4. Attribute grammars and semantic analysis

Input: abstract program tree

Tasks:

name analysis
properties of program entities
type analysis, operator identification

Compiler module:
environment module
definition module
signature module

Output: attributed program tree

Standard implementations and generators for compiler modules
Operations of the compiler modules are called at nodes of the abstract program tree
Model: dependent computations in trees
Specification: attribute grammars
generated: a tree walking algorithm that calls functions of semantic modules in specified contexts and in an admissible order

4.1 Attribute grammars

Attribute grammar (AG): specifies dependent computations in abstract program trees;
declarative: explicitly specified dependences only; a suitable order of execution is computed
Computations solve the tasks of semantic analysis (and transformation)
Generator produces a plan for tree walks
that execute calls of the computations,
such that the specified dependences are obeyed,
computed values are propagated through the tree
Result: attribute evaluator; applicable for any tree specified by the AG
Example: AG specifies size of declarations
RULE: Decls ::= Decls Decl COMPUTE Decls[1].size =

Add (Decls[2].size, Decl.size);
END;
RULE: Decls ::= Decl COMPUTE Decls.size = Decl.size;
END;
RULE: Decl ::= Type Name COMPUTE Decl.size = Type.size;
END;

Basic concepts of attribute grammars (1)

An AG specifies computations in trees expressed by computations associated to productions of the abstract syntax

```
RULE q: X ::= w COMPUTE
    f(...); g(...);
END;
```

computations $f(\ldots)$ and $g(\ldots)$ are executed in every tree context of type q
a tree context of type q :

An AG specifies dependences between computations: expressed by attributes associated to grammar symbols

```
RULE p: Y ::= u X v COMPUTE
```

 Y.b \(=\mathrm{f}(\mathrm{X} . \mathrm{a})\);
 X.a = \(\quad\) (...);
 END;

Attributes represent: properties of symbols and pre- and post-conditions of computations:
post-condition $=\mathrm{f}$ (pre-condition)
$f(X . a)$ uses the result of $g(\ldots)$; hence
$X . a=g(\ldots)$ is specified to be executed before $f(X . a)$

PLaC-4.4

Basic concepts of attribute grammars (2)

dependent computations in adjacent contexts:

```
RULE q: Y ::= u X v COMPUTE
        Y.b = f(X.a);
    END;
    RULE p: X ::= w COMPUTE
        X.a = g(...);
    END;
```


attributes may specify
dependences without propagating any value;
specifies the order of effects of computations:
X. GotType = ResetTypeOf(...);
Y.Type $=$ GetTypeOf(...) <- X.GotType;

ResetTypeof will be called before GetTypeof

Definition of attribute grammars

An attribute grammar $A G=(G, A, C)$ is defined by

- a context-free grammar \mathbf{G} (abstract syntax)
- for each symbol X of G a set of attributes $A(X)$, written X. a if $a \in A(X)$
- for each production (rule) \mathbf{p} of G a set of computations of one of the forms

$$
X . a=f(\ldots \text { Y.b } \ldots) \quad \text { or } g(\ldots \text { Y.b } \ldots)
$$

where X and Y occur in p

Consistency and completeness of an AG:
Each $\mathrm{A}(\mathrm{X})$ is partitioned into two disjoint subsets: $\mathrm{Al}(X)$ and $\mathrm{AS}(X)$
$\operatorname{AI}(X)$: inherited attributes are computed in rules p where X is on the right-hand side of p AS (X) : synthesized attributes are computed in rules p where X is on the left-hand side of p Each rule $\mathrm{p}: \mathrm{Y}::=\ldots \mathrm{X} .$. . has exactly one computation for each attribute of $A S(Y)$, for the symbol on the left-hand side of p, and for each attribute of $\mathrm{Al}(\mathrm{X})$, for each symbol occurrence on the right-hand side of p

AG Example: Compute expression values

The AG specifies: The value of each expression is computed and printed at the root:

ATTR value: int;
RULE: Root : := Expr COMPUTE printf ("value is \%d\n", Expr.value);
END;
TERM Number: int;
RULE: Expr ::= Number COMPUTE Expr.value $=$ Number;
END;
RULE: Expr : := Expr Opr Expr COMPUTE

Expr[1].value = Opr.value;
Opr.left $=$ Expr [2].value;
Opr.right $=$ Expr[3].value;
END;

SYMBOL Opr: left, right: int;
RULE: Opr ::= '+' COMPUTE Opr.value =

ADD (Opr.left, Opr.right);
END;
RULE: Opr ::= '*' COMPUTE
Opr.value =
MUL (Opr.left, Opr.right);
END;

$$
\begin{aligned}
& \mathrm{A}(\text { Expr })=\mathrm{AS}(\text { Expr })=\{\text { value }\} \\
& \mathrm{AS}(\text { Opr })=\{\text { value }\} \\
& \mathrm{Al}(\text { Opr })=\{\text { left, right }\} \\
& \mathrm{A}(\text { Opr })=\{\text { value, left, right }\}
\end{aligned}
$$

AG Binary numbers

Attributes:
L.v, B.v value
L.Ig number of digits in the sequence L
L.s, B.s scaling of B or the least significant digit of L

RULE p1: D ::= L '.' L COMPUTE
D.v = ADD (L[1].v, L[2].v);

L[1].s = 0;
L[2].s = NEG (L[2].lg);
END;
RULE p2: L ::= L B COMPUTE
$\mathrm{L}[1] . \mathrm{v}=\mathrm{ADD}(\mathrm{L}[2] . \mathrm{v}, \mathrm{B} . \mathrm{v})$;
B.s $=\mathrm{L}[1] . \mathrm{s}$;

L[2].s = ADD (L[1].s, 1);
$\mathrm{L}[1] . \lg =\mathrm{ADD}(\mathrm{L}[2] . \lg , 1)$;
END;
RULE p3: L ::= B COMPUTE
L.v = B.v;
B.s = L.s;
L.lg = 1;

END;
RULE p4: B ::= 'O' COMPUTE B.v $=0$;

END;
RULE p5: B ::= '1' COMPUTE B.v = Power2 (B.s);

END;
scaled binary value:
B. $v=1 * 2^{\text {B.s }}$

An attributed tree for AG Binary numbers

Dependence graphs for AG Binary numbers

Attribute partitions

The sets $\mathrm{Al}(\mathrm{X})$ and $\mathrm{AS}(\mathrm{X})$ are partitioned each such that
AI (X, i) is computed before the i-th visit of X
AS (X, i) is computed during the i-th visit of X

Necessary precondition for the existence of such a partition:
No node in any tree has direct or indirect dependences that contradict the
evaluation order of the sequence of sets: $\mathrm{Al}(\mathrm{X}, 1), \mathrm{AS}(\mathrm{X}, 1), \ldots, \mathrm{Al}(\mathrm{X}, \mathrm{k}), \mathrm{AS}(\mathrm{X}, \mathrm{k})$

Construction of attribute evaluators

For a given attribute grammar an attribute evaluator is constructed:

- It is applicable to any tree that obeys the abstract syntax specified in the rules of the AG.
- It performs a tree walk and executes computations in visited contexts.
- The execution order obeys the attribute dependences.

Pass-oriented strategies for the tree walk: AG class:
k times depth-first left-to-right
k times depth-first right-to-left
alternatingly left-to-right / right-to left once bottom-up (synth. attributes only)

LAG (k)
RAG (k)
AAG (k) SAG

AG is checked if attribute dependences
 fit to desired pass-oriented strategy; see LAG(k) check.

non-pass-oriented strategies:

visit-sequences:
OAG
an individual plan for each rule of the abstract syntax
A generator fits the plans to the dependences of the AG.

Hierarchy of AG classes

Attribute Grammar

4
non-circular AG
(no dependence cycle in any apt)
\triangle
ANCAG
(absolutely non-circular)
4
visit-seq.AG
(a set of visit-sequences exists)
OAG

Visit-sequences

A visit-sequence (dt. Besuchssequenz) vsp for each production of the tree grammar:

$$
\mathrm{p}: \mathrm{X}_{0}::=\mathrm{X}_{1} \ldots \mathrm{X}_{\mathrm{i}} \ldots \mathrm{X}_{\mathrm{n}}
$$

A visit-sequence is a sequence of operations:
$\downarrow i, j \quad j$-th visit of the i-th subtree
$\uparrow j \quad j$-th return to the ancestor node
eval $_{c} \quad$ execution of a computation c associated to p

Example out of the AG for binary numbers:
$\mathrm{vs}_{\mathrm{p} 3}$: L::= B

$$
\text { L.lg=1; } \uparrow 1 ; \text { B.s=L.s; } \downarrow \text { B,1; L.v=B.v; } \uparrow 2
$$

Interleaving of visit-sequences

Visit-sequences for adjacent contexts are executed interleaved.

The attribute partition of the common nonterminal specifies the interface between the upper and lower visit-sequence:

Example in the tree:

Implementation:one procedure for each section of a visit-sequence upto \uparrow a call with a switch over applicable productions for \downarrow

Visit-sequences for the AG Binary numbers

$v_{\text {p1 }}$: D ::= L '.' L
$\downarrow \mathrm{L}[1], 1 ; \mathrm{L}[1] . \mathrm{s}=0 ; \downarrow \mathrm{L}[1], 2 ; \downarrow \mathrm{L}[2], 1 ; \mathrm{L}[2] . \mathrm{s}=\mathrm{NEG}(\mathrm{L}[2] . \mathrm{Ig}) ;$
$\downarrow \mathrm{L}[2], 2 ; \mathrm{D} . \mathrm{v}=\mathrm{ADD}(\mathrm{L}[1] . \mathrm{v}, \mathrm{L}[2] . \mathrm{v}) ; \uparrow 1$
$\mathrm{vs}_{\mathrm{p} 2}$: L::= LB
$\downarrow \mathrm{L}[2], 1 ; \mathrm{L}[1] . \lg =A D D(\mathrm{~L}[2] \cdot \mathrm{Ig}, 1) ; \uparrow 1$
L[2].s=ADD(L[1].s,1); $\downarrow L[2], 2 ; B . s=L[1] . s ; ~ \downarrow B, 1 ; ~ L[1] . v=A D D(L[2] . v, B . v) ; ~ \uparrow 2$
$v_{p 3}$: L:: B
L.Ig=1; $\uparrow 1$; B.s=L.s; $\downarrow \mathrm{B}, 1$; L.v=B.v; $\uparrow 2$
$\mathrm{vs}_{\mathrm{p} 4}$: B ::= '0'
B.v=0; $\uparrow 1$
$\mathrm{vs}_{\mathrm{p} 5}$: B ::= '1'
B.v=Power2(B.s); $\uparrow 1$

Implementation:
Procedure vs $<i><p>$ for each section of $a v s p$ to $a \uparrow i$
a call with a switch over alternative rules for $\downarrow \mathrm{X}, \mathrm{i}$

PLaC-4.14a
Visit-Sequences for AG Binary numbers (tree patterns)

Tree walk for AG Binary numbers

LAG (k) condition

An AG is a LAG(k), if:

For each symbol X there is an attribute partition $A(X, 1), \ldots, A(X, k)$, such that the attributes in $\mathbf{A}(X, i)$ can be computed in the i-th depth-first left-to-right pass.

Crucial dependences:
In every dependence graph every dependence

- Y.a -> X.b where X and Y occur on the right-hand side and Y is right of X implies that Y.a belongs to an earlier pass than X.b, and
- X.a -> X.b where X occurs on the right-hand side implies that X.a belongs to an earlier pass than X.b

Necessary and sufficient condition over dependence graphs - expressed graphically:

A dependency from right to left

$j>i$

$A(X, i) \quad A(X, j)$

A dependence at one symbol on the right-hand side

LAG (k) algorithm

Algorithm checks whether there is a $\mathbf{k > = 1}$ such that an AG is LAG(k).

Method:

compute iteratively A (1) , ..., A (k) ;
in each iteration try to allocate all remaining attributes to the current pass, i.e. A(i); remove those which can not be evaluated in that pass

Algorithm:

Set $i=1$ and Cand= all attributes

repeat

set $\mathbf{A}(i)=$ Cand; set Cand to empty;
while still attributes can be removed from $\mathbf{A}(i)$ do
remove an attribute $\mathbf{x . b}$ from $\mathbf{A}(i)$ and add it to Cand if - there is a crucial dependence

Y.a -> X.b s.t.
\mathbf{X} and \mathbf{Y} are on the right-hand side, \mathbf{Y} to the right of \mathbf{X} and $\mathbf{Y} . \mathbf{a}$ in $\mathbf{A}(i)$ or
$\mathbf{x} . \mathbf{a}->\mathbf{x} . \mathrm{b}$ s.t. \mathbf{x} is on the right-hand side and $\mathbf{X} . \mathbf{a}$ is in $\mathbf{A}(i)$

- $\mathbf{x} . \mathrm{b}$ depends on an attribute that is not yet in any \mathbf{A} (i)
if Cand is empty:
if $\mathbf{A}(i)$ is empty:
else:
exit: the $A G$ is $\operatorname{LAG}(\mathbf{k})$ and all attributes are assigned to their passes exit: the AG is not LAG(k) for any \mathbf{k} set $\mathrm{i}=\mathrm{i}+1$

AG not LAG(k) for any k

A.a can be allocated to the first left-to-right pass.
C.c, C.d, A.b can not be allocated to any pass.

The AG is RAG(1), AAG(2) and can be evaluated by visit-sequences.

AG not evaluable in passes

No attribute can be allocated to any pass for any strategy.

The AG can be evaluated by visit-sequences.

p0: S ::= A
p1: A ::= ',' A
p1: A ::= ',' A
p2: A ::= '.'

Generators for attribute grammars

LIGA
FNC-2
CoCo

University of Paderborn
INRIA
Universität Linz

OAG
ANCAG (superset of OAG)
LAG(k)

Properties of the generator LIGA

- integrated in the Eli system, cooperates with other Eli tools
- high level specification language Lido
- modular and reusable AG components
- object-oriented constructs usable for abstraction of computational patterns
- computations are calls of functions implemented outside the AG
- side-effect computations can be controlled by dependencies
- notations for remote attribute access
- visit-sequence controlled attribute evaluators, implemented in C
- attribute storage optimization

Explicit left-to-right depth-first propagation

ATTR pre, post: int;
RULE: Root ::= Block COMPUTE
Block.pre $=0$;
END;
RULE: Block ::= '\{' Constructs '\}' COMPUTE Constructs.pre = Block.pre; Block.post $=$ Constructs.post;
END;
RULE: Constructs : := Constructs Construct COMPUTE Constructs[2].pre = Constructs[1].pre; Construct.pre $=$ Constructs[2].post;
Constructs[1].post $=$ Construct.post;
END;
RULE: Constructs : := COMPUTE Constructs.post $=$ Constructs.pre;
END;
RULE: Construct : := Definition COMPUTE Definition.pre $=$ Construct.pre; Construct.post = Definition.post;
END;
RULE: Construct ::= Statement COMPUTE Statement.pre = Construct.pre; Construct.post $=$ Statement.post;
END;
RULE:Definition : := 'define' Ident ';' COMPUTE Definition.printed $=$
printf ("Def \%d defines \%s in line \%d\n",
Definition.pre, StringTable (Ident), LINE);
Definition.post =
ADD (Definition.pre, 1) <- Definition.printed;
END;
RULE: Statement ::= 'use' Ident ';' COMPUTE
Statement.post $=$ Statement.pre;
END;
RULE: Statement ::= Block COMPUTE Block.pre $=$ Statement.pre;
Statement.post $=$ Block.post;
END;

Definitions are enumerated and printed from left to right.

The next Definition number is propagated by a pair of attributes at each node:
pre (inherited)
post (synthesized)
The value is initialized in the Root context and
incremented in the Definition context.

The computations for propagation are systematic and redundant.

Left-to-right depth-first propagation using a CHAIN

CHAIN count: int;
RULE: Root : : = Block COMPUTE
CHAINSTART Block. count $=0$;

END;

RULE: Definition : := 'define' Ident ';' COMPUTE

```
Definition.print = printf ("Def \%d defines \%s in line \%d\n", Definition.count, /* incoming */ StringTable (Ident), LINE);
```

Definition.count $=$ /* outgoing */ ADD (Definition.count, 1) <- Definition.print;
END;

A chain specifies a left-to-right depth-first dependency through a subtree.

One CHAIN name; attribute pairs are generated where needed.

CHAINSTART initializes the CHAIN in the root context of the CHAIN.

Computations on the CHAIN are strictly bound by dependences.

Trivial computations of the form X.pre = Y.pre in CHAIN order can be omitted. They are generated where needed.

Dependency pattern INCLUDING

ATTR depth: int;
RULE: Root : := Block COMPUTE Block. depth $=0$;
END;
RULE: Statement : := Block COMPUTE Block.depth =

ADD (INCLUDING Block.depth, 1);
END;
RULE: Definition : := 'define' Ident COMPUTE printf ("\%s defined on depth \%d\n", StringTable (Ident), INCLUDING Block.depth);
END;

INCLUDING Block.depth
accesses the depth attribute of the next upper node of type Block.

The nesting depths of Blocks are computed.

An attribute at the root of a subtree is accessed from within the subtree.

Propagation from computation to the uses are generated as needed.

No explicit computations or attributes are needed for the remaining rules and symbols.

Dependency pattern CONSTITUENTS

RULE: Root : : = Block COMPUTE Root. DefDone = CONSTITUENTS Definition.DefDone;
END;
RULE: Definition : := 'define' Ident ';' COMPUTE

> Definition.DefDone =
printf ("\%s defined in line \%d\n",
StringTable (Ident), LINE);
END;
RULE: Statement : := 'use' Ident ';' COMPUTE printf ("\%s used in line \%d\n", StringTable (Ident), LINE) <- INCLUDING Root.DefDone;

END;
CONSTITUENTS Definition.DefDone accesses the DefDone attributes of all Definition nodes in the subtree below this context

A CONSTITUENTS computation accesses attributes from the subtree below its context.

Propagation from computation to the CONSTITUENTS construct is generated where needed.

The shown combination with INCLUDING is a common dependency pattern.

All printf calls in Definition contexts are done before any in a statement context.

