4. Attribute grammars and semantic analysis

Input: abstract program tree

Tasks: Compiler module:

name analysis environment module

properties of program entities definition module

type analysis, operator identification signature module

Output: attributed program tree

Standard implementations and generators for compiler modules

Operations of the compiler modules are called at nodes of the abstract program tree

Model: dependent computations in trees

Specification: attribute grammars

generated: a **tree walking algorithm** that calls functions of semantic modules

in specified contexts and in an admissible order

4.1 Attribute grammars

Attribute grammar (AG): specifies **dependent computations in abstract program trees**; **declarative**: explicitly specified dependences only; a suitable order of execution is computed

Computations solve the tasks of semantic analysis (and transformation)

Generator produces a plan for tree walks

that execute calls of the computations, such that the specified dependences are obeyed, computed values are propagated through the tree

Result: attribute evaluator; applicable for any tree specified by the AG

```
Example: AG specifies size of declarations

RULE: Decls ::= Decls Decl COMPUTE

Decls[1].size =

Add (Decls[2].size, Decl.size);

END;

RULE: Decls ::= Decl COMPUTE

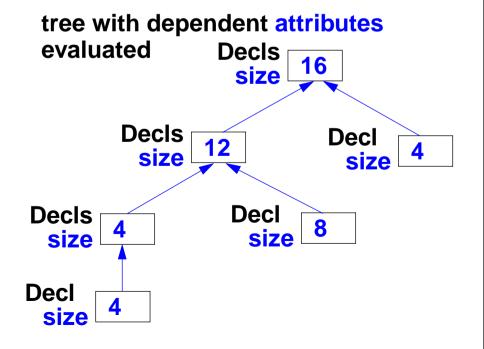
Decls.size = Decl.size;

END;

RULE: Decl ::= Type Name COMPUTE

Decl.size = Type.size;

END;
```



Basic concepts of attribute grammars (1)

An AG specifies **computations in trees** expressed by **computations associated to productions** of the abstract syntax

```
RULE q: X ::= w COMPUTE
  f(...); g(...);
END;
```

computations f(...) and g(...) are executed in every tree context of type q

An AG specifies dependences between computations: expressed by attributes associated to grammar symbols

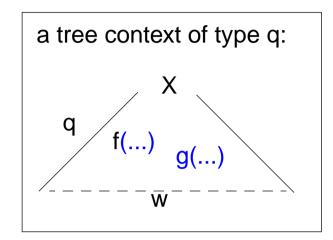
```
RULE p: Y ::= u X v COMPUTE
    Y.b = f(X.a);
    X.a = g(...);
END;
```

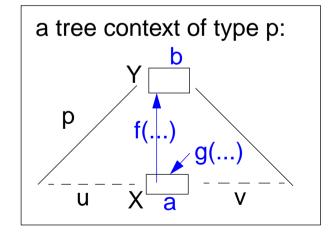
Attributes represent: **properties of symbols** and **pre- and post-conditions of computations**:

```
post-condition = f (pre-condition)

f(X.a) uses the result of g(...); hence

X.a = g(...) is specified to be executed before f(X.a)
```

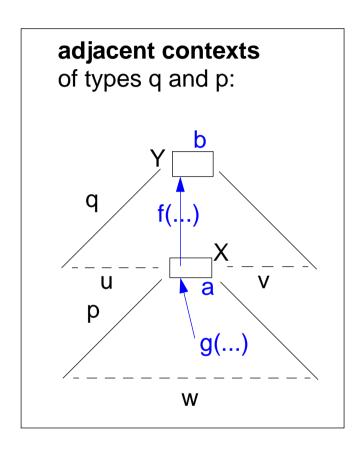




Basic concepts of attribute grammars (2)

dependent computations in adjacent contexts:

```
RULE q: Y ::= u X v COMPUTE
    Y.b = f(X.a);
END;
RULE p: X ::= w COMPUTE
    X.a = g(...);
END;
```



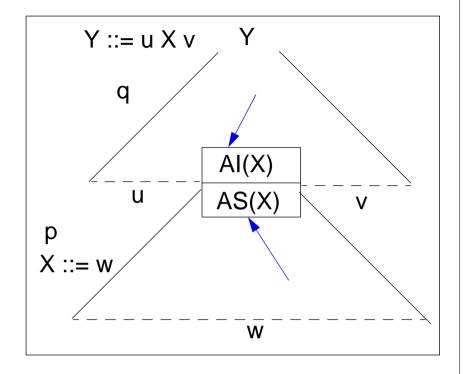
attributes may specify
dependences without propagating any value;
specifies the order of effects of computations:

```
X.GotType = ResetTypeOf(...);
Y.Type = GetTypeOf(...) <- X.GotType;
ResetTypeOf will be called before GetTypeOf</pre>
```

Definition of attribute grammars

An attribute grammar AG = (G, A, C) is defined by

- a context-free grammar G (abstract syntax)
- for each symbol X of G a set of attributes A(X), written X.a if a ∈ A(X)



Consistency and completeness of an AG:

Each A(X) is partitioned into two disjoint subsets: AI(X) and AS(X)

Al(X): **inherited attributes** are computed in rules p where X is on the **right**-hand side of p

AS(X): synthesized attributes are computed in rules p where X is on the left-hand side of p

Each rule p: Y::= ... X... has exactly one computation for each attribute of AS(Y), for the symbol on the left-hand side of p, and for each attribute of AI(X), for each symbol occurrence on the right-hand side of p

AG Example: Compute expression values

The AG specifies: The value of each expression is computed and printed at the root:

```
ATTR value: int;
RULE: Root ::= Expr COMPUTE
 printf ("value is %d\n",
          Expr.value);
END;
TERM Number: int;
RULE: Expr ::= Number COMPUTE
 Expr.value = Number;
END;
RULE: Expr ::= Expr Opr Expr
COMPUTE
 Expr[1].value = Opr.value;
 Opr.left = Expr[2].value;
  Opr.right = Expr[3].value;
END;
```

```
SYMBOL Opr: left, right: int;
RULE: Opr ::= '+' COMPUTE
  Opr.value =
     ADD (Opr.left, Opr.right);
END;
RULE: Opr ::= '*' COMPUTE
  Opr.value =
     MUL (Opr.left, Opr.right);
END;
      A (Expr) = AS(Expr) = {value}
      AS(Opr) = \{value\}
      AI(Opr) = \{left, right\}
      A(Opr) = {value, left, right}
```

AG Binary numbers

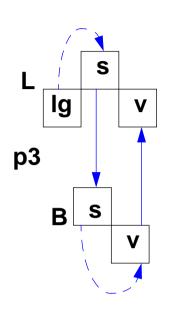
```
Attributes: L.v, B.v value
             L.lg number of digits in the sequence L
             L.s, B.s scaling of B or the least significant digit of L
RULE p1: D ::= L '.' L COMPUTE
  D.v = ADD (L[1].v, L[2].v);
  L[1].s = 0;
  L[2].s = NEG(L[2].lg);
END:
RULE p2: L ::= L B COMPUTE
  L[1].v = ADD (L[2].v, B.v);
  B.s = L[1].s;
  L[2].s = ADD (L[1].s, 1);
  L[1].lg = ADD (L[2].lg, 1);
END;
RULE p3: L ::= B
                          COMPUTE
  L.v = B.v;
  B.s = L.s;
  L.lg = 1;
END;
RULE p4: B ::= '0'
                          COMPUTE
  B.v = 0;
END;
                                        scaled binary value:
RULE p5: B ::= '1'
                          COMPUTE
  B.v = Power2 (B.s);
                                        B.v = 1 * 2^{B.s}
END;
```

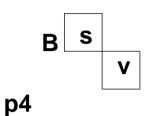
An attributed tree for AG Binary numbers dependence 5.25 **p1** established by a computation **p2** B B **p2** attributes: р3 р5 В B р3 lg V B В

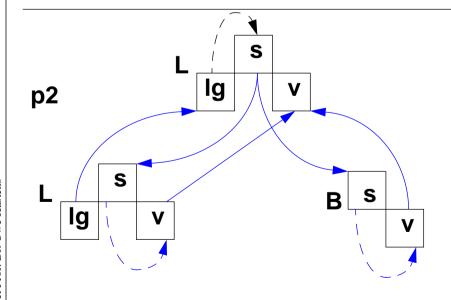
© 2013 bei Prof. Dr. Uwe Kastens

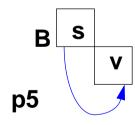
Dependence graphs for AG Binary numbers











If a tree exists, that has a path from X.a to X.b at some node of Type X, the graphs have an **indirect dependence**

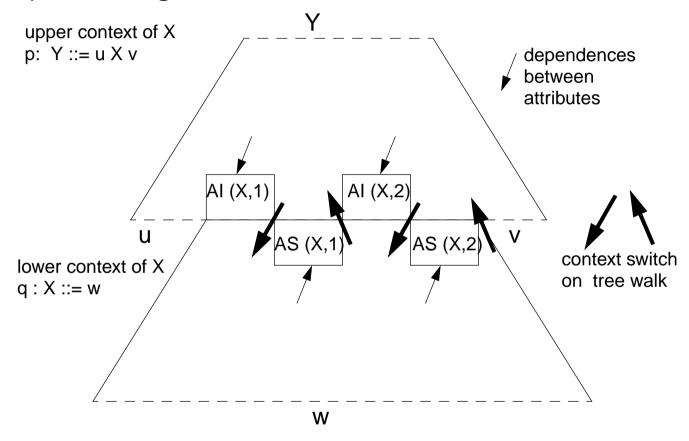
X.a - - - - **→** X.b

Attribute partitions

The sets AI(X) and AS(X) are **partitioned** each such that

Al (X, i) is computed before the i-th visit of X

AS (X, i) is computed during the i-th visit of X



No node in any tree has direct or indirect dependences that contradict the evaluation order of the sequence of sets:Al (X, 1), AS (X, 1), ..., Al (X, k), AS (X, k)

Construction of attribute evaluators

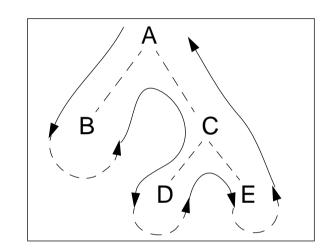
For a given attribute grammar an attribute evaluator is constructed:

- It is applicable to any tree that obeys the abstract syntax specified in the rules of the AG.
- It performs a tree walk and executes computations in visited contexts.
- The execution order obeys the **attribute dependences**.

Pass-oriented strategies for the tree walk: AG class:

k times depth-first left-to-right	LAG (k)
k times depth-first right-to-left	RAG (k)
alternatingly left-to-right / right-to left	AAG (k)
once bottom-up (synth. attributes only)	SAG

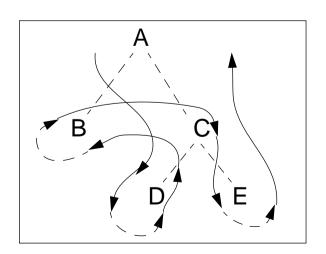
AG is checked if attribute dependences fit to desired pass-oriented strategy; see LAG(k) check.



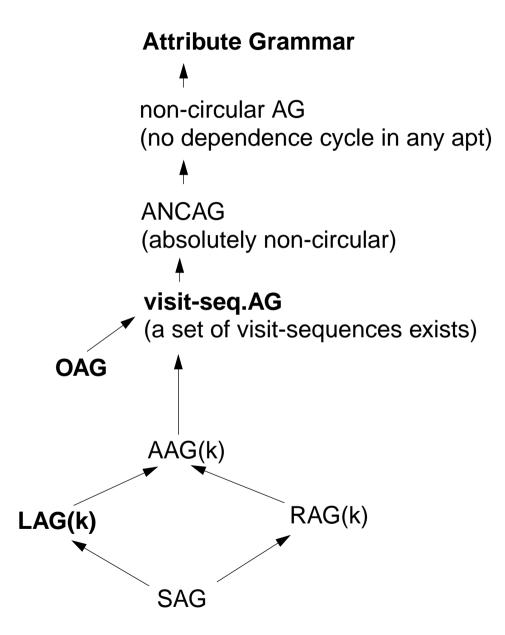
non-pass-oriented strategies:

visit-sequences: OAG an individual plan for each rule of the abstract syntax

A generator fits the plans to the dependences of the AG.



Hierarchy of AG classes



Visit-sequences

A **visit-sequence** (dt. Besuchssequenz) vs_p for each production of the tree grammar:

p:
$$X_0 ::= X_1 ... X_i ... X_n$$

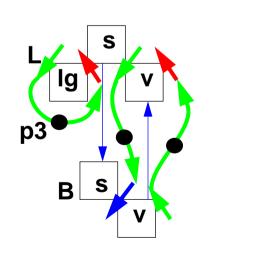
A visit-sequence is a **sequence of operations**:

- ↓ i, j

 j-th visit of the i-th subtree
- j-th return to the ancestor node

eval_c execution of a **computation** c associated to p

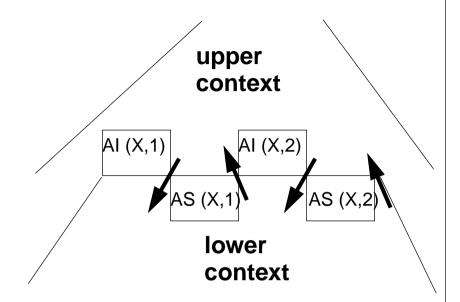
Example out of the AG for binary numbers:



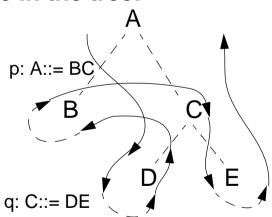
Interleaving of visit-sequences

Visit-sequences for adjacent contexts are executed interleaved.

The **attribute partition** of the common nonterminal specifies the **interface** between the upper and lower visit-sequence:



Example in the tree:



interleaved visit-sequences:

$$vs_{p}: \dots \downarrow C,1 \dots \downarrow B,1 \dots \downarrow C,2 \dots \uparrow 1$$

$$vs_{q}: \dots \downarrow D,1 \dots \uparrow 1 \dots \downarrow E,1 \dots \uparrow 2$$

Implementation:one procedure for each section of a visit-sequence upto ↑ a call with a switch over applicable productions for ↓

visited

once

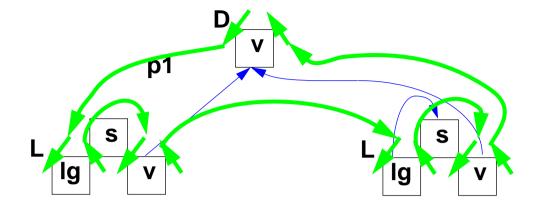
Visit-sequences for the AG Binary numbers

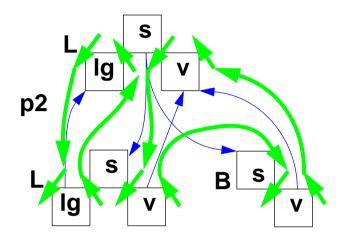
```
vs<sub>p1</sub>: D ::= L '.' L
             \downarrowL[1],1; L[1].s=0; \downarrowL[1],2; \downarrowL[2],1; L[2].s=NEG(L[2].lg);
             \downarrowL[2],2; D.v=ADD(L[1].v, L[2].v); \uparrow1
vs_{p2}: L := L B
             ↓L[2],1; L[1].lg=ADD(L[2].lg,1); ↑1
             L[2].s=ADD(L[1].s,1); \downarrowL[2],2; B.s=L[1].s; \downarrowB,1; L[1].v=ADD(L[2].v, B.v); \uparrow2
vs<sub>p3</sub>: L ::= B
             L.lg=1; ↑1; B.s=L.s; ↓B,1; L.v=B.v; ↑2
vs<sub>p4</sub>: B ::= '0'
             B.v=0; 1
vs<sub>p5</sub>: B ::= '1'
             B.v=Power2(B.s); 1
```

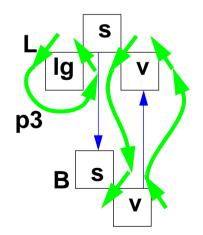
Implementation:

Procedure vs<i> for each section of a vs_p to a 1i a call with a switch over alternative rules for $\sqrt{X_i}$

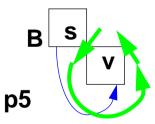
Visit-Sequences for AG Binary numbers (tree patterns)











LAG (k) condition

An AG is a LAG(k), if:

For each symbol X there is an **attribute partition** A (X,1), ..., A (X, k), such that the attributes in **A** (X, i) can be computed in the i-th depth-first left-to-right pass.

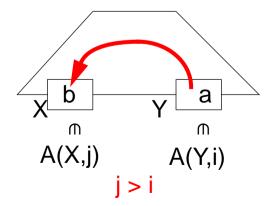
Crucial dependences:

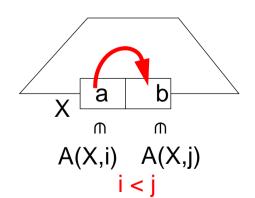
In every dependence graph every dependence

- Y.a -> X.b where X and Y occur on the right-hand side and Y is right of X implies that Y.a belongs to an earlier pass than X.b, and
- X.a -> X.b where X occurs on the right-hand side implies that X.a belongs to an earlier pass than X.b

Necessary and sufficient condition over dependence graphs - expressed graphically:

A dependency from right to left





A dependence at one symbol on the right-hand side

LAG (k) algorithm

Algorithm checks whether there is a k>=1 such that an AG is LAG(k).

Method:

```
compute iteratively A(1), ..., A(k); in each iteration try to allocate all remaining attributes to the current pass, i.e. A(i); remove those which can not be evaluated in that pass
```

Algorithm:

Set i=1 and Cand= all attributes

repeat

set A(i) = Cand; set Cand to empty;

while still attributes can be removed from A(i) do remove an attribute x.b from A(i) and add it to Cand if

- there is a **crucial dependence**

```
Y.a -> X.b S.t.
```

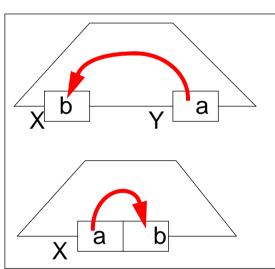
x and y are on the right-hand side, y to the right of x and y.a in A(i) or $x.a \rightarrow x.b$ s.t. x is on the right-hand side and x.a is in A(i)

- x.b depends on an attribute that is not yet in any A(i)

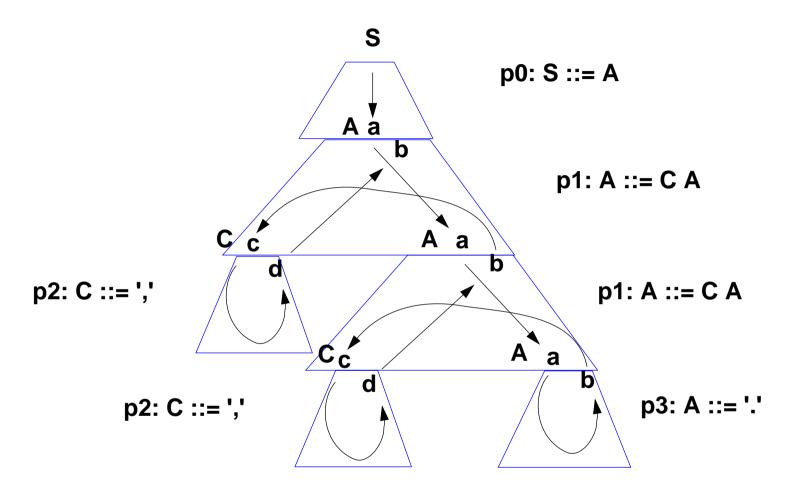
if Cand is empty: exit: the AG is LAG(k) and all attributes are assigned to their passes

if A(i) is empty: exit: the AG is not LAG(k) for any k

else: set i = i + 1



AG not LAG(k) for any k



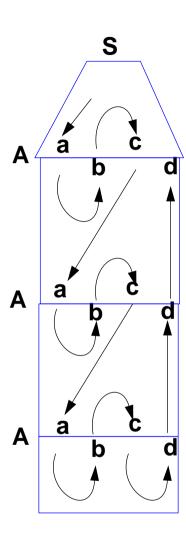
A.a can be allocated to the first left-to-right pass. C.c, C.d, A.b can not be allocated to any pass.

The AG is RAG(1), AAG(2) and can be evaluated by visit-sequences.

AG not evaluable in passes

No attribute can be allocated to any pass for any strategy.

The AG can be evaluated by visit-sequences.



Generators for attribute grammars

LIGA University of Paderborn OAG

FNC-2 INRIA ANCAG (superset of OAG)

CoCo Universität Linz LAG(k)

Properties of the generator LIGA

- integrated in the Eli system, cooperates with other Eli tools
- high level specification language Lido
- modular and reusable AG components
- object-oriented constructs usable for abstraction of computational patterns
- computations are calls of functions implemented outside the AG
- side-effect computations can be controlled by dependencies
- notations for remote attribute access
- visit-sequence controlled attribute evaluators, implemented in C
- attribute storage optimization

Explicit left-to-right depth-first propagation

```
ATTR pre, post: int;
RULE: Root ::= Block COMPUTE
 Block.pre = 0;
END;
RULE: Block ::= '{' Constructs '}' COMPUTE
 Constructs.pre = Block.pre;
 Block.post = Constructs.post;
END;
RULE: Constructs ::= Constructs Construct COMPUTE
  Constructs[2].pre = Constructs[1].pre;
  Construct.pre = Constructs[2].post;
  Constructs[1].post = Construct.post;
END;
RULE: Constructs ::= COMPUTE
  Constructs.post = Constructs.pre;
RULE: Construct ::= Definition COMPUTE
 Definition.pre = Construct.pre;
 Construct.post = Definition.post;
END;
RULE: Construct ::= Statement COMPUTE
  Statement.pre = Construct.pre;
 Construct.post = Statement.post;
END;
RULE: Definition ::= 'define' Ident ';' COMPUTE
  Definition.printed =
     printf ("Def %d defines %s in line %d\n",
               Definition.pre, StringTable (Ident), LINE);
  Definition.post =
     ADD (Definition.pre, 1) <- Definition.printed;
END;
RULE: Statement ::= 'use' Ident ';' COMPUTE
  Statement.post = Statement.pre;
END;
RULE: Statement ::= Block COMPUTE
 Block.pre = Statement.pre;
 Statement.post = Block.post;
END;
```

Definitions are enumerated and printed from left to right.

The next Definition number is propagated by a pair of attributes at each node:

pre (inherited)
post (synthesized)

The value is initialized in the **Root** context and

incremented in the Definition CONTEXT.

The computations for propagation are systematic and redundant.

Left-to-right depth-first propagation using a CHAIN

```
CHAIN count: int:
RULE: Root ::= Block COMPUTE
  CHAINSTART Block.count = 0;
END;
RULE: Definition ::= 'define' Ident ';'
COMPUTE
  Definition.print =
     printf ("Def %d defines %s in line %d\n",
             Definition.count, /* incoming */
             StringTable (Ident), LINE);
  Definition.count = /* outgoing */
     ADD (Definition.count, 1)
     <- Definition.print;
END;
```

A **CHAIN** specifies a **left-to-right depth-first** dependency through a subtree.

One CHAIN name; attribute pairs are generated where needed.

CHAINSTART initializes the CHAIN in the root context of the CHAIN.

Computations on the CHAIN are **strictly bound** by dependences.

Trivial computations of the form X.pre = Y.pre in CHAIN order can be omitted. They are generated where needed.

Dependency pattern INCLUDING

```
ATTR depth: int;
RULE: Root ::= Block COMPUTE
  Block.depth = 0;
END;
RULE: Statement ::= Block COMPUTE
  Block.depth =
     ADD (INCLUDING Block.depth, 1);
END;
RULE: Definition ::= 'define' Ident COMPUTE
  printf ("%s defined on depth %d\n",
           StringTable (Ident),
           INCLUDING Block.depth);
END;
```

The nesting depths of Blocks are computed.

An **attribute** at the root of a subtree is **accessed from within the subtree**.

Propagation from computation to the uses are generated as needed.

No explicit computations or attributes are needed for the remaining rules and symbols.

INCLUDING Block.depth

accesses the depth attribute of the next upper node of type Block.

Dependency pattern CONSTITUENTS

```
RULE: Root ::= Block COMPUTE
  Root.DefDone =
     CONSTITUENTS Definition.DefDone;
END:
RULE: Definition ::= 'define' Ident ';'
COMPUTE
  Definition.DefDone =
     printf ("%s defined in line %d\n",
             StringTable (Ident), LINE);
END;
RULE: Statement ::= 'use' Ident ';' COMPUTE
  printf ("%s used in line %d\n",
          StringTable (Ident), LINE)
  <- INCLUDING Root.DefDone;
END;
```

CONSTITUENTS Definition.DefDone accesses the DefDone attributes of all Definition nodes in the subtree below this context

A CONSTITUENTS
computation accesses
attributes from the
subtree below its context.

Propagation from computation to the **CONSTITUENTS** construct is generated where needed.

The shown combination with INCLUDING is a common dependency pattern.

All printf calls in Definition contexts are done before any in a Statement Context.