
©
 2

00
7 

be
i P

ro
f. 

D
r.

 U
w

e 
K

as
te

ns

5. Binding of Names
5.1 Fundamental notions

Program entity : An identifiable  entity that has individual properties , is used potentially at
several places in the program . Depending on its kind  it may have one or more runtime
instances; e. g. type, function, variable, label, module, package.

Identifiers : a class of tokens that are used to identify program entities; e. g. minint

Name:  a composite construct used to identify a program entity , usually contains an
identifier; e. g. Thread.sleep

Static binding: A binding is established between a name and a program entity . It is valid in a
certain area of the program text , the scope of the binding.  There the name identifies the
program entity. Outside of its scope the name is unbound or bound to a different entity.
Scopes are expressed in terms of program constructs like blocks, modules, classes, packets

Dynamic binding : Bindings are established in the run-time  environment; e. g. in Lisp.

A binding may be established

• explicitly by a definition ; it usually defines properties  of the program entity;
we then destinguish defining and applied occurrences  of a name;
e. g. in C: float x = 3.1; y = 3*x; or in JavaScript: var x;

• implicitly by using the name ; properties of the program entity may be defined by the
context; e. g. bindings of global and local variables in PHP

PLaC-5.1
©

 2
00

4 
be

i P
ro

f. 
D

r.
 U

w
e 

K
as

te
ns

5.2 Scope rules
PLaC-5.2

Scope rules : a set of rules that specify for a given language how bindings are established
and where they hold.

2 variants of fundamental hiding rules  for languages with nested structures.
Both are based on definitions that explicitly introduce bindings :

Algol rule :
The definition of an identifier b is valid in
the whole smallest enclosing range ;
but not in inner ranges  that have a
definition of b, too.

e. g. in Algol 60, Pascal, Java

C rule :
The definition of an identifier b is valid in
the smallest enclosing range from the
position of the definition  to the end;
but not in inner ranges  that have
another definition of b
from the position of that definition to the
end.

e. g. in C, C++, Java

{
int a;
{

int b = a;
float a;
a = b+1;

}
a = 5;

}

Algol
rule

C
rule

a a a a



©
 2

00
4 

be
i P

ro
f. 

D
r.

 U
w

e 
K

as
te

ns

Defining occurrence before applied occurrences
PLaC-5.3

The C rule enforces the defining occurrence of a binding precedes all its applied occurrences.

In Pascal, Modula, Ada the Algol rule  holds. An additional rule  requires that the defining
occurrence of a binding precedes all its applied occurrences.

Consequences :

• specific constructs for forward references of functions  which may call each other
recursively:
forward  function declaration in Pascal;
function declaration in C before the function definition,
exemption form the def-before-use-rule in Modula

• specific constructs for types  which may contain references  to each other recursively :
forward type references allowed for pointer types in Pascal, C, Modula

• specific rules for labels to allow forward jumps :
label declaration in Pascal before the label definition,
Algol rule for labels in C

• (Standard) Pascal  requires declaration parts  to be structured as a sequence of
declarations for constants, types, variables and functions, such that the former may be used
in the latter. Grouping by coherence criteria  is not possible.

Algol rule  is simpler, more flexible  and allows for individual ordering  of definitions
according to design criteria.

©
 2

00
4 

be
i P

ro
f. 

D
r.

 U
w

e 
K

as
te

ns

Multiple definitions
PLaC-5.4

Usually a definition  of an identifier is required to be unique  in each range. That rule
guarantees that at most one binding holds for a given (plain) identifier in a given range.

Deviations from that rule :

• Definitions for the same binding are allowed to be repeated, e. g. in C
external int maxElement ;

• Definitions for the same binding are allowed to accumulate properties of the program entity,
e. g. AG specification language LIDO: association of attributes to symbols:
SYMBOL AppIdent: key: DefTableKey;
...
SYMBOL AppIdent: type: DefTableKey;

• Separate name spaces  for bindings of different kinds of program entities. Occurrences of
identifiers are syntactically distinguished and associated to a specific name space, e. g.
in Java bindings of packets and types are in different name spaces:
import Stack.Stack;
in C labels, type tags and other bindings have their own name space each.

• Overloading  of identifiers: different program entities are bound to one identifier  with
overlapping scopes. They are distinguished by static semantic information  in the
context, e. g. overloaded functions distinguished by the signature of the call (number and
types of actual parameters).



©
 2

00
4 

be
i P

ro
f. 

D
r.

 U
w

e 
K

as
te

ns

Explicit Import and Export
PLaC-5.5

Bindings may be explicitly imported to or exported from a range  by specific language
constructs. Such features have been introduced in languages like Modula-2 in order to
support modular decomposition and separate compilation .

Modula-2 defines two different import/export features
1. Separately compiled modules :

DEFINITION MODULE Scanner; interface of a separately compiled module
FROM Input IMPORT Read, EOL; imported bindings
EXPORT QUALIFIED Symbol, GetSym; exported bindings
TYPE Symbol = ...; definitions of exported bindings
PROCEDURE GetSym;

END Scanner;
IMPLEMENTATION MODULE Scanner BEGIN ... END Scanner;

2. Local modules, embedded in the block structure  establish scope boundaries:

VAR a, b: INTEGER;
...
MODULE m;

IMPORT a;
EXPORT x;
VAR x: REAL;

BEGIN ... END m;
...

a b x

©
 2

00
5 

be
i P

ro
f. 

D
r.

 U
w

e 
K

as
te

ns

Bindings as properties of entities
PLaC-5.6

Program entities may have a property that is a set of bindings,
e. g. the entities exported by a module interface or the fields of a struct type in C:

typedef struct {int x, y;} Coord ;

Coord  anchor[5];
anchor[0]. x = 42;

The type Coord  has the bindings of its fields as its property; anchor[0]  has the type
Coord ; x  is bound in its set of bindings.

Language constructs like the with -statement of Pascal insert such sets of bindings into the
bindings of nested blocks:

type Coord  = record x, y: integer; end;
var anchor: array [0..4] Coord;

a, x: real;
begin ...

with anchor[0] do
begin ...

x := 42;
end;

...
end;

Bindings of the type Coord  are
inserted into the textually nested
scopes; hence the field x  hides
the variable x .



©
 2

00
4 

be
i P

ro
f. 

D
r.

 U
w

e 
K

as
te

ns

Inheritance with respect to binding
PLaC-5.7

Inheritance is a relation between object
oriented classes . It defines the basis for
dynamic binding of method calls . However,
static binding rules  determine the
candidates for dynamic binding  of method
calls.

A class has a set of bindings as its property .

It consists of the bindings defined in the class
and those inherited  from classes and
interfaces.

An inherited binding may be hidden  by a
local definition.

That set of bindings is used for identifying
qualified names (cf. struct  types):

D d = new D; d.f();

A class may be embedded in a context  that
provides bindings. An unqualified name as in
f()  is bound in the class’s local and
inherited  sets, and then  in the bindings of
the textual context  (cf. with -statement).

class A
{ void f(){...}

class C
extends D implements I

{ void tr(){ f(); h();}
}

}

class D
extends E

{ void f(){...}
void g(){...}
...

}

class E
{ void f(){...}

void h(){...}
...

}

interface I
{ public void k();
}

©
 2

00
9 

be
i P

ro
f. 

D
r.

 U
w

e 
K

as
te

ns

5.3 An environment module for name analysis
PLaC-5.8

The compiler represents a program entity by a key . It references a description of the
entity’s properties.

Name analysis task : Associate the key of a program entity to each occurrence of an
identifier  according to scope rules  of the language (consistent renaming).
the pair (identifier, key) represents a binding.

Bindings  that have a common scope  are composed to sets .

An environment  is a linear sequence of sets of bindings  e1, e2, e3, ... that are
connected by a hiding relation : a binding (a, k) in ei hides a binding (a,h) in ej if i < j.

Scope rules  can be modeled using the concept of environments .

The name analysis task  can be implemented  using a module  that implements
environments  and operations on them.



©
 2

00
4 

be
i P

ro
f. 

D
r.

 U
w

e 
K

as
te

ns

Environment module

Implements the abstract data type Environment :
hierarchically nested sets of Binding s (identifier, environment, key)
(The binding pair (i,k) is extended by the environment to which the binding belongs.)

Functions :

NewEnv () creates a new Environment e, to be used as root of a hierarchy

NewScope (e 1) creates a new Environment e2 that is nested in e1.
Each binding of e1 is also a binding of e2 if it is not hidden there.

BindIdn (e, id) introduces a binding (id, e, k) if e has no binding for id;
then k is a new key representing a new entity;
in any case the result is the binding triple (id, e, k)

BindingInEnv (e, id) yields a binding triple (id, e1, k) of e or a surrounding
environment of e; yields NoBinding if no such binding exists.

BindingInScope (e, id) yields a binding triple (id, e, k) of e, if contained directly in e,
NoBinding otherwise.

PLaC-5.9

Data structure of the environment module (1)
PLaC-5.10

c k7

b k6

a k8                  a k4                    a k1

b k5                 b k2

c k9                                             c k3

Environment tree

Root

current
Environment

Lists of local Bindings

 ki: key of the defined entity



Data structure of the environment module (2)
PLaC-5.10a

c k7

b k6

a k8                  a k4                    a k1

b k5                 b k2

c k9                                             c k3

a

b

 c

Environment tree

Root

current
Environment

Lists of local Bindings

vector of stacks indexed by
identifier codes

a stack for each  identifier

 ki: key of the defined entity

©
 2

00
4 

be
i P

ro
f. 

D
r.

 U
w

e 
K

as
te

ns

Environment operations in tree contexts

Operations in tree contexts  and the order they are called can model scope rules :

Root  context:
Root.Env = NewEnv ();

Range context that may contain definitions:
Range.Env = NewScope (INCLUDING (Range.Env, Root.Env));

accesses the next enclosing Range or Root

defining occurrence of an identifier IdDefScope :
IdDefScope.Bind = BindIdn (INCLUDING Range.Env, IdDefScope.Symb);

applied occurrence of an identifier IdUseEnv :
IdUseEnv.Bind = BindingInEnv (INCLUDING Range.Env, IdUseEnv.Symb);

Preconditions for specific scope rules:
Algol rule: all BindIdn()  of all surrounding ranges before any BindingInEnv()
C rule: BindIdn()  and BindingInEnv()  in textual order

The resulting bindings are used for checks and transformations , e. g.

• no applied occurrence without a valid defining occurrence,

• at most one definition for an identifier in a range,

• no applied occurrence before its defining occurrence (Pascal).

PLaC-5.11



©
 2

00
4 

be
i P

ro
f. 

D
r.

 U
w

e 
K

as
te

ns

Attribute computations for binding of names
PLaC-5.12

Root

Range

Range

Range

IdDefScope

IdUseEnv

Env

Bind Symb

Env

Env

Env Bind Symb

IdDefScope
Bind Symb

IdDefScope
Bind Symb

IdDefScope
Bind Symb

IdUseEnv
Bind Symb

IdUseEnv
Bind Symb

NewEnv,NewScope

BindingInEnv

BindIdn

1

2

3

4

5 6

7


