
Programming Languages and Compilers
Symbol Specification and Lexical Analysis

Dr. Peter Pfahler
Based on the lecture by Prof. Dr. Uwe Kastens

Universität Paderborn
Fakultät EIM

Institut für Informatik

Winter 2016/2017

P. Pfahler (upb) PLaC Winter 2016/2017 1 / 1

Symbol Specification and Lexical Analysis

Lexical Analysis

Input: Program represented by a sequence of characters

Tasks Compiler Module
Read character stream Input reader
Recognize and classify tokens;
skip irrelevant characters

Scanner (central phase, finite state
machine)

Encode tokens; Conversion;
Store token information

Identifier Module, Literal Module

Output: Program represented by a sequence of tokens encoded by triples:

Syntax Code Attribute Source Pos.

Code for terminal
symbol in

concrete syntax

Value or
reference to
data module

Line and
column in
source text

P. Pfahler (upb) PLaC Winter 2016/2017 2 / 1

Symbol Specification and Lexical Analysis

Token Representation

Example SetLan Program

{

set one;

set two;

one = [100];

two = one + [77];

}

Typical token classes are

• Identifiers

• Keywords

• Literals

• Special Symbols

Attribute values are relevant for
identifiers and literals.

5 0 (1, 1) {
35 0 (2, 3) set
36 2 (2, 7) one
14 0 (2, 10) ;
35 0 (3, 3) set
36 3 (3, 7) two
14 0 (3, 10) ;
36 2 (4, 3) one
32 0 (4, 7) =
21 0 (4, 9) [
26 100 (4, 10) 100
22 0 (4, 13)]
14 0 (4, 14) ;
36 3 (5, 3) two
32 0 (5, 7) =
36 2 (5, 9) one
4 0 (5, 13) +
21 0 (5, 15) [
26 77 (5, 16) 77
22 0 (5, 18)]
14 0 (5, 19) ;
6 0 (6, 1) }
1 0 (7, 1) EOF

P. Pfahler (upb) PLaC Winter 2016/2017 3 / 1

Symbol Specification and Lexical Analysis

Token Specification and Recognition

1 Letter
start

2

Letter

Digit

Ident : Letter X
X : Letter X
X : Digit X
X :

Letter

Digit

Letter

Ident:

Ident :
 Letter (Letter | Digit)*

Typical Notation:
Regular Expression

Graphical Notation:
Syntax Diagram

Formal Notation:
Regular Grammar

Implementation:
Finite Automaton

P. Pfahler (upb) PLaC Winter 2016/2017 4 / 1

Symbol Specification and Lexical Analysis

Constructing Scanners from Token Specifications

The scanner is implemented as a finite automaton constructed as follows:

• For each token specification map the regular
expression to a nondeterministic finite
automaton (NFA)

• Unite the starting states of all automata

• Transform the NFA into a deterministic finite
automaton (DFA)

if

identnumb

s

if

ident

ε

ε

numbε

s
i

a-h,j-z

0-9

...

...

...
start

start

P. Pfahler (upb) PLaC Winter 2016/2017 5 / 1

Symbol Specification and Lexical Analysis

Regular Expressions mapped to Nondeterministic Finite Automata

ε s fε

a s fa

M N s fM Nε εε

M*
s f

Mε ε

ε

ε

Regular Expression NFA

Shorthands:

M+ is constructed
as: M M*

M? is constructed
as: M | ε

[abc] is constructed
as: a | b | c

M | N s f

M

N

ε ε

εε

start

start

start

start

start

P. Pfahler (upb) PLaC Winter 2016/2017 6 / 1

Symbol Specification and Lexical Analysis

Transform the NFA into a DFA (1)

The “subset construction” uses two functions:

• The ε-closure function takes a state and returns the set of states reachable from it
based on (one or more) ε-transitions.

• The function move takes a state and a character, and returns the set of states
reachable by one transition on this character.

These functions are generalized to apply to sets of states by taking the union of the
application to individual states.

Example:

If A, B and C are states,
then move({A,B,C},‘a’) = move(A,‘a’) ∪ move(B,‘a’) ∪ move(C,‘a’)

P. Pfahler (upb) PLaC Winter 2016/2017 7 / 1

Symbol Specification and Lexical Analysis

Transform the NFA into a DFA (2)

The Subset Construction Algorithm

1 Create the start state of the DFA by taking the NFA start state’s ε-closure .

2 Perform the following for the new DFA state:
For each possible input symbol:

• Apply move to the newly-created state and the input symbol;
this will return a set of states.

• Apply the ε-closure to this set of states, possibly resulting in a new set.

This set of NFA states will be a single state in the DFA.

3 Each time we generate a new DFA state, we must apply step 2 to it.
The process is complete when applying step 2 does not yield any new states.

4 The final states of the DFA are those which contain any of the NFA’s final states.

Example: Construct the DFA for the following token set:

IFSYMB : if

IDENT : [a-z] ([a-z] | [0-9])*

NUMB : [0-9]+

P. Pfahler (upb) PLaC Winter 2016/2017 8 / 1

Symbol Specification and Lexical Analysis

Recognize the Longest Match

An automaton may contain transitions from final states: When does the automaton stop?

Rule of the longest match

• The automaton continues as long as there is a transition with the next character.

• After having stopped it sets back to the most recently passed final state.
The input position is adjusted.

• If no final state has been passed an error message is issued.

Consequence: Some kinds of tokens have to be separated explicitly.

P. Pfahler (upb) PLaC Winter 2016/2017 9 / 1

Symbol Specification and Lexical Analysis

Aspects of Scanner Implementation

Scanner runtime is proportional to the number of characters in the program
⇒ Operations per character must be fast, otherwise the scanner dominates compilation
time.

Two implementation techniques:

• Table driven scanning:
Scanner control loop interprets state transition table.

• Directly programmed scanning:
State transitions are coded by control flow (switches, branches, loops).

Directly programmed scanner implementations are usually faster than table-driven
scanners.

P. Pfahler (upb) PLaC Winter 2016/2017 10 / 1

Symbol Specification and Lexical Analysis

Aspects of Lexical Level Language Design

P. Pfahler (upb) PLaC Winter 2016/2017 11 / 1

Symbol Specification and Lexical Analysis

Identifier and Literal Modules

• Uniform interface for all scanner support modules:

• Input parameters: pointer to token text and its length;
• Output parameters: syntax code, attribute

• Identifier module (aka “Symbol Table”) uniquely encodes identifier occurrences
Implementation: hash table
Possibly also encodes keywords

• Literal modules for floating point numbers, integral numbers, strings
Variants for representation in memory:

• token text
• value converted into compile site representation
• value converted into target site representation

Caution: Avoid overflow on conversion!
Cross compiler: compiler representation may differ from target representation

P. Pfahler (upb) PLaC Winter 2016/2017 12 / 1

Symbol Specification and Lexical Analysis

Scanner Generators

Scanner generators generate the central function of lexical analysis from token
specifications given as regular expressions.

• Lex / Flex
• standard Unix tool and its successor
• scanner implemented in C/C++
• table driven

• GLA (Generator for Lexical Analysis)
• University of Boulder, Colorado
• Part of the Eli system, interfaces with other components
• library of RE for typical tokens (“canned descriptions”)
• scanner implemented in C/C++
• directly programmed implementation

• JLex / JFlex
• Java Scanner Generator and its successor, GNU license
• scanner implemented in Java
• table driven

P. Pfahler (upb) PLaC Winter 2016/2017 13 / 1

Symbol Specification and Lexical Analysis

Example: SetLan Token Specification for Eli

Written in GLA notation using canned descriptions.
Literal tokens (keywords and special symbols) are automatically taken from concrete
syntax and do not have to be specified in Eli.

SetLan Token Specification

Identifier: C_IDENTIFIER

Number: C_INTEGER

C_COMMENT

Equivalent specification after expanding canned descriptions:

SetLan Token Specification without Canned Descriptions

Identifier: $[a-zA-Z_][a-zA-Z_0-9]* [mkidn]

Number: $([0-9]+|0[xX][0-9a-fA-F]*) [c_mkint]

$"/*" (auxCComment)

The specification uses token processors like mkidn to access identifier and literal modules
and so-called auxilliary scanners like auxCComment for special scanning purposes, like e.g.
skipping (possibly nested) comments.

P. Pfahler (upb) PLaC Winter 2016/2017 14 / 1

