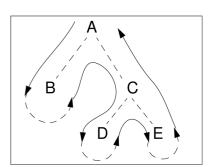
Construction of Attribute Evaluators

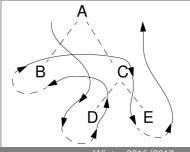
For a given attribute grammar an attribute evaluator is constructed:


- It is **applicable to any tree** that obeys the abstract syntax specified in the rules of the AG.
- It performs a tree walk and executes computations in visited contexts.
- The execution order obeys the attribute dependences.

Pass-oriented strategies for the tree walk: AG class:

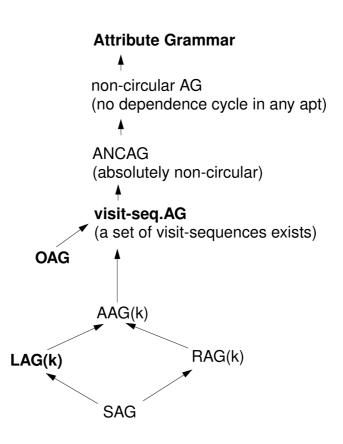
k times depth-first left-to-right
k times depth-first right-to-left
alternatingly left-to-right / right-to left
once bottom-up (synth. attributes only)

LAG (k)
RAG (k)
AAG (k)
SAG


AG is checked if attribute dependences fit to desired pass-oriented strategy; see LAG(k) check.

non-pass-oriented strategies:

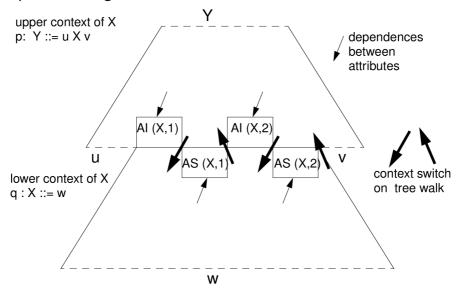
visit-sequences: OAG an individual plan for each rule of the abstract syntax


A generator fits the plans to the dependences of the AG.

P. Pac Winter 2016/2017 12 / 53

Attribute Grammars and Semantic Analysis Attribute Grammars

Hierarchy of AG Classes

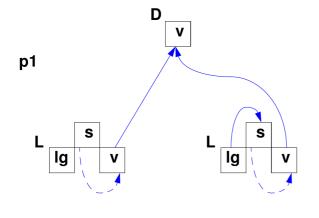

P. Pfahler (upb) PLaC Winter 2016/2017 13 / 53

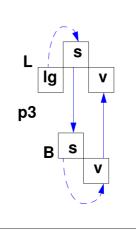
Attribute Partitions

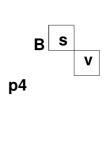
The sets AI(X) and AS(X) are **partitioned** each such that

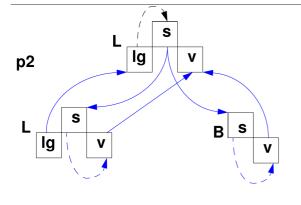
Al (X, i) is computed before the i-th visit of X

AS (X, i) is computed during the i-th visit of X


Necessary precondition for the existence of such a partition: No node in any tree has direct or indirect dependences that contradict the evaluation order of the sequence of sets:AI (X, 1), AS (X, 1), ..., AI (X, k), AS (X, k)


P. Pfahler (upb) PLaC Winter 2016/2017 14 / 53


Attribute Grammars and Semantic Analysis


Attribute Grammars

Dependency Analysis for AG "Binary Numbers"

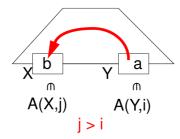
If a tree exists, that has a path from X.a to X.b at some node of Type X, the graphs have an **indirect dependence**

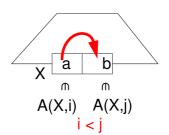
X.a - - - - ► X.b

Pass-Oriented Evaluation: LAG(k)

An AG is a LAG(k), if:

For each symbol X there is an **attribute partition** A (X,1), ..., A (X,k), such that the attributes in **A** (X,i) can be computed in the i-th depth-first left-to-right pass.


Crucial dependences:


In every dependence graph every dependence

- Y.a -> X.b where X and Y occur on the right-hand side and Y is right of X implies that Y.a belongs to an earlier pass than X.b, and
- X.a -> X.b where X occurs on the right-hand side implies that
 X.a belongs to an earlier pass than X.b

Necessary and sufficient condition over dependence graphs - expressed graphically:

A dependency from right to left

A dependence at one symbol on the right-hand side

P. Pfahler (upb)

PLaC

Winter 2016/2017

16 / 5

Attribute Grammars and Semantic Analysis

Attribute Grammars

LAG (k) Algorithm

Algorithm checks whether there is a k>=1 such that an AG is LAG(k).

Method:

compute iteratively A(1), ..., A(k);

in each iteration try to allocate all remaining attributes to the current pass, i.e. A(i); remove those which can not be evaluated in that pass

Algorithm:

Set i=1 and Cand= all attributes

repeat

set A(i) = Cand; set Cand to empty;

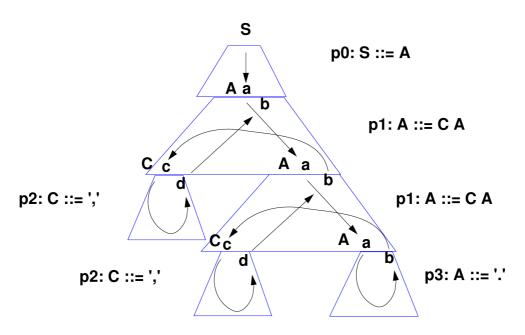
while still attributes can be removed from A(i) do remove an attribute X.b from A(i) and add it to Cand if

- there is a **crucial dependence**

 $Y.a \rightarrow X.b s.t.$

X and Y are on the right-hand side, Y to the right of X and Y.a in A(i) or X.a -> X.b s.t. X is on the right-hand side and X.a is in A(i)

- X.b depends on an attribute that is not yet in any A(i)


if Cand is empty: exit: the AG is LAG(k) and all attributes are assigned to their passes

if A(i) is empty: exit: the AG is not LAG(k) for any k

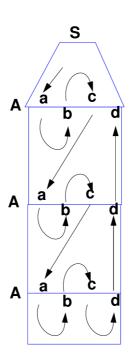
else: set i = i + 1

P. Pfahler (upb) PLaC Winter 2016/2017 17 / 53

AG not LAG(k) for any k

A.a can be allocated to the first left-to-right pass. C.c, C.d, A.b can not be allocated to any pass.

The AG is RAG(1), AAG(2) and can be evaluated by visit-sequences.


P. Pfahler (upb) PLaC Winter 2016/2017 18 / 53

Attribute Grammars and Semantic Analysis Attribute Grammars

AG not evaluable in Passes

No attribute can be allocated to any pass for any strategy.

The AG can be evaluated by visit-sequences.

