
4. Attribute grammars and semantic analysis

Input: abstract program tree

Tasks: Compiler module:

name analysis environment module

properties of program entities definition module

type analysis, operator identification signature module

Output: attributed program tree

Standard implementations and generators for compiler modules

Operations of the compiler modules are called at nodes of the abstract program tree

Model: dependent computations in trees

Specification: attribute grammars

generated: a tree walking algorithm  that calls functions of semantic modules
in specified contexts  and in an admissible order
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4.1 Attribute grammars

Attribute grammar (AG): specifies dependent computations in abstract program trees;
declarative : explicitly specified dependences only; a suitable order of execution is computed

Computations solve the tasks of semantic analysis (and transformation)

Generator  produces a plan for tree walks
that execute calls of the computations,
such that the specified dependences are obeyed,
computed values are propagated through the tree

Result: attribute evaluator ; applicable for any tree specified by the AG

PLaC-4.2

RULE: Decls ::= Decls Decl  COMPUTE
Decls[1].size =

Add (Decls[2].size, Decl.size);
END;
RULE: Decls ::= Decl  COMPUTE

Decls.size = Decl.size;
END;
RULE: Decl ::= Type Name  COMPUTE

Decl.size = Type.size;
END;

Decls
size 16

Decls
size 12

Decls
size 4

Decl
size 4

Decl
size 8

Decl
size 4

Example: AG specifies size of declarations tree with dependent attributes
evaluated
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Basic concepts of attribute grammars (1)
PLaC-4.3

An AG specifies dependences  between computations :
expressed by attributes  associated to grammar symbols

RULE p: Y ::= u X v COMPUTE
Y.b = f(X.a);
X.a = g(...);

END;

Attributes represent: properties of symbols  and
pre- and post-conditions of computations :
post-condition = f (pre-condition)
f(X.a) uses the result of g(...); hence
X.a = g(...) is specified to be executed before f(X.a)

An AG specifies computations in trees expressed by
computations associated to productions of the abstract
syntax

RULE q: X ::= w COMPUTE
f(...); g(...);

END;

computations f(...) and g(...) are executed in every tree
context of type q

X

q

w

f(...)
g(...)

a tree context of type q:

Y

p

u

f(...)
g(...)

a tree context of type p:

X va

b
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Basic concepts of attribute grammars (2)
PLaC-4.4

attributes may specify
dependences without propagating any value;
specifies the order of effects of computations:

X.GotType = ResetTypeOf(...);
Y.Type = GetTypeOf(...) <- X.GotType;

ResetTypeOf will be called before GetTypeOf

dependent computations in adjacent contexts:

RULE q: Y ::= u X v COMPUTE
Y.b = f(X.a);

END;
RULE p: X ::= w COMPUTE

X.a = g(...);
END;

Y

q

u

f(...)

adjacent contexts

X
va

b

p
g(...)

w

of types q and p:
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Definition of attribute grammars

An attribute grammar  AG = (G, A, C) is defined by

• a context-free grammar G  (abstract syntax)

• for each symbol X  of G a set of attributes A(X) ,
written X.a if a ∈ A(X)

• for each production (rule) p  of G
a set of computations  of one of the forms

X.a = f ( ... Y.b ... ) or g (... Y.b ... )
where X and Y occur in p

Consistency and completeness  of an AG:

Each A(X) is partitioned into two disjoint subsets: AI(X) and AS(X)

AI(X): inherited attributes  are computed in rules p where X is on the right -hand side of p

AS(X): synthesized attributes are computed in rules p where X is on the left -hand side of p

Each rule p: Y::= ... X... has exactly one computation
for each attribute of AS(Y), for the symbol on the left-hand side of p, and
for each attribute of AI(X), for each symbol occurrence on the right-hand side of p

PLaC-4.5

AI(X)

AS(X)

q

Y ::= u X v

p
X ::= w

u v

w

Y
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AG Example: Compute expression values

The AG specifies: The value of each expression is computed and printed at the root:

PLaC-4.6

ATTR value: int;

RULE: Root ::=  Expr  COMPUTE

printf ("value is %d\n",

Expr.value);

END;

TERM Number: int;

RULE: Expr ::= Number COMPUTE

Expr.value = Number;

END;

RULE: Expr ::= Expr Opr Expr

COMPUTE

Expr[1].value = Opr.value;

Opr.left  = Expr[2].value;

Opr.right = Expr[3].value;

END;

SYMBOL Opr: left, right: int;

RULE: Opr ::=  '+'  COMPUTE

Opr.value  =

ADD (Opr.left, Opr.right);

END;

RULE: Opr ::=  '*'  COMPUTE

Opr.value =

MUL (Opr.left, Opr.right);

END;

A (Expr) = AS(Expr) = {value}

AS(Opr) = {value}
AI(Opr) = {left, right}

A(Opr) = {value, left, right}
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AG Binary numbers

Attributes : L.v, B.v value
L.lg number of digits in the sequence L
L.s, B.s scaling of B or the least significant digit of L

RULE p1: D ::= L '.' L COMPUTE
D.v = ADD (L[1].v, L[2].v);
L[1].s = 0;
L[2].s = NEG (L[2].lg);

END;
RULE p2: L ::= L B COMPUTE

L[1].v = ADD (L[2].v, B.v);
B.s = L[1].s;
L[2].s = ADD (L[1].s, 1);
L[1].lg = ADD (L[2].lg, 1);

END;
RULE p3: L ::= B COMPUTE

L.v = B.v;
B.s = L.s;
L.lg = 1;

END;
RULE p4: B ::= '0' COMPUTE

B.v = 0;
END;
RULE p5: B ::= '1' COMPUTE

B.v = Power2 (B.s);
END;

PLaC-4.7

scaled binary value:

B.v = 1 * 2 B.s
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An attributed tree for AG Binary numbers
PLaC-4.8
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Dependence graphs for AG Binary numbers
PLaC-4.9

L
lg

s

v

D
v

p1

p2

L
lg

s

v

L
lg

s

v

L
lg

s

v

B s
v

L
lg

s

v B s
v

B s
v

p3 p4

p5

B s
v

If a tree exists, that
has a path from X.a to
X.b at some node of
Type X, the graphs
have an indirect
dependence

X.a X.b
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Attribute partitions
PLaC-4.10

The sets AI(X) and AS(X) are partitioned  each such that

AI (X, i)  is computed before the i-th visit  of X

AS (X, i)  is computed during the i-th visit  of X

upper context of X
p:  Y ::= u X v dependences

between
attributes

context switch
on  tree walk

lower context of X
q : X ::= w

AI (X,1)               AI (X,2)

AS (X,1)             AS (X,2)

Y

u v

w

Necessary precondition for the existence of such a partition:
No node in any tree has direct or indirect dependences that contradict the
evaluation  order  of the sequence of sets:AI (X, 1), AS (X, 1), ..., AI (X, k), AS (X, k)
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Construction of attribute evaluators

For a given attribute grammar an attribute evaluator is constructed:

• It is applicable to any tree  that obeys the abstract syntax specified in the rules of the AG.

• It performs a tree walk  and executes computations  in visited contexts.

• The execution order obeys the attribute dependences .

Pass-oriented strategies for the tree walk: AG class:

k times depth-first left-to-right LAG (k)
k times depth-first right-to-left RAG (k)
alternatingly left-to-right / right-to left AAG (k)
once bottom-up (synth. attributes only) SAG

AG is checked if attribute dependences
fit to desired pass-oriented strategy; see LAG(k) check.

non-pass-oriented strategies:
visit-sequences : OAG
an individual plan for each rule of the abstract syntax

A generator fits the plans to the dependences of the AG.

PLaC-4.11

  B C

D          E

A

  B C

D          E

A
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Hierarchy of AG classes
PLaC-4.11a

LAG(k) RAG(k)

AAG(k)

SAG

OAG

visit-seq.AG

non-circular AG

Attribute Grammar

(a set of visit-sequences exists)

(no dependence cycle in any apt)

ANCAG
(absolutely non-circular)
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Visit-sequences
PLaC-4.12

vsp3: L ::= B

L.lg=1; ↑1; B.s=L.s; ↓B,1; L.v=B.v; ↑2

Example out of the AG for binary numbers:

L
lg

s

v

B s
v

p3

A visit-sequence (dt. Besuchssequenz) vsp for each production  of the
tree grammar:

p: Xo ::= X1 ... Xi ... Xn

A visit-sequence is a sequence of operations :

↓ i, j  j-th visit of the i-th subtree

↑ j  j-th return to the ancestor  node

evalc  execution of a computation  c associated to p
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Interleaving of visit-sequences
PLaC-4.13

 AI (X,1)              AI (X,2)

AS (X,1)             AS (X,2)

upper
context

lower
context

Visit-sequences for adjacent contexts are
executed interleaved.

The attribute partition  of the common
nonterminal specifies the interface  between the
upper and lower visit-sequence:

  B C

D          E

A

p: A::= BC

q: C::= DE

vsp:  ... ↓C,1 ...↓B,1 ...↓C,2 ...↑1

vsq:  ... ↓D,1 ... ↑1 ... ↓E,1 ... ↑2

Example in the tree: interleaved visit-sequences:

Implementation :one procedure for each section of a visit-sequence upto ↑
a call  with a switch over applicable productions for ↓
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Visit-sequences for the AG Binary numbers

vsp1: D ::= L '.' L

↓L[1],1 ;  L[1].s=0; ↓L[1],2 ; ↓L[2],1 ;  L[2].s=NEG(L[2].lg);

↓L[2],2 ;  D.v=ADD(L[1].v, L[2].v); ↑1

vsp2: L ::= L B

↓L[2],1 ; L[1].lg=ADD(L[2].lg,1); ↑1

L[2].s=ADD(L[1].s,1); ↓L[2],2 ;  B.s=L[1].s; ↓B,1; L[1].v=ADD(L[2].v, B.v); ↑2

vsp3: L ::= B

L.lg=1; ↑1;  B.s=L.s; ↓B,1;  L.v=B.v; ↑2

vsp4: B ::= '0'

B.v=0; ↑1

vsp5: B ::= '1'

B.v=Power2(B.s); ↑1

Implementation :
Procedure  vs<i><p> for each section  of a vsp to a ↑i
a call with a switch over alternative rules for ↓X,i

PLaC-4.14

v
s

lg

v
s

L

B

visited
twice

visited
once
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Visit-Sequences for AG Binary numbers (tree patterns)
PLaC-4.14a
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Tree walk for AG Binary numbers
PLaC-4.15
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tree walk
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LAG (k) condition

An AG is a LAG(k), if :

For each symbol X there is an attribute partition  A (X,1), ..., A (X, k),
such that the attributes in A (X, i) can be computed in the i-th depth-first left-to-right pass .

Crucial dependences:

In every dependence graph every dependence

• Y.a -> X.b where  X and Y occur on the right-hand side  and Y is right of X  implies that
Y.a belongs to an earlier pass than X.b , and

• X.a -> X.b where  X occurs on the right-hand side  implies that
X.a belongs to an earlier pass than X.b

PLaC-4.16

X Y
b a

A(X,j) A(Y,i)
j > i

X
a b

A(X,i) A(X,j)
i < j

∈ ∈ ∈ ∈

A dependency
from right to left

A dependence
at one symbol
on the right-hand
side

Necessary and sufficient condition over dependence graphs - expressed graphically:
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LAG (k) algorithm
Algorithm checks whether  there is a k>=1  such that an AG is LAG(k) .

Method :
compute iteratively A(1) , ..., A(k) ;
in each iteration try to allocate all remaining attributes to the current pass, i.e. A(i) ;
remove those which can not be evaluated in that pass

Algorithm:

Set i=1  and Cand= all attributes

repeat
set A(i) = Cand ; set Cand to empty;

while  still attributes can be removed from A(i)  do
remove an attribute X.b  from A(i)  and add it to Cand if

- there is a crucial dependence
Y.a  -> X.b  s.t.

X and Y are on the right-hand side, Y to the right of X and Y.a  in A(i) or
X.a  -> X.b  s.t. X is on the right-hand side and X.a  is in A(i)

- X.b  depends on an attribute that is not yet in any A(i)

if Cand is empty: exit: the AG is LAG(k)  and all attributes are assigned to their passes
if A(i)  is empty: exit: the AG is not LAG(k) for any k
else: set i = i + 1

PLaC-4.17

X Y
b a

X
a b
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AG not LAG(k) for any k
PLaC-4.17a

S

AC

A

a
b

c
d

a
b

p0: S ::= A

p1: A ::= C A

p2: C ::= ','

p3: A ::= '.'

AC a
b

c
d

p1: A ::= C A

p2: C ::= ','

A.a can be allocated to the first left-to-right pass.
C.c, C.d, A.b can not be allocated to any pass.

The AG is RAG(1), AAG(2) and
can be evaluated by visit-sequences.
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AG not evaluable in passes
PLaC-4.17b

S

A c
d

a
b

p0: S ::= A

p1: A ::= ',' A

p2: A ::= '.'

p1: A ::= ',' A

A c
d

a
b

A c
d

a
b

No attribute can be
allocated to any pass for
any strategy.

The AG can be evaluated
by visit-sequences.

Generators for attribute grammars

LIGA University of Paderborn OAG

FNC-2 INRIA ANCAG (superset of OAG)

CoCo Universität Linz LAG(k)

Properties of the generator LIGA

• integrated in the Eli system , cooperates with other Eli tools

• high level specification language  Lido

• modular and reusable AG components

• object-oriented constructs usable for abstraction of computational patterns

• computations are calls of functions  implemented outside the AG

• side-effect computations  can be controlled by dependencies

• notations for remote attribute access

• visit-sequence  controlled attribute evaluators, implemented in C

• attribute storage optimization

PLaC-4.18
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Explicit left-to-right depth-first propagation
ATTR pre, post: int;
RULE: Root ::= Block COMPUTE
  Block.pre = 0;
END;
RULE: Block ::= '{' Constructs '}' COMPUTE
  Constructs.pre = Block.pre;
  Block.post = Constructs.post;
END;
RULE: Constructs ::= Constructs Construct COMPUTE
  Constructs[2].pre = Constructs[1].pre;
  Construct.pre = Constructs[2].post;
  Constructs[1].post = Construct.post;
END;
RULE: Constructs ::= COMPUTE
  Constructs.post = Constructs.pre;
END;
RULE: Construct ::= Definition COMPUTE
  Definition.pre = Construct.pre;
  Construct.post = Definition.post;
END;
RULE: Construct ::= Statement COMPUTE
  Statement.pre = Construct.pre;
  Construct.post = Statement.post;
END;

RULE:Definition ::= 'define' Ident ';' COMPUTE
  Definition.printed =
     printf ("Def %d defines %s in line %d\n",
             Definition.pre, StringTable (Ident), LINE);
  Definition.post =
     ADD (Definition.pre, 1) <- Definition.printed;
END;
RULE: Statement ::= 'use' Ident ';' COMPUTE
  Statement.post = Statement.pre;
END;
RULE: Statement ::= Block COMPUTE
  Block.pre = Statement.pre;
  Statement.post = Block.post;
END;

Definitions  are
enumerated and
printed from left to right.

The next Definition
number is propagated
by a pair of attributes at
each node:

pre  (inherited)
post  (synthesized)

The value is initialized
in the Root  context and

incremented in the
Definition  context.

The computations for
propagation are
systematic and
redundant.

PLaC-4.19
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Left-to-right depth-first propagation using a CHAIN
PLaC-4.20

CHAIN count : int;

RULE: Root ::= Block COMPUTE
CHAINSTART Block.count = 0;

END;

RULE: Definition ::= 'define' Ident ';'
COMPUTE

Definition.print =
printf ("Def %d defines %s in line %d\n",

Definition.count, /* incoming */
StringTable (Ident), LINE);

Definition.count = /* outgoing */
ADD (Definition.count, 1)
<- Definition.print;

END;

A CHAIN specifies a
left-to-right depth-first
dependency through a
subtree.

One CHAIN name;
attribute pairs are
generated where needed.

CHAINSTART initializes the
CHAIN in the root context
of the CHAIN.

Computations on the
CHAIN are strictly bound
by dependences.

Trivial computations  of
the form X.pre = Y.pre in
CHAIN order can be
omitted . They are
generated where needed.
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Dependency pattern INCLUDING
PLaC-4.21

ATTR depth: int;

RULE: Root ::= Block COMPUTE
Block.depth = 0;

END;

RULE: Statement ::= Block COMPUTE
Block.depth  =

ADD ( INCLUDING Block.depth , 1);
END;

RULE: Definition ::= 'define' Ident COMPUTE
  printf ("%s defined on depth %d\n",
           StringTable (Ident),

INCLUDING Block.depth );
END;

The nesting depths of
Blocks  are computed.

An attribute  at the root of
a subtree is accessed
from within the subtree .

Propagation  from
computation to the uses
are generated as needed.

No explicit computations
or attributes are needed
for the remaining rules
and symbols.

INCLUDING Block.depth
accesses the depth attribute of the next upper node of
type Block .
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Dependency pattern CONSTITUENTS
PLaC-4.22

RULE: Root ::= Block COMPUTE
Root.DefDone =

CONSTITUENTS Definition.DefDone ;
END;

RULE: Definition ::= 'define' Ident ';'
COMPUTE

Definition.DefDone =
printf ("%s defined in line %d\n",

StringTable (Ident), LINE);
END;

RULE: Statement ::= 'use' Ident ';' COMPUTE
printf ("%s used in line %d\n",

StringTable (Ident), LINE)
<- INCLUDING Root.DefDone ;

END;

A CONSTITUENTS
computation accesses
attributes from the
subtree below its context.

Propagation  from
computation to the
CONSTITUENTSconstruct is
generated where needed.

The shown combination
with INCLUDING is a
common dependency
pattern.

All printf  calls in
Definition  contexts are
done before any in a
Statement  context.

CONSTITUENTS Definition.DefDone  accesses the
DefDone  attributes of all Definition nodes in the
subtree below this context


