
©
 2

00
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
3. Context-free Grammars and Syntactic Analysis

PLaC-3.1

Input: token sequence

Tasks:
Parsing : construct a derivation according to the concrete syntax ,
Tree construction: build a structure tree according to the abstract syntax ,
Error handling: detection of an error, message, recovery

Result: abstract program tree

Abstract program tree (condensed derivation tree):
represented by a

• data structure in memory for the translation phase to operate on,

• linear sequence of nodes on a file (costly in runtime),

• sequence of calls of functions of the translation phase.

Compiler module parser:
deterministic stack automaton, augmented by actions for tree construction
top-down parsers: leftmost derivation; tree construction top-down or bottom-up
bottom-up parsers: rightmost derivation backwards; tree construction bottom-up

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Generating the structuring phase from specifications (Eli)
PLaC-3.1a

compiler designer generators compiler
specifications

non-lit. tokens
(.gla)

concrete syntax
(.con)

mapping
(.map)

abstract syntax
(.lido)

Eli

scanner
generator
(GLA)

parser
generator
(PGS)

attribute
evaluator
generator
(Liga)

abstr. progr. tree

lex. ana

Scanner
ident.

literals

token sequence

parser

tree construction

sem. ana.

synt. ana

Map

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

3.1 Concrete and abstract syntax

concrete syntax abstract syntax

- context-free grammar - context-free grammar
- defines the structure of source programs - defines abstract program trees
- is unambiguous - is usually ambiguous
- specifies derivation and parser - translation phase is based on it
- parser actions specify the tree construction --->- tree construction

- some chain productions have only syntactic purpose
Expr ::= Fact have no action no node created

- symbols are mapped {Expr,Fact} -> to one abstract symbol Exp

- same action at structural equivalent productions: - creates tree nodes
Expr ::= Expr AddOpr Fact &BinEx
Fact ::= Fact MulOpr Opd &BinEx

- semantically relevant chain productions, e.g. - are kept (tree node is created)
ParameterDecl ::= Declaration

- terminal symbols - only semantically relevant ones are kept
identifiers, literals, identifiers, literals
keywords, special symbols

- concrete syntax and symbol mapping specify - abstract syntax (can be generated)

PLaC-3.2

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Example: concrete expression grammar

Expr

Fact

Opd

a

Fact MulOpr

*Opd ()Expr

Expr Fact

Opd

b

AddOpr

+Fact

Opd c

p2

p3

p4

p6

p9 p5

p1

p2

p4

p6

p7 p4

p6

derivation tree for a * (b + c)

name production action

p1: Expr ::= Expr AddOpr Fact BinEx
p2: Expr ::= Fact
p3: Fact ::= Fact MulOpr Opd BinEx
p4: Fact ::= Opd
p5: Opd ::= '(' Expr ')'
p6: Opd ::= Ident IdEx
p7: AddOpr ::= '+' PlusOpr
p8: AddOpr ::= '-' MinusOpr
p9: MulOpr ::= '*' TimesOpr
p10: MulOpr ::= '/' DivOpr

+, - lower precedence
*, / higher precedence

PLaC-3.3

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Patterns for expression grammars

PLaC-3.3a

Expression grammars are systematically constructed,
such that structural properties of expressions are defined:

one level of precedence , binary
operator,left-associative:

A ::= A Opr B
A ::= B

one level of precedence ,
unary Operator , prefix:

A ::= Opr A
A ::= B

one level of precedence ,
unary Operator , postfix:

A ::= A Opr
A ::= B

Elementary operands : only derived
from the nonterminal of the highest
precedence level (be H here):

H ::= Ident

Expressions in parentheses: only
derived from the nonterminal of the
highest precedence level (assumed to be
H here); contain the nonterminal of the
lowest precedence level (be A here):

H ::= '(' A ')'

one level of precedence , binary
operator,right-associative:

A ::= B Opr A
A ::= B

©
 2

00
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Example: abstract expression grammar

name production

BinEx: Exp ::= Exp BinOpr Exp
IdEx: Exp ::= Ident
PlusOpr: BinOpr ::= '+'
MinusOpr: BinOpr ::= '-'
TimesOpr: BinOpr ::= '*'
DivOpr: BinOpr ::= '/'

symbol classes: Exp = { Expr, Fact, Opd }
BinOpr = { AddOpr, MulOpr }

Actions of the concrete syntax: productions of the abstract syntax to create tree nodes for
no action at a concrete chain production: no tree node is created

PLaC-3.4

Exp

a

Exp BinOpr

*

Exp

Exp Exp

b

BinOpr

+ c

BinEx

IdEx TimesOpr BinEx

IdEx PlusOpr IdEx

abstract program tree for a * (b + c)

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

3.2 Design of concrete grammars
PLaC-3.4a

Objectives

The concrete grammar for parsing

• is parsable: fulfills the grammar condition of the chosen
parser generator;

• specifies the intended language - or a small super set of it;

• is provably related to the documented grammar ;

• can be mapped to a suitable abstract grammar .
©

 2
00

8
be

i P
ro

f.
D

r.
 U

w
e

K
as

te
ns

A strategy for grammar development
PLaC-3.4aa

1. Examples : Write at least one example for every intended language construct. Keep the
examples for checking the grammar and the parser.

2. Sub-grammars : Decompose a non-trivial task into topics covered by sub-gammars, e.g.
statements, declarations, expressions, over-all structure.

3. Top-down : Begin with the start symbol of the (sub-)grammar, and refine each nonterminal
according to steps 4 - 7 until all nonterminals of the (sub-)grammar are refined.

4. Alternatives : Check whether the language construct represented by the current
nonterminal, say Statement, shall occur in structurally different alternatives, e.g. while-
statement, if-statement, assignment. Either introduce chain productions, like
Statement ::= WhileStatement | IfStatement | Assignment.
or apply steps 5 - 7 for each alternative separately.

5. Consists of : For each (alternative of a) nonterminal representing a language construct
explain its immediate structure in words, e.g. „A Block is a declaration sequence followed
by a statement sequence, both enclosed in curly braces.“ Refine only one structural level.
Translate the description into a production. If a sub-structure is not yet specified introduce
a new nonterminal with a speaking name for it, e.g.
Block ::= ’{’ DeclarationSeq StatementSeq ’}’.

6. Natural structure : Make sure that step 5 yields a „natural“ structure, which supports
notions used for static or dynamic semantics, e.g. a range for valid bindings.

7. Useful patterns : In step 5 apply patterns for description of sequences, expressions, etc.

©
 2

00
7

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Grammar design for an existing language

PLaC-3.4b

• Take the grammar of the language specification literally .

• Only conservative modifications for parsability or for mapping to abstract syntax.

• Describe all modifications .
(see ANSI C Specification in the Eli system description
http://www.uni-paderborn.de/fachbereich/AG/agkastens/eli/examples/eli_cE.html)

• Java language specification (1996):
Specification grammar is not LALR(1).
5 problems are described and how to solve them.

• Ada language specification (1983):
Specification grammar is LALR(1)
- requirement of the language competition

• ANSI C, C++:
several ambiguities and LALR(1) conflicts, e.g.
„dangling else “,
„typedef problem “:

A (*B);
is a declaration of variable B, if A is a type name,
otherwise it is a call of function A

©
 2

00
7

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Grammar design together with language design
PLaC-3.4c

Read grammars before writing a new grammar.

Apply grammar patterns systematically (cf. GPS-2.5, GPS-2.8)

• repetitions

• optional constructs

• precedence, associativity of operators

Syntactic structure should reflect semantic structure :

E. g. a range in the sense of scope rules should be represented by a single
subtree of the derivation tree (of the abstract tree).

Violated in Pascal:

functionDeclaration ::= functionHeading block
functionHeading ::= ‘function‘ identifier formalParameters ‘:‘ resultType ‘;‘

formalParameters together with block form a range,
but identifier does not belong to it

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Syntactic restrictions versus semantic conditions
PLaC-3.4d

Express a restriction syntactically only if
it can be completely covered with reasonable complexity :

• Restriction can not be decided syntactically :
e.g. type check in expressions:

BoolExpression ::= IntExpression ‘<‘ IntExpression

• Restriction can not always be decided syntactically :
e. g. disallow array type to be used as function result

Type ::= ArrayType | NonArrayType | Identifier
ResultType ::= NonArrayType

If a type identifier may specify an array type,
a semantic condition is needed, anyhow

• Syntactic restriction is unreasonably complex :
e. g. distinction of compile-time expressions from ordinary
expressions requires duplication of the expression syntax.

©
 2

00
7

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Eliminate ambiguities
PLaC-3.4e

unite syntactic constructs - distinguish them semantically

Examples:

• Java: ClassOrInterfaceType ::= ClassType | InterfaceType
InterfaceType ::= TypeName
ClassType ::= TypeName

replace first production by
ClassOrInterfaceType ::= TypeName
semantic analysis distinguishes between class type and interface type

• Pascal: factor ::= variable | ... | functionDesignator
variable ::= entireVariable | ...
entireVariable ::= variableIdentifier
variableIdentifier ::= identifier (**)
functionDesignator ::= functionIdentifier (*)

| functionIdentifer ’(’ actualParameters ’)’
functionIdentifier ::= identifier

eliminate marked (*) alternative
semantic analysis checks whether (**) is a function identifier

©
 2

00
7

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Unbounded lookahead

PLaC-3.4f

The decision for a reduction is determined by a distinguishing token that may
be arbitrarily far to the right :

Example , forward declarations as could have been defined in Pascal:

functionDeclaration ::=
‘function‘ forwardIdent formalParameters ‘:‘ resultType ‘;‘ ‘forward‘

| ‘function‘ functionIdent formalParameters ‘:‘ resultType ‘;‘ block

The distinction between forwardIdent and functionIdent would require to see
the forward or the begin token.

Replace forwardIdent and functionIdent by the same nonterminal;
distinguish semantically.

©
 2

00
7

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

3.3 Recursive descent parser
PLaC-3.5

case decision set for p1 :
Variable();
accept(assignSym);
Expr();
break;

case decision set for p2 :
accept(whileSym);
Expr() ;
accept(doSym);
Stmt() ;
break;

void Stmt ()
{ switch (CurrSymbol)

{

default: Fehlerbehandlung();
} }

top-down (construction of the derivation tree), predictive method

Systematic transformation of a context-free grammar into a set of functions:

non-terminal symbol X function X
alternative productions for X branches in the function body
decision set of production pi decision for branch pi
non-terminal occurrence X ::= ... Y ... function call Y()
terminal occurrence X ::= ... t ... accept a token t and read the next token

Productions for Stmt :

p1: Stmt ::=
Variable ':=' Expr

p2: Stmt ::=
'while' Expr 'do' Stmt

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Grammar conditions for recursive descent

Definition: A context-free grammar is strong LL(1) , if for any pair of productions that have the
same symbol on their left-hand sides , A ::= u and A ::= v, the decision sets are disjoint :

DecisionSet (A ::= u) ∩ DecisionSet (A ::= v) = ∅
with

DecisionSet (A ::= u) := if nullable (u) then First (u) ∪ Follow (A) else First (u)

nullable (u) holds iff a derivation u ⇒* ε exists

First (u) := { t ∈ T | v ∈V* exists and a derivation u ⇒* t v }

Follow (A) := { t ∈ T | u,v ∈V* exist, A ∈N and a derivation S ⇒* u A t v }

PLaC-3.6

p1: Prog ::= Block # begin
p2: Block ::= begin Decls Stmts end begin
p3: Decls ::= Decl ; Decls new
p4: Decls ::= Ident begin
p5: Decl ::= new Ident new
p6: Stmts ::= Stmts ; Stmt begin Ident
p7: Stmts ::= Stmt begin Ident
p8: Stmt ::= Block begin
p9: Stmt ::= Ident := Ident Ident

Prog begin
Block begin # ; end
Decls new Ident begin
Decl new ;
Stmts begin Ident ; end
Stmt begin Ident ; end

Example:
production DecisionSet

non-terminal
First (X) Follow (X)X

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Computation rules for nullable, First, and Follow
PLaC-3.6a

Definitions:

nullable(u) holds iff a derivation u ⇒* ε exists

First(u) := { t ∈ T | v ∈V* exists and a derivation u ⇒* t v }

Follow(A) := { t ∈ T | u,v ∈V* exist, A ∈N and a derivation S ⇒* u A v such that t ∈ First(v) }

with G = (T, N, P, S); V = T ∪ N; t ∈ T; A ∈ N; u,v ∈V*

Computation rules:

nullable(ε) = true; nullable(t) = false; nullable(uv) = nullable(u) ∧ nullable(v);
nullable(A) = true iff ∃ A::=u ∈ P ∧ nullable(u)

First(ε) = ∅; First(t) = {t};
First(uv) = if nullable(u) then First(u) ∪ First(v) else First(u)
First(A) = First(u1) ∪...∪ First(un) for all A::=ui ∈ P

Follow(A):
if A=S then # ∈ Follow(A)
if Y::=uAv ∈ P then First(v) ⊆ Follow(A) and if nullable(v) then Follow(Y) ⊆ Follow(A)

©
 2

01
3

be
i P

ro
f.

 D
r.

 U
w

e
K

as
te

ns
Grammar transformations for LL(1)

PLaC-3.7

Consequences of strong LL(1) condition:
A strong LL(1) grammar can not have

• alternative productions that begin
with the same symbols:

• productions that are directly or
indirectly left-recursive:

u, v, w ∈ V*
X ∈ N does not occur in the

original grammar

Simple grammar transformations that
keep the defined language invariant:

left-factorization:

non-LL(1) productions transformed

A ::= v u A ::= v X
A ::= v w X ::= u

X ::= w

elimination of direct recursion:

A ::= A u A ::= v X
A ::= v X ::= u X

X ::=
special case empty v:

A ::= A u A ::= u A
A ::= A ::=

©
 2

01
1

be
i P

ro
f.

 D
r.

 U
w

e
K

as
te

ns

LL(1) extension for EBNF constructs
PLaC-3.7a

EBNF constructs can avoid violation of strong LL(1) condition:

EBNF construct:

Production:

additional
LL(1)-condition:

in recursive
descent parser:

Option [u] Repetition (u)*

A ::= v [u] w A ::= v (u)* w

if nullable(w)
then First(u) ∩ (First(w) ∪ Follow(A)) = ∅
else First(u) ∩ First(w) = ∅

v v
if (CurrToken in First(u)) { u } while (CurrToken in First(u)) { u }
w w

Repetition (u)+ left as exercise

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Comparison: top-down vs. bottom-up

Information a stack automaton has when it decides to apply production A ::= x :

top-down, predictive bottom-up
leftmost derivation rightmost derivation backwards

A bottom-up parser has seen more of the input when it decides to apply a production.

Consequence: bottom-up parsers and their grammar classes are more powerful .

PLaC-3.8

A

x
u v

contents of
the stack

input

k
lookahead

accepted

A

x
u

input
k

lookahead
accepted

direction of
tree construction

©
 2

00
7

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Leftmost and rightmost derivations
PLaC-3.9

S

u A v

=>*

=>*

=>

=>

tt A v

tt x v

tt ss v

=>*

=>*

=>

tt ss ee

u ss ee

u x ee

u A ee

leftmost rightmost

forw
ard

produce

ba
ck

w
ar

d
re

du
ce

S

=>*

u, v, x ∈ V*

tt, ss, ee ∈ T*

A ∈ N

©
 2

00
8

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Derivation tree: top-down vs. bottom-up construction

PLaC-3.9a

p0: P ::= D
P1: D ::= FF
P2: D ::= FB
P3: FF ::= ’fun’ FI ’(’ Ps ’)’ ’fwd’
P4: FB ::= ’fun’ FI ’(’ Ps ’)’ B
P5: Ps ::= Ps PI
P6: Ps ::=
p7: B ::= ’{’ ’}’
p8: FI ::= Id
p9: PI ::= Id

P
D
FF
fun FI (Ps) fwd

Id
Ps PI
Ps PI

Id
Id

fun Id (Id Id) fwd

p0
p1
p3
p8
p5
p5
p6
p9
p9

P
D
FF

Ps) fwd
PI

Ps Id
PI

Ps Id
FI (

fun id

fun Id (Id Id) fwd

p0
p1
p3
p5
p9
p5
p9
p6
p8

©
 2

00
8

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

LR(0) -Automaton
PLaC-3.9b

1

red.p9
12

red.p7
15

red.p4
16

14

red.p5
13

red.p8
11

red.p2
10

red.p1
9

red.p0
8

red.p3
7

6

5

red.p6
4

3

2

fun

FI

(

)

Ps Id

Id

PI

fwd

B

{ }

D

FF

FB

fun Id(Id Id)fwd
Id(Id Id)fwd

(Id Id)fwd
(Id Id)fwd

Id Id)fwd
Id Id)fwd

Id)fwd
Id)fwd
Id)fwd

)fwd
)fwd
)fwd

fwd
#
#
#

1
1 2
1 2 11
1 2 3
1 2 3 4
1 2 3 4 5
1 2 3 4 5 12
1 2 3 4 5 13
1 2 3 4 5
1 2 3 4 5 12
1 2 3 4 5 13
1 2 3 4 5
1 2 3 4 5 6
1 2 3 4 5 6 7
1 9
1 8

p8

p6

p9
p5

p9
p5

p3
p1
p0

reduction stack input

©
 2

00
7

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

3.4 LR parsing

LR(k) grammars introduced 1965 by Donald Knuth; non-practical until subclasses were defined.

LR parsers construct the derivation tree bottom-up, a right-derivation backwards.

LR(k) grammar condition can not be checked directly, but
a context-free grammar is LR(k), iff the (canonical) LR(k) automaton is deterministic .

We consider only 1 token lookahead: LR(1).

Comparison of LL and LR states:

The stacks of LR(k) and LL(k) automata contain states .

The construction of LR and LL states is based on the notion of items (see next slide).

Each state of an automaton represents LL: one item LR: a set of items
An LL item corresponds to a position in a case branch of a recursive function.

PLaC-3.10

©
 2

00
7

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

LR(1) items

An item represents the progress of analysis with respect to one production:

[A ::= u . v R] e. g. [B ::= (. D ; S) {#}]

. marks the position of analysis:accepted and reduced . to be accepted

R expected right context:
a set of terminals which may follow in the input
when the complete production is accepted.
(general k>1: R contains sequences of terminals not longer than k)

Items can distinguish different right contexts: [A ::= u . v R] and [A ::= u . v R’]

Reduce item:

[A ::= u v . R] e. g. [B ::= (D ; S) . {#}]

characterizes a reduction using this production if the next input token is in R.

The automaton uses R only for the decision on reductions!

A state of an LR automaton represents a set of items

PLaC-3.11

©
 2

00
7

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
LR(1) states and operations

A state of an LR automaton represents a set of items
Each item represents a way in which analysis may
proceed from that state.

A shift transition is made under
a token read from input or
a non-terminal symbol

obtained from a preceding reduction.
The state is pushed.

A reduction is made according to a reduce item.
n states are popped for a production of length n.

Operations: shift read and push the next state on the stack
reduce reduce with a certain production, pop n states from the stack
error error recognized, report it, recover
stop input accepted

PLaC-3.12

B ::= (. D ; S) {#}

D ::= . D ; a {;}

D ::= . a { ;}

2

B ::= (D . ; S) {#}
D ::= D . ; a {;}

D
4

D ::= a . {;}

a

red. p33

©
 2

00
7

be
i P

ro
f.

 D
r.

 U
w

e
K

as
te

ns

Example for a LR(1) automaton
PLaC-3.13

B ::= . (D ; S) {#}

B ::= (. D ; S) {#}
D ::= . D ; a {;}
D ::= . a {;}

B ::= (D . ; S) {#}
D ::= D . ; a {;}

B ::= (D ; . S) {#}
D ::= D ; . a {;}
S ::= . b ; S {)}
S ::= . b {)}

B ::= (D ; S .) {#}

B ::= (D ; S) . {#}

D ::= a . {;}

D ::= D ; a . {;}

S ::= b . ; S {)}
S ::= b . {)}

S ::= b ; . S {)}
S ::= . b ; S {)}
S ::= . b {)}

S ::= b ; S . {)}

(

D

;

S

)

a

a

b

b

;

S

1

2
3

4

5

6

7

8

9

10

11

red. p1, stop

red. p3

red. p2

red. p5

red. p4

Grammar:
p1 B ::= (D ; S)
p2 D ::= D ; a
p3 D ::= a
p4 S ::= b ; S
p5 S ::= b

In state 7 a decision is
required on next input:

• if ; then shift

• if) then reduce p5

In states 3, 6, 9, 11 a
decision is not
required:

• reduce on any input

©
 2

01
0

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Construction of LR(1) automata
Algorithm :1. Create the start state.

2. For each created state compute the transitive closure of its items.
3. Create transitions and successor states as long as new ones can be created.

Start state :
Closure of [S ::= . u {#}]
S ::= u is the unique start production ,
is an (artificial) end symbol (eof)

Transitive closure is to be applied to each state q:
Consider all items in q with the analysis position
before a non-terminal B:
[A1 ::= u 1 . B v1 R1] ... [A n ::= u n . B vn Rn],
then for each production B ::= w
[B ::= . w First (v 1 R1)∪...∪First (v n Rn)]
has to be added to state q.

Successor states :
For each symbol x (terminal or non-terminal),
which occurs in some items after the analysis position ,
a transition is created to a successor state .
That contains corresponding items
with the analysis position
advanced behind the x occurrence.

B ::= . (D ; S) {#}1

B ::= (. D ; S) {#}

B ::= (. D ; S) {#}
D ::= . D ; a {;}∪{;}
D ::= . a {;}∪{;}

2

before:

after:

2

PLaC-3.14

B ::= (. D ; S) {#}
D ::= . D ; a {;}
D ::= . a {;}

B ::= (D . ; S) {#}
D ::= D . ; a {;} D ::= a . {;}

D a

2

3
4

©
 2

01
0

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Operations of LR(1) automata
PLaC-3.15

Example:

stack input reduction

1 (a ; a ; b ; b) #
1 2 a ; a ; b ; b) #
1 2 3 ; a ; b ; b) # p3
1 2 ; a ; b ; b) #
1 2 4 ; a ; b ; b) #
1 2 4 5 a ; b ; b) #
1 2 4 5 6 ; b ; b) # p2
1 2 ; b ; b) #
1 2 4 ; b ; b) #
1 2 4 5 b ; b) #
1 2 4 5 7 ; b) #
1 2 4 5 7 8 b) #
1 2 4 5 7 8 7) # p5
1 2 4 5 7 8) #
1 2 4 5 7 8 9) # p4
1 2 4 5) #
1 2 4 5 10) #
1 2 3 5 10 11 # p1
1 #

shift x (terminal or non-terminal):
from current state q
under x into the successor state q‘ ,
push q‘

reduce p:
apply production p B ::= u ,
pop as many states ,
as there are symbols in u , from the
new current state make a shift with B

error:
the current state has no transition
under the next input token,
issue a message and recover

stop:
reduce start production,
see # in the input

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Left recursion versus right recursion

PLaC-3.16

left recursive productions:

p2: D ::= D ; a
p3: D ::= a

right recursive productions:

p4: S ::= b ; S
p5: S ::= b

2 3

5
6

a

D

;

a

4

red. p2

red. p3

reduction immediately after
each ; a is accepted

5 7

8

9

b

b
;

S

red. p4

red. p5
if next is)

the states for all ; b are
pushed before the first reduction

©
 2

01
0

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

LR conflicts

An LR(1) automaton that has conflicts is not deterministic .
Its grammar is not LR(1) ;
correspondingly defined for any other LR class.

2 kinds of conflicts:

reduce-reduce conflict:
A state contains two reduce items, the
right context sets of which are not disjoint :

shift-reduce conflict :
 A state contains
a shift item with the analysis position in front of a t and
a reduce item with t in its right context set .

PLaC-3.17

...
A ::= u . R1
B ::= v . R2
...

R1, R2
not
disjoint

...
A ::= u .t v R1
B ::= w . R2
...

t ∈ R2

©
 2

01
0

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Shift-reduce conflict for „dangling else“ ambiguity
PLaC-3.18

S ::= . Stmt {#}
Stmt ::= . if ... then Stmt {#}
Stmt ::= . if ... then Stmt else Stmt {#}
Stmt ::= . a {#}

Stmt ::= if ... then . Stmt {#}
Stmt ::= if ... then . Stmt else Stmt {#}
Stmt ::= . if ... then Stmt {# else}
Stmt ::= . if ... then Stmt else Stmt {# else}
Stmt ::= . a {# else}

Stmt ::= if ... then Stmt . {# else}
Stmt ::= if ... then Stmt . else Stmt {# else}

Stmt ::= if ... then . Stmt {# else}
Stmt ::= if ... then . Stmt else Stmt {# else}
Stmt ::= . if ... then Stmt {# else}
Stmt ::= . if ... then Stmt else Stmt {# else}
Stmt ::= . a {# else}

if
then...

if
then...

Stmt

1

3

5

6

Stmt

a

Stmt

a

if

a

else

shift-reduce conflict

©
 2

01
0

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Decision of ambiguity
PLaC-3.19

Stmt

if Cond then Stmt

if Cond then Stmt else Stmt

Stmt

if Cond then Stmt

if Cond then Stmt else Stmt

dangling else ambiguity:

desired solution for Pascal, C, C++, Java

Stmt ::= if ... then Stmt . {# else}
Stmt ::= if ... then Stmt . else Stmt {# else}

6 else

shift-reduce conflict

Stmt

State 6 of the automaton can be modified such that
an input token else is shifted (instead of causing a reduction);

yields the desired behaviour.

Some parser generators allow such modifications.

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Simplified LR grammar classes

PLaC-3.20

LR(1):
too many states for practical use, because right-contexts distinguish many states.
Strategy: simplify right-contexts sets; fewer states ; grammar classes less powerful

LALR(1):
construct LR(1) automaton,
identify LR(1) states if their items
differ only in their right-context sets,
unite the sets for those items;

yields the states of the LR(0) automaton
augmented by the "exact“ LR(1) right-context.

State-of-the-art parser generators
accept LALR(1)

LR(0):
all items without right-context
Consequence: reduce items only in singleton sets

SLR(1):
LR(0) states ; in reduce items
use larger right-context sets for decision:

[A ::= u . Follow (A)]

C ::= z .

A ::= u . v
B ::= x . y
C ::= z . Follow(C)

A ::= u . v R1
B ::= x . y R2
C ::= z . R3

A ::= u . v R1‘
B ::= x . y R2‘
C ::= z . R3‘

q r

A ::= u . v R1 ∪ R1‘
B ::= x . y R2 ∪ R2‘
C ::= z . R3 ∪ R3‘

qr

q, r identified:

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Hierarchy of grammar classes

context-free

unambiguous

LR(k)

LR(1)

LALR(1)

SLR(1)

LR(0)

LL(k)

strong LL(1) = LL(1)

strict inclusions

increasing
precision of right
context sets

same

increasing

number of
states

PLaC-3.21
©

 2
00

7
be

i P
ro

f.
D

r.
 U

w
e

K
as

te
ns

Reasons for LALR(1) conflicts

context-free

unambiguous

LR(k)

LR(1)

LALR(1)

PLaC-3.21a

ambiguous most cases

unbounded lookahead needed

fixed length lookahead > 1 needed

merge of LR(1) states rare cases
introduces conflicts

Grammar condition does not hold:

LALR(1) parser generator can not distinguish these cases.

©
 2

01
0

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

LR(1) but not LALR(1)
PLaC-3.21b

Identification of LR(1) states causes non-disjoint right-context sets.

Artificial example:

Grammar:
Z ::= S
S ::= A a
S ::= B c
S ::= b A c
S ::= b B a
A ::= d.
B ::= d.

Z ::= . S {#}
S ::= . A a {#}
S ::= . B c {#}
S ::= . b A c {#}
S ::= . b B a {#}
A ::= . d {a}
B ::= . d {c}

S ::= b . A c {#}
S ::= b . B a {#}
A ::= . d {c}
B ::= . d {a}

A ::= d . {a}
B ::= d . {c}

A ::= d . {c}
B ::= d . {a}

A ::= d . {a, c}
B ::= d . {a, c}

b

d

d

LR(1) states

LALR(1) state

identified
states

Avoid the distinction between A and B - at least in one of the contexts.

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Table driven implementation of LR automata

PLaC-3.22

sq: shift into state q

rp: reduce production p

e: error

~: not reachable

terminals nonterminals

st
at

es

sq

rp

e

~
sq

~

LR parser tables

don’t care

~

t

e
s
r

nonterminal table

• has no reduce entries and no error entries
(only shift and don’t-care entries)
reason:
a reduction to A reaches a state from where
a shift under A exists (by construction)

unreachable entries in terminal table:
if t is erroneus input in state r, then
state s will not be reached with input t

B ::= u . A v R
A ::= . w First(vR)

B ::= u A . v R

A ::= w . First(vR)

A

q

r

s

∉

t error

©
 2

01
0

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Implementation of LR automata
PLaC-3.23

Compress tables :

• merge rows or columns that differ only in irrelevant entries; method: graph coloring

• extract a separate error matrix (bit matrix); increases the chances for merging

• normalize the values of rows or columns ; yields smaller domain; supports merging

• eliminate LR(0) reduce states ; new operation in predecessor state: shift-reduce
eliminates about 30% of the states in practical cases

About 10-20% of the original table sizes can be achieved!

Directly programmed LR-automata are possible - but usually too large.

terminals nonterminals

st
at

es

sq

rp

e ~

sq

~

LR(0) reduce state:

...
C ::= u . t R
...

C ::= u t . Rt

©
 2

00
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Parser generators
PGS Univ. Karlsruhe; in Eli LALR(1), table-driven
Cola Univ. Paderborn; in Eli LALR(1), optional: table-driven or directly programmed
Lalr Univ. / GMD Karlsruhe LALR(1), table-driven
Yacc Unix tool LALR(1), table-driven
Bison Gnu LALR(1), table-driven
Llgen Amsterdam Compiler Kit LL(1), recursive descent
Deer Univ. Colorado, Bouder LL(1), recursive descent

Form of grammar specification:
EBNF: Cola, PGS, Lalr; BNF: Yacc, Bison

Error recovery:
simulated continuation, automatically generated: Cola, PGS, Lalr
error productions, hand-specified: Yacc, Bison

Actions:
statements in the implementation language
at the end of productions: Yacc, Bison
anywhere in productions: Cola, PGS, Lalr

Conflict resolution:
modification of states (reduce if ...) Cola, PGS, Lalr
order of productions: Yacc, Bison
rules for precedence and associativity: Yacc, Bison

Implementation languages:
C: Cola, Yacc, Bison C, Pascal, Modula-2, Ada : PGS, Lalr

PLaC-3.24

©
 2

00
7

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

3.5 Syntax Error Handling
General criteria

PLaC-3.25

• recognize error as early as possible
LL and LR can do that:
no transitions after error position

• report the symptom in terms of the source text
rather than in terms of the state of the parser

• continue parsing short after the error position
analyze as much as possible

• avoid avalanche errors

• build a tree that has a correct structure
later phases must not break

• do not backtrack, do not undo actions,
not possible for semantic actions

• no runtime penalty for correct programs

©
 2

00
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Error position

Error recovery : Means that are taken by the parser after recognition of a syntactic error
in order to continue parsing

Correct prefix : The token sequence w ∈T* is a correct prefix in the language L(G),
if there is an u ∈T* such that w u ∈L(G); i. e. w can be extended to a sentence in L(G).

Error position : t is the (first) error position in the input w t x , where t ∈T and w, x ∈T*,
if w is a correct prefix in L(G) and w t is not a correct prefix .

LL and LR parsers recognize an error at the error position;
they can not accept t in the current state.

PLaC-3.26

int compute (int i) { a = i * / c; return i;}

w t

Example:

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Error recovery

Continuation point :
A token d at or behind the error position t such that
parsing of the input continues at d .

Error repair
with respect to a consistent derivation
- regardless the intension of the programmer!

Let the input be w t x with the
error position at t and let w t x = w y d z,
then the recovery (conceptually) deletes y and inserts v ,
such that w v d is a correct prefix in L(G),
with d ∈T and w, y, v, z ∈T*.

PLaC-3.27

a = i * / c;...

a = i * c;...
a = i * / c;...
a = i *e/ c;...

a = i * / c;...

a = i * e ;...

w y d z w y zd w y zd

delete / insert error identifier e delete / c

Examples:

and insert error id. e

w t x =
w y d z
w v d z

error position

continuation

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Recovery method: simulated continuation

Problem : Determine a continuation point close to the error position and reach it.
Idea: Use parse stack to determine a set D of tokens as potential continuation points.

Steps of the method:

1. Save the contents of the parse stack when an error is recognized.

2. Compute a set D ⊆ T of tokens that may be used as continuation point (anchor set)
Let a modified parser run to completion:
Instead of reading a token from input it is inserted into D; (modification given below)

3. Find a continuation point d : Skip input tokens until a token of D is found.

4. Reach the continuation point d :
Restore the saved parser stack as the current stack.
Perform dedicated transitions until d is acceptable.
Instead of reading tokens (conceptually) insert tokens.
Thus a correct prefix is constructed.

5. Continue normal parsing .

Augment parser construction for steps 2 and 4 :
For each parser state select a transition and its token,
such that the parser empties its stack and terminates as fast as possible.
This selection can be generated automatically .
The quality of the recovery can be improved by deletion/insertion of elements in D.

PLaC-3.28

error
pos.

contin.
point

(1)

(2)

(3)

(4)

(5)

