3. Context-free Grammars and Syntactic Analysis

Input: token sequence
Tasks:
Parsing: construct a derivation according to the concrete syntax, Tree construction: build a structure tree according to the abstract syntax, Error handling: detection of an error, message, recovery

Result:
abstract program tree

Compiler module parser:
deterministic stack automaton, augmented by actions for tree construction
top-down parsers: leftmost derivation; tree construction top-down or bottom-up bottom-up parsers: rightmost derivation backwards; tree construction bottom-up

Abstract program tree (condensed derivation tree): represented by a

- data structure in memory for the translation phase to operate on,
- linear sequence of nodes on a file (costly in runtime),
- sequence of calls of functions of the translation phase.

3.1 Concrete and abstract syntax

concrete syntax

- context-free grammar
- defines the structure of source programs
- is unambiguous
- specifies derivation and parser
- parser actions specify the tree construction
- some chain productions have only syntactic purpose
Expr : := Fact have no action
- symbols are mapped \{Expr, Fact \} ->
- same action at structural equivalent productions: - creates tree nodes

Expr : := Expr AddOpr Fact \&BinEx
Fact ::= Fact MulOpr Opd \&BinEx

- semantically relevant chain productions, e.g

ParameterDecl ::= Declaration

- terminal symbols
identifiers, literals,
keywords, special symbols
- concrete syntax and symbol mapping specify - abstract syntax (can be generated)

Generating the structuring phase from specifications (Eli)

Patterns for expression grammars

Expression grammars are systematically constructed, such that structural properties of expressions are defined:

one level of precedence, binary operator,left-associative:	one level of precedence, binary operator, right-associative:
A $::=$ A Opr B	A $::=$ B Opr A
A $::=$ B	A $::=$ B

one level of precedence, unary Operator, prefix:	one level of precedence, unary Operator, postfix:
A $::=$ Opr A	A $::=$ A Opr
A $::=$ B	A $::=$ B

Elementary operands: only derived from the nonterminal of the highest precedence level (be H here):
H : : = Ident

name production

BinEx: Exp : := Exp BinOpr Exp
IdEx: Exp ::= Ident
PlusOpr: BinOpr ::= '+'
MinusOpr: BinOpr ::= '-
TimesOpr: BinOpr ::= '*
DivOpr: BinOpr ::= '/'
abstract program tree for a * (b + c)

symbol classes: Exp $=$ \{ Expr, Fact, Opd \}
BinOpr = \{ AddOpr, MulOpr

Actions of the concrete syntax: productions of the abstract syntax to create tree nodes for no action at a concrete chain production: no tree node is created

A strategy for grammar development

1. Examples: Write at least one example for every intended language construct. Keep the examples for checking the grammar and the parser.
2. Sub-grammars: Decompose a non-trivial task into topics covered by sub-gammars, e.g statements, declarations, expressions, over-all structure.
3. Top-down: Begin with the start symbol of the (sub-)grammar, and refine each nonterminal according to steps 4-7 until all nonterminals of the (sub-)grammar are refined.
4. Alternatives: Check whether the language construct represented by the current nonterminal, say Statement, shall occur in structurally different alternatives, e.g. whilestatement, if-statement, assignment. Either introduce chain productions, like Statement ::= WhileStatement | IfStatement | Assignment. or apply steps 5-7 for each alternative separately.
5. Consists of: For each (alternative of a) nonterminal representing a language construct explain its immediate structure in words, e.g. „A Block is a declaration sequence followed by a statement sequence, both enclosed in curly braces." Refine only one structural level. Translate the description into a production. If a sub-structure is not yet specified introduce a new nonterminal with a speaking name for it, e.g.
Block : := '\{' DeclarationSeq StatementSeq '\}'.
6. Natural structure: Make sure that step 5 yields a „natural" structure, which supports notions used for static or dynamic semantics, e.g. a range for valid bindings.
7. Useful patterns: In step 5 apply patterns for description of sequences, expressions, etc.

Grammar design for an existing language

- Take the grammar of the language specification literally.
- Only conservative modifications for parsability or for mapping to abstract syntax
- Describe all modifications
(see ANSI C Specification in the Eli system description
http://www.uni-paderborn.de/fachbereich/AG/agkastens/eli/examples/eli_cE.htmI)
- Java language specification (1996):

Specification grammar is not LALR(1).
5 problems are described and how to solve them.

- Ada language specification (1983):

Specification grammar is LALR(1)

- requirement of the language competition
- ANSI C, C++:
several ambiguities and LALR(1) conflicts, e.g. "dangling else",

typedef problem":

A (*B)

is a declaration of variable \mathbf{B}, if \mathbf{A} is a type name, otherwise it is a call of function \mathbf{A}

Grammar design together with language design

Read grammars before writing a new grammar.
Apply grammar patterns systematically (cf. GPS-2.5, GPS-2.8)

- repetitions
- optional constructs
- precedence, associativity of operators

Syntactic structure should reflect semantic structure:

E. g. a range in the sense of scope rules should be represented by a single subtree of the derivation tree (of the abstract tree)
Violated in Pascal:
functionDeclaration ::= functionHeading block
functionHeading ::= 'function' identifier formalParameters ':' resultType ';'
formalParameters together with block form a range,
but identifier does not belong to it

Syntactic restrictions versus semantic conditions

Express a restriction syntactically only if
it can be completely covered with reasonable complexity:

- Restriction can not be decided syntactically:
e.g. type check in expressions:

BooIExpression ::= IntExpression '<' IntExpression

- Restriction can not always be decided syntactically
e. g. disallow array type to be used as function result

Type ::= ArrayType | NonArrayType | Identifier
ResultType ::= NonArrayType
If a type identifier may specify an array type,
a semantic condition is needed, anyhow

- Syntactic restriction is unreasonably complex:
e. g. distinction of compile-time expressions from ordinary
expressions requires duplication of the expression syntax.

Eliminate ambiguities

unite syntactic constructs - distinguish them semantically

Examples:

- Java: ClassOrInterfaceType $::=$ ClassType | InterfaceType

InterfaceType
ClassType
::= TypeName
replace first production by
ClassOrInterfaceType $\quad::=$ TypeName
semantic analysis distinguishes between class type and interface type

- Pascal: factor ::= variable | ... | functionDesignator
variable $\quad::=$ entireVariable | ..
entireVariable ::= variableldentifier
variableldentifier $\quad::=$ identifier
functionDesignator $\quad::=$ functionldentifier
| functionldentifer '(' actualParameters ')' (
functionldentifier
::= identifier
eliminate marked (*) alternative
semantic analysis checks whether $\left({ }^{* *}\right)$ is a function identifier

Unbounded lookahead

The decision for a reduction is determined by a distinguishing token that may be arbitrarily far to the right:
Example, forward declarations as could have been defined in Pascal:
functionDeclaration ::=
'function' forwardldent formalParameters ':' resultType ';' 'forward'
| 'function' functionldent formalParameters '‘‘ resultType ';' block
The distinction between forwardident and functionldent would require to see the forward or the begin token.
Replace forwardident and functionident by the same nonterminal; distinguish semantically.

Grammar conditions for recursive descent

Definition: A context-free grammar is strong LL(1), if for any pair of productions that have the same symbol on their left-hand sides, $A::=u$ and $A::=v$, the decision sets are disjoint:
DecisionSet (A ::=u) \cap DecisionSet (A ::=v) $=\varnothing$
with
DecisionSet $(\mathbf{A}::=\mathbf{u}):=$ if nullable (u) then First $(\mathbf{u}) \cup$ Follow (A) else First (\mathbf{u})
nullable (\mathbf{u}) holds iff a derivation $u \Rightarrow^{*} \varepsilon$ exists
First (u) $:=\left\{t \in T \mid v \in V^{*}\right.$ exists and a derivation $\left.u \Rightarrow^{*} t v\right\}$
Follow $(A):=\left\{t \in T \mid u, v \in V^{*}\right.$ exist, $A \in N$ and a derivation $\left.S \Rightarrow^{*} u A t v\right\}$

Example:

Example: production	DecisionSet			
p1: Prog ::= Block \#	begin	non-terminal		
p2: Block ::= begin Decls Stmts end	begin	X	First (X)	Follow (X)
p4: Decls $::=$	Ident begin	Prog	begin	
p5: Decl ::= new ldent	new	Block	begin	\# ; end
p6: Stmts : $:=$ Stmts ; Stmt	begin Ident	Decls	new	Ident begin
p7: Stmts $::=$ Stmt	begin Ident	Decl	new	
p8: Stmt ::= Block	begin	Stmts	begin Ident	; end
p9: Stmt $::=$ Ident $:=$ Ident	Ident	Stmt	begin Ident	; end

top-down (construction of the derivation tree), predictive method
Systematic transformation of a context-free grammar into a set of functions:
non-terminal symbol X
alternative productions for X
decision set of production p_{i}
non-terminal occurrence X ::= ... Y ..
terminal occurrence X ::= ... t...

Productions for Stmt:

p1: Stmt ::=
Variable ':=' Expr
p2: Stmt : : =
while' Expr 'do' Stme
function X
branches in the function body
decision for branch p_{i}
function call $\mathrm{Y}($)
accept a token t and read the next token

3.3 Recursive descent parser

```
void Stmt ()
{ switch (CurrSymbol)
    {
        case decision set for p1:
            variab
            accept(assignSym)
            break;
            case decision set for p2:
            accept(whileSym);
            accept'(doSym)
            Stmt()
    default: Fehlerbehandlung();
} }
```


Computation rules for nullable, First, and Follow

Definitions:

nullable (\mathbf{u}) holds iff a derivation $u \Rightarrow^{*} \varepsilon$ exists
First(\mathbf{u}): $:\left\{t \in T \mid v \in V^{*}\right.$ exists and a derivation $\left.u \Rightarrow^{*} t v\right\}$
Follow(A):= $\left\{t \in T \mid u, v \in V^{*}\right.$ exist, $A \in N$ and a derivation $S \Rightarrow^{*} u A v$ such that $\left.t \in \operatorname{First}(v)\right\}$ with $G=(T, N, P, S) ; V=T \cup N ; t \in T ; A \in N ; u, v \in V^{*}$

Computation rules:

nullable $(\varepsilon)=$ true; nullable $(t)=$ false; nullable $(u v)=$ nullable $(u) \wedge$ nullable (v); nullable $(A)=$ true iff $\exists A::=u \in P \wedge$ nullable (u)
$\operatorname{First}(\varepsilon)=\varnothing ; \operatorname{First}(\mathrm{t})=\{\mathrm{t}\}$;
First $(u v)=$ if nullable (u) then First $(u) \cup$ First (v) else First(u)
First $(A)=\operatorname{First}\left(u_{1}\right) \cup \ldots \cup \operatorname{First}\left(u_{n}\right)$ for all $A::=u_{i} \in P$
Follow(A):
if $A=S$ then $\# \in \operatorname{Follow}(A)$
if $Y::=u A v \in P$ then First $(v) \subseteq$ Follow (A) and if nullable (v) then Follow $(Y) \subseteq$ Follow (A)

Grammar transformations for LL(1)

Consequences of strong LL(1) condition: A strong LL(1) grammar can not have

- alternative productions that begin with the same symbols:
- productions that are directly or indirectly left-recursive:
$\mathrm{u}, \mathrm{v}, \mathrm{w} \in \mathrm{V}^{*}$
$X \in N$ does not occur in the original grammar

Simple grammar transformations tha keep the defined language invariant:
left-factorization:

non-LL(1) productions	transformed
$A::=v u$	$A::=v X$
$A::=v w$	$X:=u$
	$X::=w$

elimination of direct recursion

$$
\begin{array}{ll}
A::=A u & A::=v X \\
A::=v & X:=u X \\
& X::=
\end{array}
$$

special case empty v :
$A::=A u \quad A::=u A$
A ::=
A ::

EBNF constructs can avoid violation of strong LL(1) condition:

EBNF construct:
Production:
Option [u]
Repetition (u) *
A ::=v (u)* w

additiona

LL(1)-condition:

```
if nullable(w)
then First(u)\cap (First(w) \cup Follow(A)) = \varnothing
else First(u)\cap First(w)=\varnothing
```

in recursive
descent parser: if (CurrToken in First(u)) $\{u\} \quad$ while (CurrToken in First(u)) $\{u\}$ w w

Repetition (u)+ left as exercise

A bottom-up parser has seen more of the input when it decides to apply a production. Consequence: bottom-up parsers and their grammar classes are more powerful

Comparison: top-down vs. bottom-up

Information a stack automaton has when it decides to apply production $A::=x$:

bottom-up
rightmost derivation backwards

Derivation tree: top-down vs. bottom-up construction

```
p0: P ::= D
P1: D ::= FF
P2: D ::= FB
P3: FF ::= 'fun' FI '(' Ps ')' 'fwd'
P4: FB ::= 'fun' FI '(' Ps ')' B
P5: Ps::= Ps PI
P6: Ps ::=
p7: B ::= '{' '}'
p8: FI ::= Id
p9: PI ::= Id
```


3.4 LR parsing

LR(k) grammars introduced 1965 by Donald Knuth; non-practical until subclasses were defined. LR parsers construct the derivation tree bottom-up, a right-derivation backwards.
LR(k) grammar condition can not be checked directly, but
a context-free grammar is $\operatorname{LR}(\mathrm{k})$, iff the (canonical) $\mathbf{L R (k)}$ automaton is deterministic.
We consider only 1 token lookahead: LR(1).

Comparison of LL and LR states:
The stacks of $L R(k)$ and $L L(k)$ automata contain states
The construction of LR and LL states is based on the notion of items (see next slide).
Each state of an automaton represents LL: one item LR: a set of items An LL item corresponds to a position in a case branch of a recursive function.

LR(1) items

An item represents the progress of analysis with respect to one production:
[A ::= u . v
R]
e. g. [B ::= (D ; S)
[\#\}]
. marks the position of analysis:accepted and reduced . to be accepted
\mathbf{R} expected right context:
a set of terminals which may follow in the input
when the complete production is accepted.
(general $k>1$: R contains sequences of terminals not longer than k)
Items can distinguish different right contexts: [A ::=u.v R] and [A ::= u .v R']
Reduce item:
[A ::= uv. R]
e. g. [B::=(D;S): \{\#\}]
characterizes a reduction using this production if the next input token is in R.
The automaton uses R only for the decision on reductions!
A state of an LR automaton represents a set of items

LR(1) states and operations

A state of an LR automaton represents a set of items

Each item represents a way in which analysis may proceed from that state.

A shift transition is made under
a token read from input or
a non-terminal symbo
obtained from a preceding reduction.
The state is pushed
A reduction is made according to a reduce item. n states are popped for a production of length n .

Operations:

shift	read and push the next state on the stack
reduce	reduce with a certain production, pop n states from the stack
error	error recognized, report it, recover
stop	input accepted

reduce reduce with a certain production, pop n states from the stack stop input accepted

Construction of LR(1) automata

Algorithm: 1. Create the start state
2. For each created state compute the transitive closure of its items.
3. Create transitions and successor states as long as new ones can be created.

Transitive closure is to be applied to each state q :

Consider all items in q with the analysis position before a non-terminal B
$\left[A_{1}::=u_{1} \cdot B \quad v_{1} R_{1}\right] \ldots\left[A_{\mathbf{n}}::=\mathbf{u}_{\mathbf{n}} \cdot B \quad \mathbf{v}_{\mathrm{n}} \mathbf{R}_{\mathrm{n}}\right.$], then for each production $\mathbf{B}::=\mathbf{w}$
[$B::=. w$ First $\left(v_{1} R_{1}\right) \cup \ldots \cup$ First $\left(v_{n} R_{n}\right)$]
has to be added to state q.

Start state

Closure of [S ::= . u \{\#\}]
$S::=u$ is the unique start production,
\# is an (artificial) end symbol (eof)

Successor states:

For each symbol \mathbf{x} (terminal or non-terminal),
which occurs in some items after the analysis position a transition is created to a successor state. 4
That contains corresponding items
with the analysis position
advanced behind the x occurrence
before? $\mathrm{B}::=(. \mathrm{D} ; \mathrm{S})\{\#\}$
after: 2 B ::=(.D; S) \{\#\} D : : = . D; a $\{;\}$ D : : = . a

$$
1 \longdiv { B : : = . (D ; S) \{ \# \} }
$$

Grammar:
p1 $B::=(D ; S)$
p2 D::=D; a
p3 D::=a
p4 $\quad \mathrm{S}::=\mathrm{b}$; S
p5 $\quad \mathrm{S}::=\mathrm{b}$

In state 7 a decision is required on next input

- if ; then shift
- if) then reduce $p 5$

In states 3, 6, 9, 11 a decision is not
required:

- reduce on any input

Example for a LR(1) automaton

Operations of LR(1) automata

shift \mathbf{x} (terminal or non-terminal):

 from current state qunder x into the successor state $\mathbf{q}^{\text {' }}$, push q'

reduce p:

apply production p B ::=u,
pop as many states,
as there are symbols in \mathbf{u}, from the
new current state make a shift with B

rror:

the current state has no transition under the next input token, issue a message and recover

stop:

reduce start production,
see \# in the input

Left recursion versus right recursion

left recursive productions
p2: D ::= D ; a
p3: D::=a

reduction immediately after each ; a is accepted
right recursive productions:
p4: $S::=b ; S$
p5: $S::=b$

the states for all ;beare pushed before the first reduction

Shift-reduce conflict for „dangling else" ambiguity

LR conflicts

An $\mathbf{L R}(1)$ automaton that has conflicts is not deterministic.

Its grammar is not LR(1);
correspondingly defined for any other LR class.

2 kinds of conflicts

reduce-reduce conflict:
A state contains two reduce items, the
right context sets of which are not disjoint:

屰 ::= u .	R1	R1, R2
$\mathrm{B}::=\mathrm{v}$.	R2	not not \cdots
		disjoint

shift-reduce conflict:
A state contains
a shift item with the analysis position in front of a t and a reduce item with t in its right context set
$\mathbf{t} \in \mathbf{R} \mathbf{2}$

Shift-reduce conflict for ,,dangling else" ambiguity ${ }^{\text {PLaC-3.18 }}$				
1	```S ::= . Stmt Stmt ::= . if ... then Stmt Stmt ::= . if ... then Stmt else Stmt Stmt ::= . a```	$\begin{aligned} & \{\#\} \\ & \{\#\} \\ & \{\#\} \\ & \{\#\} \end{aligned}$	Stmt a	
	而 \quad if \quad then Stmt $::=$ if \ldots then . Stmt Stmt $::=$ if \ldots then . Stmt else Stmt Stmt $::=$. if \ldots then Stmt Stmt $::=$. if ... then Stmt else Stmt Stmt $::=$. a	\{\#\} \{\#\} \{\# else\} \{\# else\} \{\# else\}	Stmt a	
5	Stmt $::=$ if \ldots then. Stmt Stmt $::=$ if \ldots then. Stmt else Stmt Stmt $::=$. if \ldots then Stmt Stmt $::=$. if \ldots then Stmt else Stmt Stmt $::=$. a	\{\# else\} \{\# else\} \{\# else\} \{\# else\} \{\# else\}	$\xrightarrow{\text { if }}$ a	
6	StmtStmt $::=$ if... then Stmt. Stmt $::=$ if... then Stmt . else Stmt		else shift-reduce conflict	

Simplified LR grammar classes	
LR(1): too many states for practical use, because righ Strategy: simplify right-contexts sets; fewer	ht-contexts distinguish many states. ates; grammar classes less powerful
LALR(1): construct $\mathrm{LR}(1)$ automaton, identify $\mathbf{L R}(1)$ states if their items differ only in their right-context sets, unite the sets for those items; yields the states of the $\mathbf{L R}(\mathbf{0})$ automaton augmented by the "exact" $\operatorname{LR}(1)$ right-context. State-of-the-art parser generators accept LALR(1)	q, r identified: qr $\begin{array}{ll} \mathrm{A}::=\mathrm{u} \cdot \mathrm{v} & \text { R1 } \cup R 1 ’ \\ \mathrm{~B}::=\mathrm{x} \cdot \mathrm{y} & \text { R2 } \cup R 2^{\prime} \\ \mathrm{C}::=\mathrm{z} . & \text { R3 } \cup R 3 \end{array}$
SLR(1): $\mathbf{L R (0)}$ states; in reduce items use larger right-context sets for decision: [A ::= u . Follow (A)]	$\mathbf{A}::=\mathbf{u} \cdot \mathbf{v}$ B $::=\mathbf{x} \cdot \mathbf{y} \quad$ Follow(C) $\mathbf{C}::=\mathbf{z} . \quad$ Foll

LR(0):
all items without right-context
Consequence: reduce items only in singleton sets
C : : = z .

Hierarchy of grammar classes

LR(1) but not LALR(1)

Identification of LR(1) states causes non-disjoint right-context sets.
Artificial example:

Grammar:
Z : : = S
$S::=A$ a
$S::=B c$
$S::=b$ A c
$S::=b$ B a
A $::=d$.
$B::=d$.
$L R(1)$ states

Avoid the distinction between A and B - at least in one of the contexts.

Table driven implementation of LR automata

LR parser tables

nonterminal table

- has no reduce entries and no error entries (only shift and don't-care entries)
reason:
a reduction to A reaches a state from where
a shift under A exists (by construction)
unreachable entries in terminal table:
if t is erroneus input in state r, then state s will not be reached with input t

Implementation of LR automata

$L R(0)$ reduce state

Compress tables:

- merge rows or columns that differ only in irrelevant entries; method: graph coloring
- extract a separate error matrix (bit matrix); increases the chances for merging
- normalize the values of rows or columns; yields smaller domain; supports merging
- eliminate $\mathbf{L R}(0)$ reduce states; new operation in predecessor state: shift-reduce eliminates about 30% of the states in practical cases

About $\mathbf{1 0 - 2 0 \%}$ of the original table sizes can be achieved!

Directly programmed LR-automata are possible - but usually too large.

Parser generators

PGS	Univ. Karlsruhe; in Eli	LALR(1), table-driven
Cola	Univ. Paderborn; in Eli	LALR(1), optional: table-driven or directly programmed
Lalr	Univ. / GMD Karlsruhe	LALR(1), table-driven
Yacc	Unix tool	LALR(1), table-driven
Bison	Gnu	LALR(1), table-driven
Llgen	Amsterdam Compiler Kit LL(1), recursive descent	
Deer	Univ. Colorado, Bouder	LL(1), recursive descent
Form of grammar specification:		

Form of grammar specification:
EBNF: Cola, PGS, Lalr; BNF: Yacc, Bison

Error recovery.

simulated continuation, automatically generated: Cola, PGS, Lalr rror productions, hand-specified:

Yacc, Bison
Actions:
statements in the implementation language
at the end of productions.
anywhere in productions:
acc, Bison
Conflict resolution:
modification of states (reduce if ...) Cola, PGS, Lalr order of productions: rules for precedence and associativity:

Yacc, Bison
Yacc, Bison
Implementation languages:
C: Cola, Yacc, Bison
C, Pascal, Modula-2, Ada: PGS, Lal

3.5 Syntax Error Handling General criteria

- recognize error as early as possible

LL and LR can do that:
no transitions after error position

- report the symptom in terms of the source text rather than in terms of the state of the parser
- continue parsing short after the error position analyze as much as possible
- avoid avalanche errors
- build a tree that has a correct structure later phases must not break
- do not backtrack, do not undo actions not possible for semantic actions
- no runtime penalty for correct programs

Error position

Error recovery: Means that are taken by the parser after recognition of a syntactic error in order to continue parsing
Correct prefix: The token sequence $w \in T^{*}$ is a correct prefix in the language $L(G)$, if there is an $u \in T^{*}$ such that $\mathbf{w} \mathbf{u} \in \mathbf{L (G)}$; i. e. w can be extended to a sentence in $L(G)$.
Error position: t is the (first) error position in the input $\mathbf{w} \mathbf{t x}$, where $t \in T$ and $w, x \in T^{*}$, if \mathbf{w} is a correct prefix in $L(G)$ and $\mathbf{w} \mathbf{t}$ is not a correct prefix.

LL and LR parsers recognize an error at the error position;
they can not accept t in the current state.

Error recovery

Continuation point:

A token d at or behind the error position t such that
parsing of the input continues at d.

Error repair

with respect to a consistent derivation

- regardless the intension of the programmer

Let the input be $w t x$ with the
error position at t and let $w t x=w y d z$,
then the recovery (conceptually) deletes y and inserts \mathbf{v} such that $\mathbf{w} \mathbf{v} \mathbf{d}$ is a correct prefix in $L(G)$, with $d \in T$ and $w, y, v, z \in T^{*}$.

Examples:

w y d z	w yd z
$\mathrm{a}=\mathrm{i}$ * / c;	$\mathrm{a}=\mathrm{i}$ * / c;
$\mathrm{a}=\mathrm{i}$ * c ;	$\mathrm{a}=\mathrm{i}$ *e/ c ;
delete /	insert error identifier e

error position

a = i * / c; ...
= i * e ;...
delete / c and insert error id. e

Problem: Determine a continuation point close to the error position and reach it.
Idea: Use parse stack to determine a set D of tokens as potential continuation points.

Steps of the method:

1. Save the contents of the parse stack when an error is recognized.
2. Compute a set $\mathbf{D} \subseteq \mathbf{T}$ of tokens that may be used as continuation point (anchor set) Let a modified parser run to completion:
Instead of reading a token from input it is inserted into D; (modification given below)
3. Find a continuation point d: Skip input tokens until a token of D is found.
4. Reach the continuation point d:

Restore the saved parser stack as the current stack. Perform dedicated transitions until d is acceptable. Instead of reading tokens (conceptually) insert tokens. Thus a correct prefix is constructed.

5. Continue normal parsing

Augment parser construction for steps 2 and 4:

For each parser state select a transition and its token,
such that the parser empties its stack and terminates as fast as possible.
This selection can be generated automatically.
The quality of the recovery can be improved by deletion/insertion of elements in D .

