Programming Languages and Compilers

Context-free Grammars and Syntactic Analysis

Dr. Peter Pfahler
Based on the lecture by Prof. Dr. Uwe Kastens

Universitat Paderborn
Fakultat EIM
Institut fiir Informatik

Winter 2016/2017

P. Pfahler (upb)

Context-free Grammars and Syntactic Analysis

Input: Token Sequence

PLaC

Winter 2016/2017

1/43

Syntactic Analysis

Tasks

Compiler Module

Read token sequence

Interface to lexical analysis

Construct a derivation ac-
cording to the concrete syntax

Parser, central phase, stack
automaton

Build a structure tree accord-
ing to the abstract syntax

Tree construction

Detect and report errors

Error handling

Output: Abstract Syntax Tree (AST) , a condensed version of the derivation tree:

abstract program treefor a * (b + c¢)

Ex
B:.nE:x Ip

B:LnOpr\E
T:Lrne sOpr / ‘ \BlnEx

Exp BinOpr Exp
* IdEx | PlusOp|r |IdEx

b + c

IdExX |
a

P. Pfahler (upb)

PLaC

The terms
e Abstract Syntax Tree
e Abstract Program Tree
e Abstract Structure Tree

are used synonymously.

Winter 2016 /2017

2/43

Context-free Grammars and Syntactic Analysis

Stack Automata

Formal model to recognize context-free

languages. 6 top
Example “Nested Blocks”: N
S ::= block
block ::= ’x’ Stack
block ::= ’{’ block ’}’ IRRRERERRRERRANREERY
Input Tape
S5 S6
pop() m accept Transitions depending
on both input and top-of-stack.
S1 S4
SO . -
: pop(); State transitions can
f == S2 : __
push(S0) X ' §°E s3 if ;05 - 52 manipulate the stack.
else S =55 else S = S5
‘x |
52 53 '
{ push(S2)
‘_Q
P. Pfahler (upb) PLaC Winter 2016/2017 3/43

Context-free Grammars and Syntactic Analysis

Section Structure

The section Context-free Grammars and Syntactic Analysis will be structured as follows:

® Grammar Design

e Concrete and Abstract Grammars
Expression Grammars

A Strategy for Grammar Development
Ambiguity and Unbounded Lookahead

® Parsing Methods: Top-Down vs. Bottom-Up Parsing
® Top-Down Parsing

e Recursive Descent Parsers
e Grammar Transformations for LL(1), Handling EBNF
® Bottom-Up Parsing

Shift-Reduce Parsers

LR(0) and LR(1)-Parser Construction
Hierarchy of Grammar Classes
Implementing LR-automata

® Syntax Error Handling

® Parser Generators

P. Pfahler (upb) PLaC Winter 2016/2017 4 /43

Context-free Grammars and Syntactic Analysis ~ Concrete and Abstract Syntax

Concrete and Abstract Syntax

Concrete Syntax Abstract Syntax

e context-free grammar e context-free grammar

e defines the source structure defines the abstract syntax trees

e unambiguous usually ambiguous

e specifies parser construction and e semantic analysis and transformation is
derivation based on it

Actions added to the concrete grammar specify abstract syntax tree construction:

Expr ::= Expr AddOpr Term &’MkNode(BinExpr, ...);’ J

The abstract syntax ommits

e Chain productions having only syntactic purpose

e Terminal symbols which are not relevant semantically

The abstract syntax can be generated from the concrete syntax and a symbol mapping,
like e. g.: Exp = {Expr, Term, Fact} .

P. Pfahler (upb) PLaC Winter 2016/2017 5 /43
Context-free Grammars and Syntactic Analysis ~ Concrete and Abstract Syntax
Example: Concrete Expression Grammar
name production action
pl: Expr ::= Expr AddOpr Fact BinEx
p2: Expr ::= Fact
p3: Fact ::= Fact MulOpr Opd BinEx
derivation tree for a * (b + ¢) |P4: Fact ::= Opd
p5: Opd 2= ' (' Expr ')
E;{pr p6: Opd ::= Ident IdEx
p | p7: AddOpr ::= '+! PlusOpr
3 Fact p8: AddOpr ::= '-! MinusOpr
P | T p9: MulOpr ::= '*!' TimesOpr
Fact MulOpr Opd pl0: MulOpr ::= '/ DivOpr
p4| P9 /| \p5
Opd * (Expr)
P5| /| \Pl +, - lower precedence
a Expr AddOpr Fact *, / higher precedence

p2| p7| |p4

Fact + Opd

p4| |p6

Opd c

p6|

b

P. Pfahler (upb) PLaC Winter 2016/2017 6 /43

Context-free Grammars and Syntactic Analysis ~ Concrete and Abstract Syntax

Example: Abstract Expression Grammar

hame production

BinEx: Exp ::= Exp BinOpr Exp

IdEx: Exp ::= Ident

PlusOpr: BinOpr ::= '+!

MinusOpr: BinOpr ::= '-!

TimesOpr: BinOpr ::= '*! abstract program tree for a * (b + ¢)
DivOpr: BinOpr ::= '/

Exp

BlnEx ~\\\\\\\\\\\\E
BinOpr .
IdEx| TlpeSOpr /////| \\\\\\E}nEx

a ExXp BinOpr Exp
* IdEx | Plus0p|r |IdEx

b + c

symbol classes: Exp = { Expr, Fact, Opd }
BinOpr = { AddOpr, MulOpr }

Actions of the concrete syntax: productions of the abstract syntax to create tree nodes for
no action at a concrete chain production: no tree node is created
P. Pfahler (upb) PLaC Winter 2016 /2017 7 /43

Context-free Grammars and Syntactic Analysis ~ Grammar Design

A Strategy for Grammar Development

1. Examples: Write at least one example for every intended language construct. Keep the
examples for checking the grammar and the parser.

2. Sub-grammars: Decompose a non-trivial task into topics covered by sub-gammars, e.g.
statements, declarations, expressions, over-all structure.

3. Top-down: Begin with the start symbol of the (sub-)grammar, and refine each nonterminal
according to steps 4 - 7 until all nonterminals of the (sub-)grammar are refined.

4. Alternatives: Check whether the language construct represented by the current
nonterminal, say Statement, shall occur in structurally different alternatives, e.g. while-
statement, if-statement, assignment. Either introduce chain productions, like
Statement ::= WhileStatement | IfStatement | Assignment.
or apply steps 5 - 7 for each alternative separately.

5. Consists of: For each (alternative of a) nonterminal representing a language construct
explain its immediate structure in words, e.g. ,A Block is a declaration sequence followed
by a statement sequence, both enclosed in curly braces.“ Refine only one structural level.
Translate the description into a production. If a sub-structure is not yet specified introduce
a new nonterminal with a speaking name for i, e.g.

Block ::= ’{’ DeclarationSeq StatementSeq ’}’.

6. Natural structure: Make sure that step 5 yields a ,nhatural” structure, which supports
notions used for static or dynamic semantics, e.g. a range for valid bindings.

7. Useful patterns: In step 5 apply patterns for description of sequences, expressions, etc.
P. Pfahler (upb) PLaC Winter 2016/2017 8 /43

Context-free Grammars and Syntactic Analysis ~ Grammar Design

Patterns for Sequences

Description Left-Recursion Right-Recursion
Non-empty Sequence A ::=AD A ::=Db A
A ::=D A ::=D
Possibly empty Sequence A ::=AD A ::=Db A
A ::= A ::=
Non-empty separated Sequence A ::=Asb A ::=Dbs A
A ::=D A ::=D
Possibly empty separated Sequence | A ::= B A ::= | A ::=B A ::=
B : Bsb B ::=bsB
B ::=b B ::=b
Example: A formal parameter list
formparams ::= fparams
formparams ::=
fparams = fparam
fparams = fparams ’,’ fparam
fparam = type Identififer)
P. Pfahler (upb) PLaC Winter 2016,/2017 9 /43

Context-free Grammars and Syntactic Analysis ~ Grammar Design

Patterns for Expression Grammars

Expression grammars are systematically constructed,
such that structural properties of expressions are defined:

one level of precedence, binary ~one level of precedence, binary
operator,left-associative: operator,right-associative:
A ::= A Opr B A ::= B Opr A
A ::=B A ::=B
one level of precedence, one level of precedence,
unary Operator, prefix: unary Operator, postfix:
A ::= Opr A A ::= A Opr
A ::= B A ::= B
Elementary operands: only derived Expressions in parentheses: only
from the nonterminal of the h|ghest derived from the nonterminal of the
precedence level (be H here): hlghest precedence level (assumed to be
H here); contain the nonterminal of the
H ::= Ident lowest precedence level (be A here):
H ::= ! (l A l) 1

P. Pfahler (upb) PLaC Winter 2016,/2017 10 / 43

Context-free Grammars and Syntactic Analysis ~ Grammar Design

Grammar Design

Read grammars before writing a new grammar.

Apply grammar patterns systematically:
e repetitions
e optional constructs

e precedence, associativity of operators

Syntactic structure should reflect semantic structure.

Example: A range in the sense of scope rules should be represented by a single subtree
of the abstract structure tree.

Difficult, if the syntax does not reflect this, e.g. in Pascal:

funDecl funHead block
funHead ::= ’function’ identifier formParams ’:’ resultType ’;’ J

formParams together with block form a range. The function name (identifier) does
not belong to that range, but to the enclosing one.

P. Pfahler (upb) PLaC Winter 2016,/2017 11 / 43

Context-free Grammars and Syntactic Analysis ~ Grammar Design

Syntactic Restrictions versus Semantic Conditions

Language constraints should not be handled syntactically if:
e Restriction can not be decided syntactically, e.g. type check in expressions:

BoolExpression ::= IntExpression ’<’ IntExpression J

e Restriction can not always be decided syntactically, e. g. disallow array type to be
used as function result:

Type ::= ArrayType | NonArrayType | Identifier
ResultType ::= NonArrayType

If a type identifier may specify an array type, a semantic condition is needed,
anyhow.

e Syntactic restriction is unreasonably complex, e. g. distinction of expressions with
values known at compile-time from ordinary expressions requires duplication of the
expression syntax.

P. Pfahler (upb) PLaC Winter 2016,/2017 12 / 43

Context-free Grammars and Syntactic Analysis ~ Grammar Design

Eliminate Ambiguities

by uniting syntactic constructs and distinguishing them semantically:

e Java:
ClassOrInterfaceType ::= ClassType | InterfaceType
ClassType ::= TypeName
InterfaceType = TypeName
= Replace first production by ClassOrInterfaceType ::= TypeName
Semantic analysis distinguishes between class type and interface type
e Pascal:
factor ::= variable | ... | functionDesignator
variable::= entireVariable |
entireVariable::= variableld
variableId::= ident (k%)
functionDesignator ::= functionId (%)
functionDesignator ::= functionId ’(’ actParams ’)’
functionld ::= ident y

= Eliminate alternative marked (*). Semantic analysis checks whether (**) is a
function identifier

P. Pfahler (upb) PLaC Winter 2016,/2017 13 / 43

