Context-free Grammars and Syntactic Analysis Bottom-Up Parsing

LR Parsing

LR(k) parsing (Knuth, 1965) stands for reading from L eft-to-Right, constructing a
R ightmost derivation in reverse using k input symbols of lookahead.

Only the cases k=0 and k=1 are of practical interest.

Prog
| P { def Id ; d d } <== p5
// \\ { Decl ; Decls Id =1Id } <== p3
{ Decls Id = Id } <== p9
Decls Stmts } { Decls Stmt } <== p7
/ | \P3 |P7 { Decls Stmts } <== p2
Decl ; Decls Stmt Eig;k <== p1
[s et/ |\
def Id Id = 1Id
Derivation Tree Bottom-Up, Reverse Rightmost Derivation

The class of grammars that can be parsed using LR grammars is a proper superset of the
class of grammars that can be parsed with LL methods.

Usually LR parsers are not constructed by hand but by using LR parser generators.

P. Pfahler (upb) PLaC Winter 2016,/2017 23 / 42

Context-free Grammars and Syntactic Analysis Bottom-Up Parsing

LR(1) items

LR parsers are also called Shift-Reduce Parsers :

e they shift input symbols by pushing states onto the stack
e they reduce symbol sequences uv to Nonterminals A , according to productions
A =uv

This process continues until an error is detected or the parser reduces to the start symbol
and the input is empty.

LR states are represented by sets of so-called items
consisting of A

Il
o]

.V R)

e a production.

e an analysis position, marked by a dot. If the dot is at the right
end, the item is called reduce item .

e a right context R, a set of terminals which may follow in the input
when the complete production is accepted.

An item indicates how much has been seen of a production at a given point in the
parsing process.

P. Pfahler (upb) PLaC Winter 2016,/2017 24 / 42

Context-free Grammars and Syntactic Analysis Bottom-Up Parsing

LR(1) States and Operations

A state of an LR automaton represents a set of items
Each item represents a way in which analysis may
proceed from that state. 2

A shift transition is made under

, =.a {:}
a token read from input or
a non-terminal symbol v D
obtained from a preceding reduction. 4B (D.:S) {#
The state is pushed. a D-=D."a 0
A reduction is made according to a reduce item.
n states are popped for a production of length n. 3D —a 0 red. p3
Operations: shift read and push the next state on the stack
reduce reduce with a certain production, pop n states from the stack
error error recognized, report it, recover
stop input accepted
P. Pfahler (upb) PLaC Winter 2016,/2017 25 / 42

Context-free Grammars and Syntactic Analysis Bottom-Up Parsing

Example LR(1) automaton

Grammar: 1
pl Bu=(D:S) B”=-([i?(3){#}
e - 3
p2 D:=D;a o Rz _ a T— . rod. 03
- D:=.D;a {}
p4 S:=b;S D:=.a 8!
p5 S:=b D 6D -D.a 0 red. p2
4 B:=(D.;S) {#
D:=D.;a {;} a .
v S:=b.;S 0}
In state 7 a decision is 5 B=(D:.S) {# S:=b. O} red. p5
required on next input: D=D: . a 0 I
. if) then reduce p5 S = b¢ O} \ g =. E ;S 8%
S =
10
In states 3, 6, 9, 11 a B:=(D;S.) {# #S
decision is not 9
required: 11) S:=b;S. O} red. p4
. B:=(D;S). {#
- reduce on any input i o1
red. p1, stop

P. Pfahler (upb) PLaC Winter 2016,/2017 26 / 42

LR Parser Tables

Context-free Grammars and Syntactic Analysis

P. Pfahler (upb)

Context-free Grammars and Syntactic Analysis

Bottom-Up Parsing

Operations of LR(1) Automata

Example:
shift x (terminal or non-terminal): stack
from current state q
under x into the successor state q°, 1 (
push ¢ 12
123
reduce p: 19
apply productionp B:=u, 124
pop as many states, 1245
as there are symbols in u, from the 12456
new current state make a shift with B 192
error: 124
the current state has no transition 1245
under the next input token, 12457
issue a message and recover 124578
1245787
stop: 124578
reduce start production, 1245789
see # in the input 1245
124510
124510 11
1

PLaC

Bottom-Up Parsing

input reduction

a;a;b;b)#
a;a;b;b)#
;as;b;b)# p3
;a;b;b)#
;a;b;b)#
a;b;b)#
;b;b)# p2
;bb)#
;b;b)#
b;b)#
;o) #
b)#
) # pS
) #
) # p4
) #
) #
p1
#

Winter 2016/2017

27 / 42

Table-driven Implementation of LR automata

ACTION GOTO

e Terminal Table " Action” STATE id + =« () % E T F

e shift : si means shift and 0 s5 s4 1 2 3
stack state i 1. 6 ace
e reduce : rj means reduce by 9 92 §7 2 19
production j 3 rd 4 4 r4

e accept : acc 4 s5 54 8 2 3
e error : blank entry 5 6 6 6 16

6 8b 84 9 3

e Nonterminal Table " Goto” ; 3 6 * s11 Y
e n means push state n onto 9 rl s7 rl rl
the stack 10 r3 13 r3 r3
11 r5 5 r5 rd

LR Parser for Expression Grammar (taken

pl: E ::=E ’+> T p4d: T ::=F
p2: E ::=T pb6: F ::="(C E
p3: T ::=T ’x> F p6: F ::=id

from ALSU, Compilers)

:):

P. Pfahler (upb)

PLaC

Winter 2016,/2017

28 / 42

Context-free Grammars and Syntactic Analysis Bottom-Up Parsing

Construction of LR(1) Automata

Algorithm:1. Create the start state.
2. For each created state compute the transitive closure of its items.
3. Create transitions and successor states as long as new ones can be created.

Transitive closure is to be applied to each state q:

Consider all items in g with the analysis position before2|B:=(.D;S) {#
before a non-terminal B:

[A1 = U1 . B] ann [An = Un . B Vn Rn], aﬁ-er. 2 B - (D S) {#}
then for each production B ::=w D= - a ui;
[B:= . w u...UFirst (v, Ry)1 D:=.a U3}

has to be added to state q.

Start state: 1'B:=.(D;S) {#
Closure of [S::i= .u {#}]
S ::=u is the unique start production,
is an (artificial) end symbol (eof)

Successor states: 2Bu=(.D;S) {#
For each symbol x (terminal or non-terminal), Du=.Dsa {}
which occurs in some items after the analysis position, D:=.a Gl
a transition is created to a successor state. 4 ‘ﬂ a
That contains corresponding items — . 3 Y
with the analysis position B o ED és) ﬁ} D:u=a. "
advanced behind the x occurrence.
P. Pfahler (upb) PLaC Winter 2016,/2017 29 / 42

Context-free Grammars and Syntactic Analysis Bottom-Up Parsing

LR Conflicts

An LR(1) automaton that has conflicts is not deterministic.
Its grammar is not LR(1);
correspondingly defined for any other LR class.

2 kinds of conflicts:

reduce-reduce conflict: A :=u. R1| R1,R2
A state contains two reduce items, the B:=v. R2| not
right context sets of which are not disjoint: disjoint

shift-reduce conflict:
A state contains A:=uitv R
a shift item with the analysis position in frontofa tand |g.._\w R2| te R2
a reduce item with t in its right context set.

P. Pfahler (upb) PLaC Winter 2016,/2017 30 / 42

Context-free Grammars and Syntactic Analysis Bottom-Up Parsing

Shift-Reduce Conflict for “Dangling Else” Ambiguity

1/S :=.Stmt {# _ Stmt
Stmt ;= . if ... then Stmt {#}
Stmt ::=. if ... then Stmt else Stmt {#}
Stmt:=.a {#} 2.
¢ L ‘ then
3/ Stmt = if ... then . Stmt #
Stmt ;= if ... then . Stmt else Stmt {#} _ Stmt _
Stmt ::= . if ... then Stmt {# else}
Stmt ::= . if ... then Stmt else Stmt {# else} a
Stmt:=.a {#else} |——
¢ L + then
5[Stmt ::= if ... then . Stmt {# else} _
Stmt ::= if ... then . Stmt else Stmt ~ {#else} | if
Stmt ::=. if ... then Stmt {# else}
Stmt ::=. if ... then Stmt else Stmt {# else}
Stmt = . a {#else} |2 o
y Stmt
6 Stmt ::=if ... then Stmt. {# else} ﬁ,
Stmt ::=if ... then Stmt . else Stmt {# else} _ ,
shift-reduce conflict
P. Pfahler (upb) PLaC Winter 2016,/2017 31/ 42

Context-free Grammars and Syntactic Analysis Bottom-Up Parsing

Decision of Ambiguity

dangling else ambiguity:

Stmt Stmt

RN T T

if Cond then Stmt\ if Cond ? Stmt eIs\eStmt

if Cond then Stmt else Stmt if Cond then Stmt

desired solution for Pascal, C, C++, Java

¢ Stmt

® [Stmt = it ... then Stmt . #else) | ©lse
Stmt ::=if ... then Stmt . else Stmt {# else}

shift-reduce conflict

State 6 of the automaton can be modified such that
an input token else is shifted (instead of causing a reduction);
yields the desired behaviour.

Some parser generators allow such modifications.

P. Pfahler (upb) PLaC Winter 2016,/2017 32 /42

Context-free Grammars and Syntactic Analysis Bottom-Up Parsing

Simplified LR Grammar Classes

LR(1):
too many states for practical use, because right-contexts distinguish many states.
Strategy: simplify right-contexts sets; fewer states; grammar classes less powerful
LALR(1): Sa q r e
construct LR(1) automaton, A:=u.v R1 A:=u.v RI
identify LR(1) states if their items Biu=x.y R2 Bi=x.y R2
differ only in their right-context sets, = R3 Ci=z. R3
unite the sets for those items; /\ 5 N
yields the states of the LR(0) automaton q, r identified: s
augmented by the "exact“ LR(1) right-context. A:=u.v R1uURT
ariB:=x.y R2uUR2
State-of-the-art parser generators C:=z. R3UR3
accept LALR(1) /*\A\‘
SLR(1):
LR(0) states; in reduce items é =y ;{’
use larger right-context sets for decision: =
[A::=u. Follow (A)] Cu=z Follow(C)
LR(0):
all items without right-context C:=z.
Consequence: reduce items only in singleton sets

P. Pfahler (upb) Winter 2016,/2017 33 /42

Context-free Grammars and Syntactic Analysis Bottom-Up Parsing

S5
0 block » S : block. (#}
S : .block {#} X S1
block : .x {# ——» :
block : .{ block } {#} R {#,})
{ LALR(1)
2 I
X S3
block : { .block } {#,}}
—p{ block : .x {}} ——P|block : { block .} {#,}}
block : .{ block } {}} block
i} LALR(1)
LALR(1) 4
{ block : { block }. {#,}}
LALR(1)

States marked ,LALR(1)“ show merged lookahead sets.

P. Pfahler (upb) PLaC Winter 2016,/2017 34 / 42

Context-free Grammars and Syntactic Analysis Bottom-Up Parsing

Grammar Class Hierarchy

context-free

unambiguous
A
LR(k
LL(k) LR(1)
T / LAL*R('l) increasing
strong LL(1) = LL(1) SLR(1) same
A
LR(0) —
increasing
strict inclusions / number of precision of right
states context sets
P. Pfahler (upb) PLaC Winter 2016,/2017 35/ 42

Context-free Grammars and Syntactic Analysis Bottom-Up Parsing

Reasons for LALR(1) Conflicts

Grammar condition does not hold:
context-free

unambi94uous ambiguous most cases
LR(k) unbounded lookahead needed
LRA(:)\ fixed length lookahead > 1 needed
A
L ALR(‘1)\ merge of LR(1) states rare cases

introduces conflicts

LALR(1) parser generator can not distinguish these cases.

P. Pfahler (upb) PLaC Winter 2016,/2017 36 / 42

Context-free Grammars and Syntactic Analysis Bottom-Up Parsing

LR(1) but not LALR(1)

Identification of LR(1) states causes non-disjoint right-context sets.

Artificial example:

Grammar: LR(1) states

Z:=S

S:=Aa

S:=Bc¢ Z:=.S {#}

S:=bAc g:='ga Eﬁ

S:=bB =-DC

Ad S:i=.bAc {#]

B :=d. S:=.bBa {#}
Au=.d f{a |9]Auz=d. {a
B:=.d {c} Bu=d. {c} LALR(1) state

1b identified Ai=d. {a, ¢}
S:=b.Ac {#} states B:=d {a, ¢}
S:=b.Ba {#
A:=.d {c} d= A:=d. {c}
B:=.d {a} B:u=d. {a}
Avoid the distinction between A and B - at least in one of the contexts.
P. Pfahler (upb) PLaC Winter 2016,/2017 37/ 42

Context-free Grammars and Syntactic Analysis ~ Error Handling

Syntax Error Handling

General criteria

- recognize error as early as possible
LL and LR can do that:
no transitions after error position

- report the symptom in terms of the source text
rather than in terms of the state of the parser

- continue parsing short after the error position
analyze as much as possible

. avoid avalanche errors

.- build a tree that has a correct structure
later phases must not break

- do not backtrack, do not undo actions,
not possible for semantic actions

- no runtime penalty for correct programs

P. Pfahler (upb) PLaC Winter 2016,/2017 38 / 42

Context-free Grammars and Syntactic Analysis Error Handling
Error position

Error recovery: Means that are taken by the parser after recognition of a syntactic error
in order to continue parsing

Correct prefix: The token sequence w € T* is a correct prefix in the language L(G),
if there is an u € T* such that w u e L(G); i. e. w can be extended to a sentence in L(G).

Error position: t is the (first) error position in the input wt x , whereteT and w, x e T*,
if w is a correct prefix in L(G) and w t is not a correct prefix.

Example: int compute (int i) { a = i * / ¢; return i;}

w t

LL and LR parsers recognize an error at the error position;
they can not accept t in the current state.

P. Pfahler (upb) PLaC Winter 2016,/2017 39 / 42
Error Handling

Context-free Grammars and Syntactic Analysis
Error recovery

Continuation point:
A token d at or behind the error position t such that

parsing of the input continues at d.

Error repair .
with respect to a consistent derivation error position

- regardless the intension of the programmer!

Let the input be w t x with the wydz
error position attandletwix=wyd z, v
then the recovery (conceptually) deletes y and inserts v,
such that w v d is a correct prefix in L(G),
withdeTandw,y,v,zeT".

? continuation

Examples:
w yd z w vd z w ydz
a=1*/¢c;... a=1i*/ ¢c;... a=1*/¢c;...
a =1 * Ci;... a=1 *e/ ¢;... a=1*e ;...
delete / insert error identifier e delete / ¢

and insert error id. e

P. Pfahler (upb) PLaC Winter 2016,/2017 40 / 42

Context-free Grammars and Syntactic Analysis ~ Generating Parsers

Generating the Structuring Phase

compiler designer generators compiler
specifications

Eli |
non-lit. tokens Iex.lana
.gla > nner ident.
(-gla) ———— Scanne - Scanner
generator literals
(GLA)
concrete syntax
(.con) > token sequence
parser '
mapping generator-\ svnt. ana
(.map) gl (PGS) *y-liﬁﬁii
abstract syntax - tree construction|
(.lido) » attribute
Map evaluator abstr. progr. tree
generator
. Y
(Liga) \\ sem. ana.
P. Pfahler (upb) PLaC Winter 2016,/2017 41 / 42

Context-free Grammars and Syntactic Analysis Generating Parsers

Parser Generators

Parser generators generate the central function of syntax analysis from the concrete
syntax specification and support structure tree construction according to the abstract
syntax, e.g. by adding Semantic Actions :

p9: Stmt ::= Id ’=’ Id &’mknode(p9)’ J

YACC / Bison
e standard Unix tool and its improved GNU version
e LALR(1) parsers implemented in C/C+—+
e Arbitrary C-Code as semantic actions
PGS / Cola (Generator for Lexical Analysis)
e University of Karlsruhe / Paderborn
e Part of the Eli system, interfaces with other components
e LALR(1) parsers implemented in C/C++
e AST construction automatically provided by Eli
Coco/R
e University of Linz
e LL(1) recursive descent parsers in C, Java, Pascal, Python, ...
ANTLR v3/v4
e University of San Francisco
e LL(*), Adaptive LL(*) parsers in (mainly) Java
e Many, many others
P. Pfahler (upb) PLaC Winter 2016,/2017 42 / 42

