Attribute Grammars and Semantic Analysis Attribute Grammars

Construction of Attribute Evaluators

For a given attribute grammar an attribute evaluator is constructed:

- It is applicable to any tree that obeys the abstract syntax specified in the rules of the AG.
- It performs a tree walk and executes computations in visited contexts.

- The execution order obeys the attribute dependences.

Pass-oriented strategies for the tree walk: AG class:

k times depth-first left-to-right LAG (k)
k times depth-first right-to-left RAG (k)
alternatingly left-to-right / right-to left AAG (k)

once bottom-up (synth. attributes only) SAG

AG is checked if attribute dependences
fit to desired pass-oriented strategy; see LAG(k) check.

non-pass-oriented strategies:
visit-sequences: OAG
an individual plan for each rule of the abstract syntax

A generator fits the plans to the dependences of the AG.

P. Pfahler (upb) PLaC Winter 2016,/2017 12 /53

Attribute Grammars and Semantic Analysis Attribute Grammars

Hierarchy of AG Classes

Attribute Grammar

A

non-circular AG
(no dependence cycle in any apt)

A
ANCAG
(absolutely non-circular)
A
visit-seq.AG
/ (a set of visit-sequences exists)
OAG I
AAG(k)
LAG(k) RAG(k)
SAG

P. Pfahler (upb) PLaC Winter 2016,/2017 13 /53

Attribute Grammars and Semantic Analysis Attribute Grammars

Attribute Partitions

The sets Al(X) and AS(X) are partitioned each such that
Al (X, i) is computed before the i-th visit of X
AS (X, i) is computed during the i-th visit of X

upper context of X
p: Yi=uXv

dependences
between
attributes

u AS (X,1 _
lower context of X context switch
q:Xi=w /‘ on tree walk

- - - - - — — — — — — _W ——————————————

Necessary precondition for the existence of such a partition:
No node in any tree has direct or indirect dependences that contradict the
evaluation order of the sequence of sets:Al (X, 1), AS (X, 1), ..., Al (X, k), AS (X, k)

P. Pfahler (upb) PLaC Winter 2016,/2017 14 / 53

Attribute Grammars and Semantic Analysis Attribute Grammars

Dependency Analysis for AG “Binary Numbers”

D
\'} a X
!/ S
p1 L |'g v BF
v
A
/\, p3 p4
Y
L | S L[S B s
g |\ '} Ig |\ '/ '
o T LU
N N . /4
If a tree exists, that
B S has a path from X.a to
Vv X.b at some node of
p5 Type X, the graphs
s have an indirect
Y dependence
_/4 Xa --—»Xb

P. Pfahler (upb) PLaC Winter 2016,/2017 15 / 53

Attribute Grammars and Semantic Analysis Attribute Grammars

Pass-Oriented Evaluation: LAG(k)

An AG is a LAG(K), if:

For each symbol X there is an attribute partition A (X,1), ..., A (X, k),
such that the attributes in A (X, i) can be computed in the i-th depth-first left-to-right pass.

Crucial dependences:

In every dependence graph every dependence

- Y.a-> X.b where X and Y occur on the right-hand side and Y is right of X implies that
Y.a belongs to an earlier pass than X.b, and

- X.a -> X.b where X occurs on the right-hand side implies that
X.a belongs to an earlier pass than X.b

Necessary and sufficient condition over dependence graphs - expressed graphically:

A dependency ﬁ A dependence
from right to left at one symbol
b yL2 xlal b on the right-hand
" " n " side
A(X,)) A(Y,i) A(X,i) A(X))
j>i i<]j
P. Pfahler (upb) PLaC Winter 2016,/2017 16 / 53

Attribute Grammars and Semantic Analysis Attribute Grammars

LAG (k) Algorithm

Algorithm checks whether there is a k>=1 such that an AG is LAG(k).

Method:
compute iteratively A (1), ..., A(k);
in each iteration try to allocate all remaining attributes to the current pass, i.e. A(i);
remove those which can not be evaluated in that pass

Algorithm:

Set i=1 and cand= all attributes

repeat

setA(i) = Cand; set Cand to empty;
while still attributes can be removed from A (i) do A
remove an attribute X.b from A (i) and add it to cand if ‘a | Db

- there is a crucial dependence
Y.a->X.bs.t.
X and Y are on the right-hand side, Y to the right of X and Y.a in A(i)or
X.a ->X.b s.t. X is on the right-hand side and X.a is in A (i)
- X.b depends on an attribute that is not yet in any A (i)

if cand is empty: exit: the AG is LAG(k) and all attributes are assigned to their passes
if A(1) is empty: exit: the AG is not LAG(k) for any k
else: seti=i+1
P. Pfahler (upb) PLaC Winter 2016,/2017 17 / 53

Attribute Grammars and Semantic Analysis Attribute Grammars

AG not LAG(k) for any k

o T P

A.a can be allocated to the first left-to-right pass.
C.c, C.d, A.b can not be allocated to any pass.

The AG is RAG(1), AAG(2) and
can be evaluated by visit-sequences.

P. Pfahler (upb) PLaC Winter 2016,/2017 18 / 53

Attribute Grammars and Semantic Analysis Attribute Grammars

AG not evaluable in Passes
S

p0:S:=A
a
A b d
&/ ‘ pi:A:="A
No attribute can be NE ﬂ
allocated to any pass for b d
any strategy. U
pl:A:x="A
The AG can be evaluated
by visit-sequences.
Y
w w p2: A:n="

P. Pfahler (upb) PLaC Winter 2016,/2017 19 / 53

