
6. Type specification and type analysis
A type characterizes a set of (simple or structured) values and the applicable operations.

The language design constrains the way how values may interact.

Strongly typed language:
The implementation can guarantee that all type constraints can be checked

static typing (plus run time checks): Java (strong); C, C++, Pascal, Ada (almost strong)
dynamic: script languages like Perl, PHP, JavaScript
no typing: Prolog, Lisp

Statically typed language:
Programmer declares type property - compiler checks (most languages)
Programmer uses typed entities - compiler infers their type properties (e.g. SML)

Compiler keeps track of the type of any

• defined entity that has a value (e. g. variable); stores type property in the definition module

• program construct elaborates to a value (e. g. expressions); stores type in an attribute

PLaC-6.1

• at compile time (static typing): compiler finds type errors (developer), or

• at run time (dynamic typing): run time checks find type errors (tester, user).

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Concepts for type analysis
PLaC-6.2

Type : characterization of a subset of the values in the universe of operands available to
the program. „a triple of int values“

Type denotation : a source-language construct used to denote a user-defined typ
(language-defined types do not require type denotations).

typedef struct {int year, month, day;} Date;

sameType : a partition defining type denotations that might denote the same type.

Type identifier : a name used in a source-language program to specify a type.
typedef struct {int year, month, day;} Date ;

Typed identifier : a name used in a source-language program to specify an entity
(such as a variable) that can take any value of a given type.

int count ;

Operator : an entity having a signature that relates operand types to a result type.
iAdd : int x int -> int

Indication : a set of operators with different signatures.
{iAdd, fAdd, union, concat}

acceptableAs : a partial order defining the types that can be used in a context where a
specific type is expected. short -> int -> long

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Taxonomy of type systems
PLaC-6.3

[Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and polymorphism.
ACM Computing Surveys, 17(4):471–523, 1985.]

- monomorphism : Every entity has a unique type. Consequence: different operators for
similar operations (e.g. for int and float addition)

- polymorphism : An operand may belong to several types.

-- ad hoc polymorphism :

--- overloading : a construct may different meanings depending on the context
in which it appears (e.g. + with 4 different signatures in Algol 60)

--- coercion : implicit conversion of a value into a corresponding value of a different
type, which the compiler can insert wherever it is appropriate (only 2 add operators)

-- universal polymorphism : operations work uniformly on a range of types
that have a common structure

--- inclusion polymorphism : sub-typing as in object-oriented languages

--- parametric polymorphism : polytypes are type denotations with type parameters,
e.g. (’a x ’a) , (’a list x (’a -> ’b) -> ’b list)
All types derivable from a polytype have the same type abstraction .
Type parameters are substituted by type inference (SML, Haskell) or

by generic instantiation (C++, Java)
see GPS 5.9 - 5.10

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Monomorphism and ad hoc polymorphism
PLaC-6.3a

monomorphism
polymorphism

ad hoc polymorphism
overloading
coercion

universal polymorphism
inclusion polymorphism
parametric polymorphism

(2)

(1)

(3)

(4)
(5)

monomorphism (1):
4 different names for addition:

addII: int x int -> int
addIF: int x float -> float
addFI: float x int -> float
addFF: float x float -> float

overloading (2):
1 name for addition +;
4 signatures are distinguished by actual
operand and result types:

+: int x int -> int
+: int x float -> float
+: float x int -> float
+: float x float -> float

coercion (3):
int is acceptableAs float ,
2 names for two signatures:

addII: int x int -> int
addFF: float x float -> float

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Examples for inclusion polymorphism (4)
PLaC-6.3b

Sub-typing:
S ist a sub-type of type T, S <: T, if each value of S
is acceptable where a value of type T is expected.

Sub-type relation established by
classes in object-oriented language s

Animal

Bird Fish

Lattice of set types in Pascal:

set of integer (top)

set of 1..6

set of 4..5set of 3..5set of 2..4

set of 4..4set of 3..3

set of bottom

A function of type fS can be called where
a function of type fT is expected, i.e. fS <: fT, if

fT = paramT -> resultT paramT <: paramS
fS = paramS -> resultS resultS <: resultT

paramT paramS resultS resultT<: <:

fT
fS

Compiler’s definition module

Central data structure, stores properties of program entities
e. g. type of a variable, element type of an array type

A program entity is identified by the key of its entry in this data structure.

Operations:

NewKey () yields a new key

ResetP (k, v) sets the property P to have the value v for key k

SetP (k, v, d) as ResetP; but the property is set to d if it has been set before

GetP (k, d) yields the value of the Property P for the key k;
yields the default value d, if P has not been set

Operations are called in tree contexts , dependences control accesses, e. g. SetP before GetP

Implementation of data structure: a property list for every key

Definition module is generated from specifications of the form

Property name : property type;
ElementNumber: int;

Generated functions: ResetElementNumber , SetElementNumber , GetElementNumber

PLaC-6.4

©
 2

00
9

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Language defined entities
PLaC-6.5

Language-defined types, operators, and indications are represented by known keys -
definition table keys, created by initialization and made available as named constants .

Eli’s specification language OIL can be used to specify language defined types, operators,
and indications, e.g.:

OPER
iAdd (intType,intType):intType;
rAdd (floatType,floatType):floatType;

INDICATION
PlusOp : iAdd, rAdd;

COERCION
(intType):floatType;

It results in known keys for two types, two operators, and an indication. The following
identifiers can be used to name those keys in tree computations:

intType, floatType, iAdd, rAdd, PlusOp

RULE: Operator ::= ’+’ COMPUTE Operator.Indic = PlusOp ;END;

The coercion establishes the language-defined relation

intType acceptableAs floatType

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Language-defined and user-defined types
PLaC-6.6

A language-defined type is represented by a keyword in a program. The compiler
determines sets an attribute Type.Type :

RULE: Type ::= ’int’ COMPUTE
Type.Type = intType;

END;

The type analysis modules of Eli export a computational role for user-defined types :

TypeDenotation : denotation of a user-defined type. The Type attribute of the symbol
inheriting this role is set to a new definition table key by a module computation.

RULE: Type ::= ArrayType COMPUTE
Type.Type = ArrayType.Type;

END;

SYMBOL ArrayType INHERITS TypeDenotation END;

RULE: ArrayType ::= Type ’[’ ’]’ END;

©
 2

00
9

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Classification of identifiers (1)
PLaC-6.7

The type analysis modules export four computational roles to classify identifiers :

TypeDefDefId : definition of a type identifier. The designer must write a computation setting
the Type attribute of this symbol to the type bound to the identifier.

TypeDefUseId : reference to a type identifier defined elsewhere. The Type attribute of this
symbol is set by a module computation to the type bound to the identifier.

TypedDefId : definition of a typed identifier. The designer must write a computation setting
the Type attribute of this symbol to the type bound to the identifier.

TypedUseId : reference to a typed identifier defined elsewhere. The Type attribute of this
symbol is set by a module computation to the type bound to the identifier.

SYMBOL ClassBody INHERITS TypeDenotation END;
SYMBOL TypIdDef INHERITS TypeDefDefId END;
SYMBOL TypIdUse INHERITS TypeDefUseId END;

RULE: ClassDecl ::=
OptModifiers ’class’ TypIdDef OptSuper OptInterfaces ClassBody

COMPUTE TypIdDef.Type = ClassBody.Type;
END;

RULE: Type ::= TypIdUse COMPUTE
Type.Type = TypIdUse.Type;
END;

©
 2

00
9

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Classification of identifiers (2)
PLaC-6.7a

A declaration introduces typed entities; it plays the role TypedDefinition .

TypedDefId is the role for identifiers in a context where the type of the bound entity is
determined

TypedUseId is the role for identifiers in a context where the type of the bound entity is used.
The role ChkTypedUseId checks whether a type can be determined for the particular entity:

RULE: Declaration ::= Type VarNameDefs ';' COMPUTE
Declaration.Type = Type.Type;

END;

SYMBOL Declaration INHERITS TypedDefinition END;
SYMBOL VarNameDef INHERITS TypedDefId END;
SYMBOL VarNameUse INHERITS TypedUseId , ChkTypedUseId END;

©
 2

01
2

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Type analysis for expressions (1): trees
PLaC-6.8

An expression node represents a program construct that yields a value , and an
expression tree is a subtree of the AST made up entirely of expression nodes . Type
analysis within an expression tree is uniform; additional specifications are needed only at the
roots and leaves.

The type analysis modules export the role ExpressionSymbol to classify expression
nodes. It carries two attributes that characterize the node inheriting it:

Type : the type of value delivered by the node. It is always set by a module computation.

Required : the type of value required by the context in which the node appears.
The designer may write a computation to set this inherited attribute in the upper context
if the node is the root of an expression tree; otherwise it is set by a module computation.

A node n is type-correct if (n.Type acceptableAs n.Required).

PrimaryContext expands to attribute computations that set the Type attribute of an
expression tree leaf. The first argument must be the grammar symbol representing the
expression leaf, which must inherit the ExpressionSymbol role. The second argument
must be the result type of the expression leaf.

DyadicContext characterizes expression nodes with two operands. All four arguments of
DyadicContext are grammar symbols: the result expression, the indication, and the two
operand expressions. The second argument symbol must inherit the OperatorSymbol role;
the others must inherit ExpressionSymbol .

©
 2

01
2

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Type analysis for expressions (2): leaves, operators
PLaC-6.9

The nodes of expression trees are characterized by the roles ExpressionSymbol and
OperatorSymbol . The tree contexts are characterized by the roles PrimaryContext (for
leaf nodes), MonadicContext , DyadicContext , ListContext (for inner nodes), and
RootContext :

SYMBOL Expr INHERITS ExpressionSymbol END;
SYMBOL Operator INHERITS OperatorSymbol END;
SYMBOL ExpIdUse INHERITS TypedUseId END;

RULE: Expr ::= Integer COMPUTE
PrimaryContext (Expr, intType);

END;
RULE: Expr ::= ExpIdUse COMPUTE

PrimaryContext (Expr, ExpIdUse.Type);
END;
RULE: Expr ::= Expr Operator Expr COMPUTE

DyadicContext (Expr[1], Operator, Expr[2], Expr[3]);
END;
RULE: Operator ::= ’+’ COMPUTE

Operator.Indic = PlusOp;
END;

©
 2

01
2

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Type analysis for expressions (3): Balancing
PLaC-6.9a

The conditional expression of C is an example of a balance context : The type of each
branch (Expr[3],Expr[4]) has to be acceptable as the type of the whole conditional
expression (Expr[1]):

RULE: Expr ::= Expr '?' Expr ':' Expr COMPUTE
BalanceContext(Expr[1],Expr[3],Expr[4]) ;

END;

For the condition the pattern of slide PLaC-6.10 applies.

Balancing can also occur with an arbitrary number of expression s the type of which is
balanced to yield a common type at the root node of that list, e.g. in

SYMBOL CaseExps INHERITS BalanceListRoot, ExpressionSymbolEND;
SYMBOL CaseExp INHERITS BalanceListElem, ExpressionSymbolEND;

RULE: Expr ::= 'case' Expr 'in' CaseExps 'esac' COMPUTE
TransferContext(Expr[1],CaseExps);

END;

RULE: CaseExps LISTOF CaseExp END;
RULE: CaseExp ::= Expr COMPUTE

TransferContext(CaseExp,Expr);
END;

©
 2

01
2

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Type analysis for expressions (4)
PLaC-6.10

Each expression tree has a root . The the RULE context in which the expression root in on
the left-hand side specifies which requirements are imposed to the type of the expression.
In the context of an assignment statement below, both occurrences of Expr are expression
tree roots:

RULE: Stmt ::= Expr ’:=’ Expr COMPUTE
Expr[2]. Required = Expr[2]. Type;

END;

In principle there are 2 different cases how the context states requirements on the type of the
Expression root:

• no requirement: Expr.Required = NoKey; (can be omitted, is set by default)
Expr[1] in the example above

• a specific type: Expr.Required = computation of some type;
Expr[2] in the example above

©
 2

00
9

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Operators of user-defined types
PLaC-6.10a

User-defined types may introduce operators that have operands of that type, e.g. the
indexing operator of an array type:

SYMBOL ArrayType INHERITS OperatorDefs END;

RULE: ArrayType ::= Type ’[’ ’]’ COMPUTE
ArrayType.GotOper =

DyadicOperator (
ArrayAccessor, NoOprName,
ArrayType.Type, intType, Type.Type);

END;

The above introduces an operator definition that has the signature
ArrayType.Type x intType -> Type.Type

and adds it to the operator set of the indication ArrayAccessor .
The context below identifies an operator in that set, using the types of Expr[2] and
Subscript . Instead of an operator nonterminal the Indication is given.

SYMBOL Subscript INHERITS ExpressionSymbol END;
RULE: Expr ::= Expr ’[’ Subscript ’]’ COMPUTE

DyadicContext (Expr[1], , Expr[2], Subscript);
Indication (ArrayAccessor);
IF(BadOperator ,

message(ERROR,"Invalid array reference",0,COORDREF));
END;

©
 2

00
9

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Functions and calls
PLaC-6.10b

Functions (methods) can be considered as operators having n => 0 operands (parameters).
Roles: OperatorDefs , ListOperator , and TypeListRoot :

SYMBOL MethodHeader INHERITS OperatorDefs END;
SYMBOL Parameters INHERITS TypeListRoot END;

RULE: MethodHeader ::=
OptModifiers Type FctIdDef ’(’ Parameters ’)’ OptThrows COMPUTE
MethodHeader.GotOper =

ListOperator (
FctIdDef.Key, NoOprName,
Parameters, Type.Type);

END;

A call of a function (method) with its arguments is then considered as part of an expression
tree. The function name (FctIdUse) contributes the Indication :

SYMBOL Arguments INHERITS OperandListRoot END;
RULE: Expr ::= Expr ’.’ FctIdUse ’(’ Arguments ’)’ COMPUTE

ListContext (Expr[1], , Arguments);
Indication (FctIdUse.Key);
IF(BadOperator,message(ERROR, "Not a function", 0, COORDREF));

END;

The specification allows for overloaded functions.

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Type equivalence: name equivalence
PLaC-6.10c

Two types t and s are name equivalent if their names tn and sn are the same or if tn is
defined to be sn or sn defined to be tn. An anonymous type is different from any other type.

Name equivalence is applied for example in Pascal , and for classes and interfaces in Java .

type a = record x: char; y: real end;
b = record x: char; y: real end;
c = b;

e = record x: char; y: ↑ e end;
f = record x: char; y: ↑ g end;
g = record x: char; y: ↑ f end;

var s, t: record x: char; y: real end;
u: a; v: b; w: c;
k: e; l: f; m: g;

Which types are equivalent?
The value of which variable may be assigned to which variable?

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Type equivalence: structural equivalence
PLaC-6.10d

In general, two types t and s are structurally equivalent if their definitions become the same
when all type identifiers in the definitions of t and in s are recursively substituted by their
definitions. (That may lead to infinite trees.)
Structural equivalence is applied for example in Algol-68 , and for array types in Java .

The example of the previous slide is interpreted under structural equivalence:

type a = record x: char; y: real end;
b = record x: char; y: real end;
c = b;

e = record x: char; y: ↑ e end;
f = record x: char; y: ↑ g end;
g = record x: char; y: ↑ f end;

var s, t: record x: char; y: real end;
u: a; v: b; w: c;
k: e; l: f; m: g;

Which types are equivalent?
The value of which variable may be assigned to which variable?

Algorithms determine structural equivalence by decomposing the whole set of types into
maximal partitions, which each contain only equivalent types.

©
 2

00
9

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Type analysis for object-oriented languages (1)

Class hierarchy is a type hierarchy:

implicit type coercion: class -> super class
explicit type cast: class -> subclass

Variable of class type may contain
an object (reference) of its subclass

Analyze dynamic method binding; try to decide it statically:

static analysis tries to further restrict the run-time type:

GeometricShape f;...; f = new Circle(...);...; a = f.area();

PLaC-6.11

Circle k = new Circle (...);

GeometricShape f = k;

k = (Circle) f;

©
 2

00
9

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Type analysis for object-oriented languages (2)

Check signature of overriding methods:

calls must be type safe

Java requires the same signature

weaker requirements would be sufficient (contra variant parameters, language Sather):

Language Eiffel requires covariant parameter types : type unsafe!

PLaC-6.12

X x; A a; P p;
a = x.m (p);

class X { C m (Q q) { use of q;... return c; } }

class Y { B m (R r) { use of r;... return b; } }

C c; B b;
Variable:call of dynamically

bound method:

super class

subclass

©
 2

00
9

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Type analysis for functional languages (1)

Static typing and type checking without types in declarations

Type inference : Types of program entities are inferred from the context where they are used

PLaC-6.13

cnt: 'a,
fct: 'b->'c,
choice: ('a * ('b->'c)) -> 'd

(i) 'c= bool
(i) 'b= 'a
(ii) 'd= 'a
(iii) 'a= int

Example in ML:

describe the types of entities using type variables:

form equations that describe the uses of typed entities

solve the system of equations:

fun choice (cnt, fct) =
if fct cnt then cnt else cnt - 1;

(i) (ii) (iii)

choice: (int * (int->bool)) -> int

©
 2

00
9

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Type analysis for functional languages (2)

Parametrically polymorphic types: types having type parameters

Example in ML:

fun map (l, f) =
if null l
then nil
else (f (hd l)) :: map (tl l, f)

polymorphic signature:

map: ('a list * ('a -> 'b)) -> 'b list

Type inference yields most general type of the function,
such that all uses of entities in operations are correct;

i. e. as many unbound type parameters as possible

calls with different concrete types, consistently substituted for the type parameter:

map([1,2,3], fn i => i*i) 'a = int, 'b = int
map([1,2,3], even) 'a = int, 'b = bool
map([1,2,3], fn i =(i,i)) 'a = int, 'b = ('a*'a)

PLaC-6.14

©
 2

00
9

be
i P

ro
f.

 D
r.

 U
w

e
K

as
te

ns

Semantic error handling
PLaC-6.15

Design rules:

Error reports are to be related to the source code :

• Any explicit or implicit requirement of the language definition
needs to be checked by an operation in the tree, e. g.
if (IdUse.Bind == NoBinding) message (...)

• Checks have to be associated to the smallest relevant context
yields precise source position for the report; information is to be
propagated to that context. wrong : „some arguments have wrong types“

• Meaningfull error reports. wrong : „type error“

• Different reports for different violations ;
do not connect symptoms by or

All operations specified for the tree are executed , even if errors occur:

• introduce error values , e. g. NoKey, NoType, NoOpr

• operations that yield results have to yield a reasonable one in case of error,

• operations have to accept error values as parameters ,

• avoid messages for avalanche errors by suitable extension of relations,
e. g. every type is compatible with NoType

