© 2007 bei Prof. Dr. Uwe Kastens

PLaC-2.1

2. Symbol specifications and lexical analysis

Notations of tokens is specified by regular expressions

Token classes : keywords (for , class), operators and delimiters (+, ==, ; , {),
identifiers (getSize , maxint), literals (42, \n')

Lexical analysis isolates tokens within a stream of characters and encodes them:

Tokens

(D

u

(countgmaxVect) |[{ sum = sﬂvﬂvecﬁount]; count"ﬁ;}

ble sum |= O.ﬂ whil

int count = dF

© 2007 bei Prof. Dr. Uwe Kastens

PLaC-2.2

Lexical Analysis

Input: Program represented by a sequence of characters
Tasks: Compiler modul:
Input reader

Recognize and classify tokens Scanner (central phase, finite state machine)
Skip irrelevant characters

Encode tokens:
Identifier modul

Store token information Literal modules
Conversion String storage

Output: Program represented by a sequence of encoded tokens

© 2003 bei Prof. Dr. Uwe Kastens

PLaC-2.3

Avoid context dependent token specifications

Tokens should be recognized in isolation
e. G. all occurrences of the identifier a get the same encoding:
{inta;...a=5;..{floata;..a=3.1;..}}
distinction of the two different variables would require
information from semantic analysis

typedef problem in C :
The C syntax requires lexical distinction of type-names and other names:
typedef int *T; T (*B); X (*Y);
cause syntactically different structures: declaration of variable B and call of function X.
Requires feedback from semantic analysis to lexical analysis.

Identifiers in PL/1 may coincide with keywords
if if =then then then :=else else else :=then
Lexical analysis needs feedback from syntactic analysis to distinguish them.

Token separation in FORTRAN:
,Deletion or insertion of blanks does not change the meaning.”
DO24K=15 begin of a loop, 7 tokens
DO24K=15 assignment to the variable DO24K 3 tokens

Token separation is determined late.

© 2003 bei Prof. Dr. Uwe Kastens

Representation of tokens

Uniform encoding of tokens by triples:

Syntax code

terminal code of
the concrete syntax

Examples :

DoubleToken
ldent

Assign
FloatNumber
Semicolon
WhileToken
OpenParen
ldent
LessOpr
ldent
CloseParen
OpenBracket
ldent

attribute source position
value or reference to locate error messages
into data module of later compiler phases

double sum = 5.6e-5;
while (count < maxVect)
{ sum = sum + vect[count];

12,1
138 12, 8
12,12
16 12, 14
12, 20
13,1
13,7
139 13, 8
13, 14
137 13, 16
13, 23
14, 1
138 14, 3

PLaC-2.4

Specification of token notations

© 2005 bei Prof. Dr. Uwe Kastens

Example: identifiers
regular
grammar -
Ident ::= Letter X
X .= Letter X syntax
X .= Digit X diagram
X =
finite state
machine

PLaC-2.5

Ident = Letter (Letter | Digit)*

regular

expression /
= Loty

ldent:

-

Y

. Letter

2

b

Letter

Digit

transformation
shown in this
lecture

© 2003 bei Prof. Dr. Uwe Kastens

PLaC-2.6

Regular expressions mapped to syntax diagrams

Transformation rules:

regular expression A

empty

a

BC

B|C

B*

syntax diagram for A

empty

single character

sequence

alternative

repetition, may be empty

repetition, non-empty

© 2011 bei Prof. Dr. Uwe Kastens

PLaC-2.7

Naive transformation

1. Transform a syntax diagram
into a non-det. FSM by naively
exchanging nodes and arcs

2. Transform a non-det. FSM into a
det. FSM:
Merge equivalents sets of nodes
into nodes.

{1} {2,3} {4.5} {6} {0}

B
(e e)T e

d

Syntax diagram

set of nodes mg

sets of nodes mgand m,
connected with the same character a

deterministic finite state machine

state g

transition g ---> r with character a

© 2011 bei Prof. Dr. Uwe Kastens

PLaC-2.7a

Construction of deterministic finite state machines

Syntax diagram deterministic finite state machine
set of nodes m, state g
sets of nodes m, and m, transitions q --->r with character a
connected with the same character a

Construction:

1. enumerate nodes ; exit of the diagram gets the number 0

2. initial set of nodes m; contains all nodes that are reachable from the begin of the diagram;
m; represents the initial state 1 . states

3. construct new sets of nodes (states) and transitions: Mg my
- chose state g with m,, chose a character a 0 c
- consider the set of nodes with character a, s.t. their labels k are in m,. a
- consider all nodes that are directly reachable from those nodes; kqu nOm,

let m, be the set of their labels
- create a state r for m, and a transition from g to runder a.
nodes
4. repeat step 3 until no new states or transitions can be created
5. astate gis a final state iff Oisin my,

© 2007 bei Prof. Dr. Uwe Kastens

Properties of the transformation

1. Syntax diagrams can express languages
more compact than regular expressions
can:

A regular expression for { a, ab, b} needs
more than one occurrence of aor b -
a syntax diagram doesn't.

2. The FSM resulting from a transformation of
PLaC 2.7a may have more states than
necessary .

3. There are transformations that minimize
the number of states of any FSM.

PLaC-2.7b

(@l

|b)) | b

X,y are
equivalent

© 2007 bei Prof. Dr. Uwe Kastens

Example: Floating point numbers in Pascal
Syntax diagram

PLaC-2.8

T@ @j@ |4<E> i T@

{1} 1,24} {3} 34,00 5,6, 7} {7}
d d . E d d E + - d d

B O T O B0

G e T

deterministic finite state machine

© 2003 bei Prof. Dr. Uwe Kastens

PLaC-2.9

Composition of token automata

Construct one finite state machine for each token. Compose them forming a single FSM:

- Identify the initial states of the single automata
and identical structures evolving from there (transitions with the same character and states).

« Keep the final states of single automata distinct, they classify the tokens.
« Add automata for comments and irrelevant characters (white space)
|, E, d Example: tokens of Lax

a . 1 _ . .
* A [Waite, Goos:
%)/\ 04 @ Compiler Construction]

LS

20/« €9
character classes: / ’ ~ 9 12
a all but * 19 / ; T El d
c all but * or)
d digits 17 14| 13 71—E .10 +
| all letters but E L/ ¢ — l: , -
S +-*<>;)] q
b blank tab newline 18 16 15

© 2003 bei Prof. Dr. Uwe Kastens

Rule of the longest match

An automaton may contain transitions from final states:

When does the automaton stop?

Rule of the longest match:

« The automaton continues as long as there is a transition with the next character.

« After having stopped it sets back to the most recently passed final state.
- If no final state has been passed an error message is issued.

Consequence: Some kinds of tokens have to be separated explicitly.

Check the concrete grammar for tokens that may occur adjacent!

PLaC-2.10

© 2003 bei Prof. Dr. Uwe Kastens

Scanner: Aspects of implementation

Runtime is proportional to the number of characters in the program

Table driven automata are too slow:
Loop interprets table, 2-dimensional array access, branches

Directly programmed automata is faster; transform transitions into control flow:

©_>© sequence

5 repeat loop

©< branch, switch
\

- Fast loops for sequences of irrelevant blanks .

« Implementation of character classes
bit pattern or indexing - avoid slow operations with sets of characters.

« Do not copy characters from input buffer - maintain a pointer into the buffer, instead.

PLaC-2.11

Operations per character must be fast - otherwise the Scanner dominates compilation time

© 2007 bei Prof. Dr. Uwe Kastens

Characteristics of Input Data

Table ¥

Characleristics of the Input Data

PLaC-2.11b

P4 SYTNPUT
Oeccurrences Characters (Occurrences Characlers

Single spaces 11404 11404 2766 2766
[dentifiers 8411 41560 5799 22744 significant numbers of characters
Keywords 4183 15080 2034 TBT4
>3 spaces 3850 BOB94 1837 19880
: 2708 2T08 1880 | BED
= 1378 2758 BG6 1532
Integers 1354 2202 BET 873
[1245 1245 T8l Tal
] 12456 1245 THl TE1
s 1032 1032 A42 842
comments 659 13785 B75 SH066 -
[CER] B54 218 218
] G54 654 218 218
. 635 B35 483 483
: 546 546 400 400
Sirings 483 2560 303 3017
Space paira 470 840 38 s
B 438 438 208 208
- 383 353 461 461
L% 213 426 H6 i1 F
* 203 203 183 183
- a2 82 &1 B1
Space triples 56 16H H4e 25286

J7 T4 21 43
<= 28 5a L} 10
> 18 18 27 27
< 14 14 29 3 25 .
. 10 10 12 12 W. M. Walite:
i & e : 14 The Cost of Lexical Analysis.
Reals i) 0 | 14 . .
/ 0 0 1 | Software- Practice and Experience,

16(5):473-488, May 1986.

© 2003 bei Prof. Dr. Uwe Kastens

|dentifier module and literal modules

« Uniform interface for all scanner support modules:
Input parameters: pointer to token text and its length;
Output parameters: syntax code, attribute

- ldentifier module encodes identifier occurrences bijective (1:1), and

recognizes keywords
Implementation: hash vector, extensible table, collision lists

« Literal modules for floating point numbers, integral numbers, strings

Variants for representation in memory:
token text; value converted into compiler data; value converted into target data

Caution:
Avoid overflow on conversion!
Cross compiler: compiler representation may differ from target representation

« Character string memory:
stores strings without limits on their lengths,
used by the identifier module and the literal modules

PLaC-2.12

© 2003 bei Prof. Dr. Uwe Kastens

Scanner generators

generate the central function of lexical analysis

GLA University of Colorado, Boulder; component of the Eli system
Lex Unix standard tool

Flex Successor of Lex

Rex GMD Karlsruhe

Token specification: regular expressions

GLA library of precoined specifications;
recognizers for some tokens may be programmed

Lex, Flex, Rex transitions may be made conditional

Interface;

GLA as described in this chapter; cooperates with other Eli components

Lex, Flex, Rex actions may be associated with tokens (statement sequences)
interface to parser generator Yacc

Implementation:

GLA directly programmed automaton in C
Lex, Flex, Rex table-driven automaton in C
Rex table-driven automaton in C or in Modula-2

Flex, Rex faster, smaller implementations than generated by Lex

PLaC-2.13

