mr transitions q ---> r with character a
connected with the same character a

Construction:

1. enumerate nodes ; exit of the diagram gets the number 0

2. initial set of nodes m1 contains all nodes that are reachable from the begin of the diagram;
m1 represents the initial state 1 .

3. construct new sets of nodes (states) and transitions:
- chose state q with mq, chose a character a
- consider the set of nodes with character a, s.t. their labels k are in mq.
- consider all nodes that are directly reachable from those nodes;
 let mr be the set of their labels
- create a state r for mr and a transition from q to r under a.

4. repeat step 3 until no new states or transitions can be created

5. a state q is a final state iff 0 is in mq.

PLaC-2.7a

a
k∈mq n∈mr

a

mq mr

q r

states

nodes

©
 2

00
7

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Properties of the transformation
PLaC-2.7b

1. Syntax diagrams can express languages
more compact than regular expressions
can:
A regular expression for { a, ab, b} needs
more than one occurrence of a or b -
a syntax diagram doesn’t.

2. The FSM resulting from a transformation of
PLaC 2.7a may have more states than
necessary .

3. There are transformations that minimize
the number of states of any FSM.

(a (| b)) | b

a b

a

a

x

y

x, y are
equivalent

©
 2

00
7

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Example: Floating point numbers in Pascal
PLaC-2.8

d . d E d

+

-

1 2 3 4

5

6

7
0

Syntax diagram

1 2 3 4 5 6 7d

d

d

d
d

d

d

.

E

E
+

-

{1} {1, 2, 4} {3} {3, 4, 0} {5, 6, 7} {7} {7, 0}
d d . E d d E + - d d d

deterministic finite state machine

©
 2

00
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Composition of token automata

Construct one finite state machine for each token. Compose them forming a single FSM:

• Identify the initial states of the single automata
and identical structures evolving from there (transitions with the same character and states).

• Keep the final states of single automata distinct, they classify the tokens.

• Add automata for comments and irrelevant characters (white space)

PLaC-2.9

1

2 3 4 5

6

7

8 9

10 11

12

1314

1516

17

18

0

19

20

a

c

* *

)

(

*
l, E

l, E, d

l, E, d

_

b

. d d

.

d

E
+, -

d

d

d=

=

:

=

/

/

s

eof

character classes:
a all but *
c all but * or)
d digits
l all letters but E
s + - * < > ; ,) [] ^
b blank tab newline

Example: tokens of Lax
[Waite, Goos:

Compiler Construction]

d

d E

©
 2

00
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Rule of the longest match

An automaton may contain transitions from final states:

When does the automaton stop?

Rule of the longest match:

• The automaton continues as long as there is a transition with the next character.

• After having stopped it sets back to the most recently passed final state.

• If no final state has been passed an error message is issued.

Consequence: Some kinds of tokens have to be separated explicitly.

Check the concrete grammar for tokens that may occur adjacent!

PLaC-2.10

... ...

©
 2

00
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Scanner: Aspects of implementation

• Runtime is proportional to the number of characters in the program

• Operations per character must be fast - otherwise the Scanner dominates compilation time

• Table driven automata are too slow:
Loop interprets table, 2-dimensional array access, branches

• Directly programmed automata is faster; transform transitions into control flow:

• Fast loops for sequences of irrelevant blanks .

• Implementation of character classes :
bit pattern or indexing - avoid slow operations with sets of characters.

• Do not copy characters from input buffer - maintain a pointer into the buffer, instead.

sequence

repeat loop

branch, switch

PLaC-2.11

©
 2

00
7

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Characteristics of Input Data
PLaC-2.11b

W. M. Waite:
The Cost of Lexical Analysis.
Software- Practice and Experience,
16(5):473-488, May 1986.

significant numbers of characters

©
 2

00
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Identifier module and literal modules

• Uniform interface for all scanner support modules:
Input parameters: pointer to token text and its length;
Output parameters: syntax code, attribute

• Identifier module encodes identifier occurrences bijective (1:1), and
recognizes keywords
Implementation: hash vector, extensible table, collision lists

• Literal modules for floating point numbers, integral numbers, strings

Variants for representation in memory:
token text; value converted into compiler data; value converted into target data

Caution:
Avoid overflow on conversion!
Cross compiler: compiler representation may differ from target representation

• Character string memory:
stores strings without limits on their lengths,
used by the identifier module and the literal modules

PLaC-2.12

©
 2

00
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Scanner generators

generate the central function of lexical analysis

GLA University of Colorado, Boulder; component of the Eli system
Lex Unix standard tool
Flex Successor of Lex
Rex GMD Karlsruhe

Token specification: regular expressions

GLA library of precoined specifications;
recognizers for some tokens may be programmed

Lex, Flex, Rex transitions may be made conditional

Interface:

GLA as described in this chapter; cooperates with other Eli components
Lex, Flex, Rex actions may be associated with tokens (statement sequences)

interface to parser generator Yacc

Implementation:

GLA directly programmed automaton in C
Lex, Flex, Rex table-driven automaton in C
Rex table-driven automaton in C or in Modula-2
Flex, Rex faster, smaller implementations than generated by Lex

PLaC-2.13

