PLaC-4.1

4. Attribute grammars and semantic analysis

Input: abstract program tree

Tasks: Compiler module:
name analysis environment module
properties of program entities definition module

type analysis, operator identification signature module

Output: attributed program tree

Standard implementations and generators for compiler modules

Operations of the compiler modules are called at nodes of the abstract program tree
Model: dependent computations in trees
Specification: attribute grammars

a tree walking algorithm that calls functions of semantic modules
in specified contexts and in an admissible order

generated:

© 2013 bei Prof. Dr. Uwe Kastens

PLaC-4.3

Basic concepts of attribute grammars (1)

An AG specifies computations in trees expressed by
computations associated to productions of the abstract
syntax

a tree context of type q:

RULE g: X ::= w COMPUTE
f(..); 9(.);

END;

computations f(...) and g(...) are executed in every tree
context of type q

An AG specifies dependences between computations :
expressed by attributes associated to grammar symbols

RULE p: Y ::= u X v COMPUTE a tree context of type p:

Y.b = f(X.a); Y ;
X.a=g(.);]
Attributes represent: properties of symbols and /g(...)

pre- and post-conditions of computations u
post-condition = f (pre-condition)

f(X.a) uses the result of g(...); hence

X.a =g(...) is specified to be executed before f(X.a)

© 2013 bei Prof. Dr. Uwe Kastens

PLaC-4.2

4.1 Attribute grammars

Attribute grammar (AG): specifies dependent computations in abstract program trees;
declarative : explicitly specified dependences only; a suitable order of execution is computed

Computations solve the tasks of semantic analysis (and transformation)

Generator produces a plan for tree walks
that execute calls of the computations,
such that the specified dependences are obeyed,
computed values are propagated through the tree

Result: attribute evaluator ; applicable for any tree specified by the AG

Example: AG specifies size of declarations tree with dependent attributes
RULE: Decls ::= Decls Decl COMPUTE evaluated Decls
Decls[1].size =
Add (Decls[2].size, Decl.size);
END: De_cls
RULE: Decls ::= Decl COMPUTE size
Decls.size = Decl.size; Decl
END;
RULE: Decl ::= Type Name COMPUTE size size
Decl.size = Type.size; Decl

END; size 4|

© 2013 bei Prof. Dr. Uwe Kastens

PLaC-4.4

Basic concepts of attribute grammars (2)

dependent computations in adjacent contexts: X
adjacent contexts

RULE q: Y :=u Xv COMPUTE of types g and p:
Y.b =f(X.a);

END;

RULE p: X ::=w COMPUTE
X.a=g9(..)

END;

attributes may specify
dependences without propagating any value;
specifies the order of effects of computations:
X.GotType = ResetTypeOf(...);
Y.Type = GetTypeOf(...) <- X.GotType;

ResetTypeOf will be called before GetTypeOf

© 2013 bei Prof. Dr. Uwe Kastens

An attribute grammar AG = (G, A, C) is defined by
 acontext-free grammar G (abstract syntax)

« for each symbol X of G a set of attributes A(X) ,
written X.a if a 00 A(X)

- for each production (rule) p of G
a set of computations of one of the forms

Definition of attribute grammars

PLaC-4.5

Yi=uXv Y

Xa=f(...Yb..) or g(..Yb..)
where X and Y occur in p
Consistency and completeness of an AG:

Each A(X) is partitioned into two disjoint subsets: Al(X) and AS(X)
Al(X): inherited attributes are computed in rules p where X is on the right -hand side of p
AS(X): synthesized attributes are computed in rules p where X is on the left-hand side of p

Each rule p: Y::= ... X... has exactly one computation

for each attribute of AS(Y), for the symbol on the left-hand side of p, and

for each attribute of Al(X), for each symbol occurrence on the right-hand side of p

© 2013 bei Prof. Dr. Uwe Kastens

AG Binary numbers

Attributes : L.v, B.v value
L.lg number of digits in the sequence L
L.s,B.s scaling of B or the least significant digit of L
RULEpl: D:=L'"'L COMPUTE
D.v = ADD (L[1].v, L[2].v);
L[1].s =0;
L[2].s = NEG (L[2].19);
END;
RULEp2: L:=LB COMPUTE
L[1].v = ADD (L[2].v, B.v);
B.s =L[1].s;

L[2].s = ADD (L[1].s, 1);
L[1].lg = ADD (L[2].lg, 1);

END;

RULE p3:
L.v=B.v;
B.s =L.s;
Llg=1;

END;

RULE p4: B:='0
B.v=0;

L:=B COMPUTE

COMPUTE

PLaC-4.7

END;

RULE p5: B:='1"
B.v = Power2 (B.s);
END;

COMPUTE

Bv=1*2

scaled binary value:

B.s

© 2013 bei Prof. Dr. Uwe Kastens

AG Example: Compute expression values

The AG specifies: The value of each expression is computed and printed
ATTR value: int;

RULE: Root ::= Expr COMPUTE
printf ("value is %d\n",
Expr.value);

Opr.value =

END; END;

TERM Number: int;

Opr.value =
RULE: Expr ::= Number COMPUTE

Expr.value = Number;

PLaC-4.6

at the root:

SYMBOL Opr: left, right: int;

RULE: Opr ::= '+' COMPUTE

ADD (Opr.left, Opr.right);

RULE: Opr ::= * COMPUTE

MUL (Opr.left, Opr.right);

© 2013 bei Prof. Dr. Uwe Kastens

END;

END;
RULE: Expr ::= Expr Opr Expr A (Expr) = AS(Expr) = {value}
COMPUTE AS(Opr) = {value}

Expr[1].value = Opr.value; Al(Opr) = {left, right}

Opr.left = Expr[2].value; _ .

Opr.right = Expr[3].value; AOpr) = {value, left, right}
END;

PLaC-4.8
An attributed tree for AG Binary numbers
dependence

|

established by
a computation

attributes:

D
L
g
B

© 2008 bei Prof. Dr. Uwe Kastens

PLaC-4.9

Dependence graphs for AG Binary numbers

If a tree exists, that
has a path from X.a to
X.b at some node of
Type X, the graphs
have an indirect
dependence

Xa----»Xb

© 2011 bei Prof. Dr. Uwe Kastens

PLaC-4.11

Construction of attribute evaluators

For a given attribute grammar an attribute evaluator is constructed:

- Itis applicable to any tree that obeys the abstract syntax specified in the rules of the AG.
- It performs a tree walk and executes computations in visited contexts.

« The execution order obeys the attribute dependences .

Pass-oriented strategies for the tree walk: AG class:
k times depth-first left-to-right LAG (K)
k times depth-first right-to-left RAG (k)
alternatingly left-to-right / right-to left AAG (K)

once bottom-up (synth. attributes only) SAG

AG is checked if attribute dependences
fit to desired pass-oriented strategy; see LAG(Kk) check.

non-pass-oriented strategies:
visit-sequences : OAG
an individual plan for each rule of the abstract syntax

A generator fits the plans to the dependences of the AG.

© 2008 bei Prof. Dr. Uwe Kastens

Attribute partitions

The sets Al(X) and AS(X) are partitioned each such that
Al (X, i) is computed before the i-th visit of X
AS (X, i) is computed during the i-th visit of X

upper context of X
p: Yi=uXv dependences
between

attributes

A

context switch
on tree walk

lower context of X
g:Xi=w /‘ f

Necessary precondition for the existence of such a partition:
No node in any tree has direct or indirect dependences that contradict the

PLaC-4.10

evaluation order of the sequence of sets:Al (X, 1), AS (X, 1), ..., Al (X, k), AS (X, k)

© 2011 bei Prof. Dr. Uwe Kastens

Hierarchy of AG classes

Attribute Grammar

A

non-circular AG
(no dependence cycle in any apt)

A

ANCAG
(absolutely non-circular)

visit-seq.AG
/ (a set of visit-sequences exists)
OAG I
AAG(K)

LAG(K) RAG(K)

~._

SAG

PLaC-4.11a

© 2011 bei Prof. Dr. Uwe Kastens

© 2010 bei Prof. Dr. Uwe Kastens

PLaC-4.12
Visit-sequences
A visit-sequence (dt. Besuchssequenz) vsy, for each production of the
tree grammar:
p: Xg = Xq o Xj oo Xy
A visit-sequence is a sequence of operations
iy j-th visit of the i-th subtree
1] j-th return to the ancestor node
eval. execution of a computation c associated to p
Example out of the AG for binary numbers:
VSp3iL =B
L.lg=1; 11; B.s=L.s; IB,1; L.v=B.v; 12
PLaC-4.14
Visit-sequences for the AG Binary numbers
vspiDo=LuL
(L[1],1; L[1].s=0; 1L[1],2; tL[2],1; L[2].s=NEG(L[2].lg);
1L[2],2; D.v=ADD(L[1].v, L[2].v); 11
vsppiLu=LB
1L[2],1; L[1].lg=ADD(L[2].lg,1); 11
L[2].s=ADD(L[1].s,1); (L[2],2; B.s=L[1].s; 1B,1;L[1].v=ADD(L[2].v, B.v); 12
VSp3iL =B
L.lg=1; 11; B.s=L.s; 1B,1; L.v=B.v; 12
VS, B =0 visited
P4 AN S,ﬁ\ L twice
Bv=0; 11 lgh v
VS5 B =1 S
PS g v B visited
B.v=Power2(B.s); 11 once

Implementation :
Procedure vs<i><p> for each section ofavs,toa 1i

a call with a switch over alternative rules for | X,i

© 2010 bei Prof. Dr. Uwe Kastens

PLaC-4.13

Interleaving of visit-sequences

Visit-sequences for adjacent contexts are

executed interleaved. upper

context

¢| X,2)
AS (x,1$\

lower
context

The attribute partition of the common
nonterminal specifies the interface between the
upper and lower visit-sequence:

kl X,1)

AS (X,2

Example in the tree: interleaved visit-sequences:

VSpl ... l/C,l ..1B1 ...}C,Z*...Tl

q:C:=DE ' 4 oA

Implementation :one procedure for each section of a visit-sequence upto 1
a call with a switch over applicable productions for |

© 2011 bei Prof. Dr. Uwe Kastens

PLaC-4.14a

Visit-Sequences for AG Binary numbers (tree patterns)

D/
v

pl \7\ / \ /
& /

wiB

9] _1 Y]

BLS

V]
7

© 2004 bei Prof. Dr. Uwe Kastens

PLaC-4.15
Tree walk for AG Binary numbers
D R
% \
/
0
s 2
’ 3]y /5] L’ZEZEJ
bz /ZZ tree walk
1] 0]
L 5+ B Q -2
PP p5 1 p3 05 T attributes:

L2 1) = °v]
L
g
B

PS5 I

© 2013 bei Prof. Dr. Uwe Kastens

PLaC-4.17
LAG (k) algorithm

Algorithm checks whether there is a k>=1 such that an AG is LAG(K) .

Method :
compute iteratively A(1) , ..., AK) ;
in each iteration try to allocate all remaining attributes to the current pass, i.e. A(i) ;
remove those which can not be evaluated in that pass

Algorithm:
Seti=1 and Cand= all attributes IEI.E

repeat
set A(i) = Cand

; set Cand to empty;

while still attributes can be removed from A(i) do
remove an attribute X.b from A() and add it to Cand if
- there is a crucial dependence
Y.a ->Xb st
Xand Y are on the right-hand side, Y to the right of Xand Y.a in A(i) or
X.a ->X.b s.t. Xis on the right-hand side and X.a is in A(i)
- X.b depends on an attribute that is not yet in any A(i)

if Cand is empty: exit: the AG is LAG(k) and all attributes are assigned to their passes
if A(i) is empty: exit: the AG is not LAG(K) for any k
else: seti=i+1

© 2013 bei Prof. Dr. Uwe Kastens

PLaC-4.16

LAG (k) condition

An AG is a LAG(K), if :

For each symbol X there is an attribute partition A (X,1), ..., A (X, k),
such that the attributes in A (X, i) can be computed in the i-th depth-first left-to-right pass

Crucial dependences:

In every dependence graph every dependence

- Y.a->X.b where X and Y occur on the right-hand side and Y is right of X implies that
Y.a belongs to an earlier pass than X.b , and

» X.a->X.b where X occurs on the right-hand side
X.a belongs to an earlier pass than X.b

implies that

Necessary and sufficient condition over dependence graphs - expressed graphically:

00 e

A(X,]) A(Y,l) A(X,l) A(X,j)
j>i i<j

A dependence
at one symbol
on the right-hand
side

A dependency
from right to left

© 2013 bei Prof. Dr. Uwe Kastens

PLaC-4.17a

AG not LAG(k) for any k

A.a can be allocated to the first left-to-right pass.
C.c, C.d, A.b can not be allocated to any pass.

The AG is RAG(1), AAG(2) and
can be evaluated by visit-sequences.

© 2013 bei Prof. Dr. Uwe Kastens

© 2014 bei Prof. Dr. Uwe Kastens

PLaC-4.17b
AG not evaluable in passes
S
/ p0: S:=A
I8!
b d
V ‘ pl:Az=""A
No attribute can be a Q
allocated to any pass for b d
any strategy. w
pl:Az=""A
The AG can be evaluated
by visit-sequences. 2
d
U w p2: An=""
PLaC-4.19

Explicit left-to-right depth-first propagation

ATTR pre, post: int;

RULE: Root ::= Block COMPUTE
Block.pre = 0;

END;

RULE: Block ::= {' Constructs '}’ COMPUTE
Constructs.pre = Block.pre;

Block.post = Constructs.post;

END;

RULE: Constructs ::= Constructs Construct COMPUTE
Constructs[2].pre = Constructs[1].pre;
Construct.pre = Constructs[2].post;
Constructs[1].post = Construct.post;

END;

RULE: Constructs ::= COMPUTE
Constructs.post = Constructs.pre;

END;

RULE: Construct ::= Definition COMPUTE
Definition.pre = Construct.pre;

Construct.post = Definition.post;

END;

RULE: Construct ::= Statement COMPUTE
Statement.pre = Construct.pre;

Construct.post = Statement.post;

END;

RULE:Definition ::='define’ Ident '; COMPUTE
Definition.printed =

printf ("Def %d defines %s in line %d\n",

Definition.pre, StringTable (Ident), LINE);

Definition.post =
ADD (Definition.pre, 1) <- Definition.printed;
END;
RULE: Statement ::= 'use’ Ident ;' COMPUTE
Statement.post = Statement.pre;
END;
RULE: Statement ::= Block COMPUTE
Block.pre = Statement.pre;
Statement.post = Block.post;
END;

Definitions are
enumerated and
printed from left to right.

The next Definition
number is propagated
by a pair of attributes at
each node:

pre (inherited)
post (synthesized)

The value is initialized
in the Root context and

incremented in the
Definition context.

The computations for
propagation are
systematic and
redundant.

PLaC-4.18

Generators for attribute grammars

LIGA University of Paderborn OAG
FNC-2 INRIA ANCAG (superset of OAG)
CoCo Universitat Linz LAG(k)

Properties of the generator LIGA

« integrated in the Eli system , cooperates with other Eli tools

high level specification language Lido

modular and reusable AG components

object-oriented constructs usable for abstraction of computational patterns
computations are calls of functions implemented outside the AG
side-effect computations can be controlled by dependencies

notations for remote attribute access

visit-sequence controlled attribute evaluators, implemented in C

attribute storage optimization

© 2014 bei Prof. Dr. Uwe Kastens

PLaC-4.20

Left-to-right depth-first propagation using a CHAIN

A CHAIN specifies a
left-to-right depth-first
dependency through a
subtree.

CHAIN count :int;

RULE: Root ::= Block COMPUTE
CHAINSTART Block.count = 0;

END;
One CHAIN name;

attribute pairs are
generated where needed.

RULE: Definition ::= 'define’ Ident ;'
COMPUTE
Definition.print =
printf ("Def %d defines %s in line %d\n",
Definition.count, /* incoming */
StringTable (Ident), LINE);

CHAINSTARTInitializes the
CHAIN in the root context
of the CHAIN.

Computations on the
CHAIN are strictly bound
by dependences.

Definition.count = /* outgoing */
ADD (Definition.count, 1)
<- Definition.print;

END; Trivial computations ~ of
the form X.pre = Y.pre in
CHAIN order can be
omitted . They are
generated where needed.

© 2014 bei Prof. Dr. Uwe Kastens

PLaC-4.21

Dependency pattern INCLUDING

ATTR depth: int;

RULE: Root ::= Block COMPUTE
Block.depth = 0;

END;
RULE: Statement ::= Block COMPUTE
Block.depth =
ADD (INCLUDING Block.depth , 1);
END;

RULE: Definition ::= 'define' Ident COMPUTE
printf ("%s defined on depth %d\n",
StringTable (Ident),
INCLUDING Block.depth);
END;

INCLUDING Block.depth
accesses the depth attribute of the next upper node of
type Block .

The nesting depths of
Blocks are computed.

An attribute at the root of
a subtree is accessed
from within the subtree

Propagation from
computation to the uses
are generated as needed.

No explicit computations
or attributes are needed
for the remaining rules
and symbols.

© 2014 bei Prof. Dr. Uwe Kastens

PLaC-4.22

Dependency pattern CONSTITUENTS

RULE: Root ::= Block COMPUTE
Root.DefDone =
CONSTITUENTS Definition.DefDone ;
END;

RULE: Definition ::= 'define' Ident *;'
COMPUTE
Definition.DefDone =
printf ("%s defined in line %d\n",
StringTable (Ident), LINE);
END;

RULE: Statement ::= 'use' Ident ;' COMPUTE
printf ("%s used in line %d\n",
StringTable (Ident), LINE)
<- INCLUDING Root.DefDone ;

END;

accesses the
nodes in the

CONSTITUENTS Definition.DefDone
DefDone attributes of all Definition
subtree below this context

A CONSTITUENTS
computation accesses
attributes from the

subtree below its context.

Propagation from
computation to the
CONSTITUENT&ONStructis
generated where needed.

The shown combination
with INCLUDING is a
common dependency
pattern.

All printf calls in
Definition contexts are
done before any in a
Statement context.

