Programming Languages and Compilers

Language Properties and Compiler Tasks

Dr. Peter Pfahler
Based on the lecture by Prof. Dr. Uwe Kastens

Universitat Paderborn
Fakultat EIM
Institut fiir Informatik

Winter 2016/2017

P. Pfahler (upb) PLaC Winter 2016/2017 1/15
Language Properties and Compiler Tasks

Compilation and Interpretation

e Compilation Input
A compiler translates a program in the ¢
source language into an equivalent Source | ol compiler | Jarget

. Program Program
program in the target language.
Important task: report errors. #
Output

° Inte.rpretatlon _ Source
An interpreter appears to directly Program Interpreter |—» Output
execute a source language program on Input —»

a given input. Internally typical
compilation tasks may have to be
solved.

* Hybrid Compilation Source | ol omoiler _ | Intermediate
The compiler translates a program in Program Program
the source language into an equivalent
intermediate program which is Input Virtual Output
interpreted by a virtual machine . RECAS

P. Pfahler (upb) PLaC Winter 2016/2017 2 /15

Language Properties and Compiler Tasks

Levels of Language Properties related to Compiler Tasks

Level Formal Specification Compiler Task
Notation of Tokens Regular Expressions Lexical Analysis
Syntactic Structure Context-free Grammars Syntactic Analysis
Static Semantics Semantic Analysis,
o Name Binding e Often specified informally. Transformation
e Attribute Grammars.

e Typing Rules

Dynamic Semantics Transformation, Code
Often specified informally in Generation
terms of an abstract machine.

Denotational Semantics.

P. Pfahler (upb) PLaC Winter 2016/2017 3/15
Language Properties and Compiler Tasks

Example: Tokens and Structure

Character sequence

int count = 0; double sum = 0.0; while (count<maxVect) { sum = sum+vect[count]; count++;}

Tokens
int| [count Hﬂﬂ doublﬂ H 0.0;| while (count<”naxVect) H sum H sumtvect|[count]l|;| countH+H;|}
L]) | L] L |
= | | ‘ |
Expressions ‘ |
‘ | | | ‘
| | | | |
Declarations Statements
Structure

P. Pfahler (upb) PLaC Winter 2016/2017 4 /15

Language Properties and Compiler Tasks

Example: Names, Types, Generated code

int| lcount HHH doublﬂ ﬂ 0.0;| while| |(count<maxVect))

]

%um E}sum+vect[count]; countt+H;|}

Structure || ‘I _tH - |‘ L] I |
int in in
double boolean ‘ ‘ ‘ |
k1: (count, local variable, int) k3: (maxVect, member variable, int)
k2: (sum, local variable, double) k4: (vect, member variable, double array)

Static properties: names and types

Generated Bytecode: : iconst_@
: istore_1
dconst_@
dstore
iload_
getstatic /7 Field maxVect:I
if_icmpge
dload_2
getstatic /7 Field wvect:[D
iload_1
daloa

a
dstore_2
iinc
goto
return

P. Pfahler (upb) PLaC Winter 2016/2017 5/ 15

Language Properties and Compiler Tasks

Compiler Tasks

Scanning

Lexical analysis)
. Conversion
Structuring

Syntactic analysis Parsing

Tree construction

. . Name analysis
Semantic analysis

Type analysis

Translation
D m in
Transformation ata mapping
Action mapping
Execution-order
Code generation Register allocation
Instruction selection
Encoding

Instruction encoding
Assembly Internal Addressing
External Addressing

P. Pfahler (upb) PLaC Winter 2016 /2017 6 /15

Language Properties and Compiler Tasks

Compiler Structure and Interfaces

Source program ¢
Lexical analysis

Token sequence Y
Syntactic analysis

Abstract program tree $
Semantic analysis

Transformation Analysis (frontend)

Intermediate language

Synthesis (backend)

| Optimization
Y
Code generation
Abstract ™ | Peephole optimization
machine program Y
Assembly
Target program
P. Pfahler (upb) PLaC Winter 2016/2017 7/ 15

Language Properties and Compiler Tasks

Software Qualities of the Compiler

e Correctness
Compiler translates correct programs correctly. Rejects wrong programs and gives
error messages.

e Efficiency
Storage and time used by the compiler.

e Code efficiency
Storage and time used by the generated code.
Compiler task: optimization

e User support
Compiler task: Error handling (recognition, message, recovery).

e Robustness
Compiler gives a reasonable reaction on every input. It does never break.

P. Pfahler (upb) PLaC Winter 2016/2017 8 /15

Language Properties and Compiler Tasks

Strategies for Compiler Construction

Adhere closely to the language specification

Use generating tools

Use standard components

Apply standard methods

Validate the compiler against a test suite

Verify components of the compiler

P. Pfahler (upb) PLaC Winter 2016/2017 9 /15
Language Properties and Compiler Tasks

Generating Compiler Components

Pattern:

Environment

Specification Generator Implemented
algorithm

Interfaces
Typical compiler tasks solved by generators:
Regular expressions Scanner generator Finite automaton
Context-free grammar Parser generator Stack automaton
Attribute grammar Attribute evaluator Tree walking algorithm
generator
Code patterns Code selection Pattern matching
generator

P. Pfahler (upb) PLaC Winter 2016,/2017 10 / 15

Language Properties and Compiler Tasks

Compiler Tools (Selection)

Compiler Generators

e ANTLR (University of San Francisco)
generates lexers, parsers and tree traversal support. It uses adaptive LL(*) parsing
and generates language tools in Java and C# .

e CoCo/R (Universitat Linz)
generates scanners and parsers from L-attributed grammars. It uses recusive-descent
LL(1) parsing extended by multi-symbol lookahead (LL(k)).

e Eli (Universities Boulder, Sydney, Paderborn)
Compiler development environment integrating various generators and support
libraries. Uses LALR(1) parsing and visit-sequence-based attribute evaluation.

Compiler Infrastructure Projects

e SUIF (Standford University)
Modular compiler system with various frontends, an extensible intermediate
language, and a backend infrastructure for analysis, optimization and code
generation.

e LLVM (University of lllinois at Urbana Champaign)
Compiler infrastructure based upon reusable libraries with well-defined interfaces.
Provides various frontends, backends and compiler optimizations.

P. Pfahler (upb) PLaC Winter 2016,/2017 11 /15
Language Properties and Compiler Tasks

Architecture of a Compiler generated by Eli

Task decomposition determines the system architecture. Specialized tools generate
solutions for the sub-tasks:

Input processing Name analysis

Scanning Definition table

Symbol coding Parsing Property analysis Text generation
Conversion Tree construction Attribute computation in the tree

Semantic Trans-
analysis formation

Lexical
analysis

Syntactic
analysis

Source text \Symbol sequence \ | Structure tree| | Attr. structure tree| Target text|
\ |

Customer
(addr: Address;
account: int;
) (Fietd) (Field) (Field)

isFiel
(FieldName FieldName) ame

[1, 11 TIdent: 12 || (TypeName TypeName) (TypeName
[2, 3] open

[2, 4] Ident: 13 class Customer_ Cl
[2, 8] <colon { private:
[2,10] Ident: 14 Address addr_f14;

int account_f£14;

}

P. Pfahler (upb) PLaC Winter 2016,/2017 12 /15

Language Properties and Compiler Tasks

Using Eli

¢ Invoking an interactive Eli session
eli [-c cache-location] [-r]

e Eli stores intermediate results in a directory called “cache” and reuses them from
there. The default value is “/.0DIN . Local cache directory is recommended.
e -r resets the cache, -R recreates the cache
e Eli documentation
to be found on http://eli-project.sourceforge.net/elionline/

e Eli command examples

e Generate an executable language processor and display errors and warnings:
myspecs.fw : exe : warning>

e Generate an executable language processor and place it in the current directory:
myspecs.fw : exe > .

e Generate the processor’s source code and place it in a directory named src :
myspecs.fw : source > src

e Generate documentation for the language project and place it in the file mydoc.pdf :
myspecs.fw : pdf > mydoc.pdf

e Literate programming
The language “FunnelWeb" integrates specifications (written in Eli's specification
languages) and documentation (written in EKTEX, e.g.). Eli uses FunnelWeb texts
(.fw) to generate both executable language processors and their documentation.

P. Pfahler (upb) PLaC Winter 2016,/2017 13 /15
Language Properties and Compiler Tasks

A FunnelWeb Example: Input file

Op maximum_input_line_length = infinity

Op typesetter = latex
\documentclass[a4paper,12pt]{scrartcl}
\usepackage{alltt}

\title{Hello World -- A First FunnelWeb Example}

\begin{document}

\maketitle

The file ‘‘helloworld.lido’’ contains a minimal Eli specification which
accepts only the empty input file and prints ‘‘Hello, World’’ to the
standard output.

©@00<helloworld.lido@>0{@-

RULE: root ::= COMPUTE
printf("Hello, World\n");

END;

@}

\end{document}

P. Pfahler (upb) PLaC Winter 2016,/2017 14 / 15

Language Properties and Compiler Tasks

A FunnelWeb Example: Generating processor and documentation

Eli commands
hello.fw : pdf > hellodoc.pdf

hello.fw : exe > hello.exe

P. Pfahler (upb)

Hello World — A First FunnelWeb
Example

May 7, 2015

The file “helloworld.lido” contains a minimal Eli specification which accepts only the
empty input file and prints “Hello, World” to the standard output.

helloworld.lido[1]:

RULE: root ::= COMPUTE
printf ("Hello, World\n");
END;

This macro is attached to a product file.

PLaC Winter 2016/2017

15 / 15

