
©
 2

00
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

7. Specification of Dynamic Semantics
PLaC-7.1

The effect of executing a program is called its dynamic semantics. It can be described by
composing the effects of executing the elements of the program, according to its abstract
syntax . For that purpose the dynamic semantics of executable language constructs are
specified.

Informal specifications are usually formulated in terms of an abstract machine, e. g.

Each variable has a storage cell , suitable to store values of the type of the variable.
An assignment v := e is executed by the following steps: determine the storage cell
of the variable v, evaluate the expression e yielding a value x, an storing x in the
storage cell of v.

The effect of common operators (like arithmetic) is usually not further defined (pragmatics).

The effect of an erroneous program construct is undefined . An erroneous program is not
executable. The language specification often does not explicitly state, what happens if an
erroneous program construct is executed, e. g.

The execution of an input statement is undefined if the next value of the the input is
not a value of the type of the variable in the statement.

A formal calculus for specification of dynamic semantics is denotational semantics .
It maps language constructs to functions , which are then composed according to the
abstract syntax.

©
 2

00
4

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Denotational semantics
PLaC-7.2

Formal calculus for specification of dynamic semantics.

The executable constructs of the abstract syntax are mapped on functions , thus
defining their effect.

For a given structure tree the functions associated to the tree nodes are composed
yielding a semantic function of the whole program - statically !

That calculus allows to

• prove dynamic properties of a program formally,

• reason about the function of the program - rather than about is operational
execution,

• reason about dynamic properties of language constructs formally.

A denotational specification of dynamic semantics of a programming language
consists of:

• specification of semantic domains : in imperative languages they model the
program state

• a function E that maps all expression constructs on semantic functions

• a function C that maps all statement contructs on semantic functions

©
 2

00
4

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Semantic domains
PLaC-7.3

Semantic domains describe the domains and ranges of the semantic functions of a
particular language. For an imperative language the central semantic domain describes the
program state .

Example: semantic domains of a very simple imperative language :

State = Memory × Input × Output program state

Memory = Ident → Value storage

Input = Value* the input stream

Output = Value* the output stream

Value = Numeral | Bool legal values

Consequences for the language specified using these semantic domains:

• The language can allow only global variables , because a 1:1-mapping is assumed
between identifiers and storage cells. In general the storage has to be modelled:

Memory = Ident → (Location → Value)

• Undefined values and an error state are not modelled; hence, behaviour in erroneous
cases and exeption handling can not be specified with these domains.

©
 2

00
7

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Mapping of expressions
PLaC-7.4

Let Expr be the set of all constructs of the abstract syntax that represent expressions, then
the function E maps Expr on functions which describe expression evaluation :

E: Expr → (State → Value)

In this case the semantic expression functions compute a value in a particular state .
Side-effects of expression evaluation can not be modelled this way. In that case the evaluation
function had to return a potentially changed state:

E: Expr → (State → (State × Value))

The mapping E is defined by enumerating the cases of the abstract syntax in the form

E[abstract syntax construct] state = functional expression
E[X] s = F s

for example:

E [e1 + e2] s = (E [e1] s) + (E [e2] s)
...
E [Number] s = Number
E [Ident] (m, i, o) = m Ident the memory map applied to the identifier

©
 2

00
7

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Mapping of statements
PLaC-7.5

Let Command be the set of all constructs of the abstract syntax that represent statements,
then the function C maps Command on functions which describe statement execution:

C: Command → (State → State)

In this case the semantic statement functions compute a state transition.
Jumps and labels in statement execution can not be modelled this way. In that case an
additional functional argument would be needed, which models the continuation after
execution of the specified construct, continuation semantics .

The mapping C is defined by enumerating the cases of the abstract syntax in the form

C[abstract syntax construct] state = functional expression
C[X] s = F s

for example:

C [stmt1; stmt2] s = (C [stmt2] ο C [stmt1]) s function composition
C [v := e] (m, i, o) = (M [(E [e] (m, i, o)) / v], i, o)
e is evaluated in the given state and the memory map is changed at the cell of v

C [if ex then stmt1 else stmt2] s = E[ex]s -> C[stmt1]s, C[stmt2]s
C [while ex do stmt] s =

E[ex]s -> (C[while ex do stmt] ο C[stmt])s, s
...

©
 2

00
4

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

8. Source-to-source translation
PLaC-8.1

Source-to-source translation :
Translation of a high-level source language into a high-level target language .

Programming language

Intermediate language

Machine language

Analysis

Transformation

Optimization

Code generation

Compiler:

high-level programming language

high-level programming language

Analysis

Transformation

Specification language (SDL, UML, ...)
Domain specific language (SQL, STK, ...)

Source-to-source translator:

Transformation task :

input : structure tree + properties of constructs (attributes), of entities (def. module)

output :target tree (attributes) in textual representation

Example: Target tree construction
PLaC-8.2

Assign

Select

Index

Addr Cont

Addr

Cont

Addr

a ->

i ->

s ->

v ->
Definition module:

a -> ...
i -> ...
s -> ...
v -> ...

Variable
Code

Variable
Code

Variable
Code

Stmt
Code

UseIdent
Key

Expr
Code

Expr
Code

UseIdent
Bind

UseIdent
Bind

Selector
Bind

MkAssign (,)

MkSelect (,)

MkIndex (,)

MkAddr ()

MkCont (MkAddr ())

MkCont (MkAddr ())

a i

s

v

abstract program tree a[i].s := v;

Target tree:

with target tree attributes

Attribute grammar for target tree construction

RULE: Stmt ::= Variable ':=' Expr COMPUTE

Stmt.Code = MkAssign (Variable.Code, Expr.Code);

END;

RULE: Variable ::= Variable '.' Selector COMPUTE

Variable[1].Code = MkSelect (Variable[2].Code, Selector.Bind);

END;

RULE: Variable ::= Variable '[' Expr ']' COMPUTE

Variable[1].Code = MkIndex (Variable[2].Code, Expr.Code);

END;

RULE: Variable ::= UseIdent COMPUTE

Variable.Code = MkAddr (UseIdent.Bind);

END;

RULE: Expr ::= UseIdent COMPUTE

Expr.Code = MkCont (MkAddr (UseIdent.Bind));

END;

PLaC-8.3

©
 2

00
4

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Generator for creation of structured target texts
Tool PTG: Pattern-based Text Generator
Creation of structured texts in arbitrary languages. Used as computations in the abstract tree,
and also in arbitrary C programs. Principle shown by examples:

1. Specify output pattern with insertion points:

ProgramFrame: $
"void main () {\n"
$
"}\n"

 Exit: "exit (" $ int ");\n"

 IOInclude: "#include <stdio.h>"

2. PTG generates a function for each pattern; calls produce target structure:

 PTGNode a, b, c;
a = PTGIOInclude ();
b = PTGExit (5);
c = PTGProgramFrame (a, b);

correspondingly with attribute in the tree

3. Output of the target structure:

 PTGOut (c); or PTGOutFile ("Output.c", c);

PLaC-8.4
©

 2
00

5
be

i P
ro

f.
D

r.
 U

w
e

K
as

te
ns

PTG Patterns for creation of HTML-Texts

concatenation of texts:
Seq: $ $

large heading:
Heading: "<H1>" $1 string "</H1>\n"

small heading:
Subheading: "<H3>" $1 string "</H3>\n"

paragraph:
Paragraph: "<P>\n" $1

Lists and list elements:
List: "\n" $ "\n"
Listelement: "" $ "\n"

Hyperlink:
Hyperlink: "" $2 string ""

Text example:

<H1>My favorite travel links</H1>
<H3>Table of Contents</H3>

 Maps
 Train

PLaC-8.5

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

PTG functions build the target tree (1)
PLaC-8.6

ATTR Code: PTGNode;

SYMBOL Program COMPUTE

PTGOutFile
(CatStrStr (SRCFILE, ".java"),

PTGFrame
(CONSTITUENTS Declaration . Code
 WITH (PTGNode, PTGSeq, IDENTICAL, PTGNull),

 CONSTITUENTS Statement . Code SHIELD Statement
WITH (PTGNode, PTGSeq, IDENTICAL, PTGNull)));

END;

Attributes named
Code propagate
target sub-trees

Write the target
text to a file

PTG pattern with
2 arguments

Access 2 target
sub-trees

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

PTG functions build the target tree (2)
PLaC-8.7

RULE: Declaration ::= Type VarNameDefs ';' COMPUTE
Declaration . Code =

CONSTITUENTSVarNameDef . Code
WITH (PTGNode, PTGSeq, IDENTICAL, PTGNull);

END;

SYMBOLVarNameDef COMPUTE
SYNT.Code =

IF (EQ (INCLUDING TypedDefinition.Type, intType),
PTGIntDeclaration (SYNT. NameCode),

...
PTGNULL))));

END;

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Generate and store target names
PLaC-8.8

SYMBOL VarNameDef: NameCode: PTGNode;

SYMBOL VarNameDef COMPUTE
SYNT.NameCode =

PTGAsIs
(StringTable

(GenerateName (StringTable (TERM)))) ;

SYNT.GotTgtName =
ResetTgtName (THIS.Key, SYNT. NameCode) ;

END;

SYMBOL VarNameUse COMPUTE
SYNT.Code = GetTgtName (THIS.Key, PTGNULL)

<- INCLUDING Program.GotTgtName ;
END;

SYMBOL Program COMPUTE
SYNT.GotTgtName =

CONSTITUENTS VarNameDef. GotTgtName ;
END;

All names are stored
before any is accessed

Access the name from
the definition module

Store the name in the
definition module

Create a new name
from the source name

