Attribute Grammars and Semantic Analysis Attribute Grammars

Non-Pass-Oriented Evaluation: Visit-Sequences

A visit-sequence vs, for each production of the
tree grammar:

p: Xo == Xq o Xj o X

A visit-sequence is a sequence of operations:
li,j jthvisit of the i-th subtree
T j-th return to the ancestor node
eval, execution of a computation c associated to p

Example out of the AG for binary numbers:

VSp3:L =B
L.lg=1; T1; B.s=L.s; !B,1; L.v=B.v; 12

P. Pfahler (upb) PLaC Winter 2016,/2017 20 / 53

Attribute Grammars and Semantic Analysis Attribute Grammars

Interleaving of Visit-Sequences

Visit-sequences for adjacent contexts are
executed interleaved. upper

. . context
The attribute partition of the common

nonterminal specifies the interface between the

. Al (X, ;
upper and lower visit-sequence: %1 'x2)
AS (X,1 AS (X,2
lower
context
Example in the tree: interleaved visit-sequences:
VS ... lc1..1B,1...1C2..T1
S S

P. Pfahler (upb) PLaC Winter 2016,/2017 21 /53

Attribute Grammars and Semantic Analysis Attribute Grammars

Visit-Sequences for the AG “Binary Numbers”

vspi:D=LV'L
JL[11,1; L[1].8=0; {L[1],2; JL[2],1; L[2].s=NEG(L[2].lg);
lL[2],2; D.v=ADD(L[1].v, L[2].v); T1
vsp:L:=LB
lL[2],1; L[1].lg=ADD(L[2].1g,1); T1
L[2].s=ADD(L[1].s,1); (L[2],2; B.s=L[1].s; {B,1; L[1].v=ADD(L[2].v, B.v); T2
Vsp3: L =B
L.lg=1; T1; B.s=L.s; |B,1; L.v=B.v; T2

VSnh4: B ::='0' visited
pa NI twice

B.v=0; T1 sllgh # v

:B:="1 S
VSp5 gﬂ B visited

B.v=Power2(B.s); T1 once

P. Pfahler (upb) PLaC Winter 2016,/2017 22 /53

Attribute Grammars and Semantic Analysis Attribute Grammars

Visit-Sequences for AG “Binary Numbers” (tree patterns)

P. Pfahler (upb) PLaC Winter 2016,/2017 23 /53

Attribute Grammars and Semantic Analysis Attribute Grammars

Tree Walk for AG “Binary Numbers”

9
2 \ treeivalk
Lo a L/

/> pS p3 \ 05 attributes:
2 -] D

10 /4 B@ Lf@

S
3 ‘ W »
P p4 0 big v
“ il
p5 \'/
P. Pfahler (upb) PLaC Winter 2016,/2017 24 / 53

Attribute Grammars and Semantic Analysis Attribute Grammars

Generators for Attribute Evaluators

LIGA, University of Paderborn, OAG
CoCo/R, University of Linz, LAG(k)
JastAdd, University of Lund, dynamic evaluation

Properties of the Attribute Evaluator Generator LIGA
e integrated in the Eli system cooperating with the other tools
e attribute grammar specification language Lido
e modular and reusable AG components
e symbol computations and reuse mechanism
e computations call functions implemented outside the AG
e advanced notations for remote attribute access

e visit-sequence controlled attribute evaluators, implemented in C

Examples of Liga specifications are given on the following slides.

P. Pfahler (upb) PLaC Winter 2016,/2017 25 /53

Attribute Grammars and Semantic Analysis Attribute Grammars

LIGA: State attributes without values

ATTR pre, post: int;

RULE: Root ::= Block COMPUTE
Block.pre = 0;
END;
RULE: Block ::= '{' Constructs '}' COMPUTE

Constructs.pre = Block.pre;
Block.post = Constructs.post;
END;
RULE: Constructs ::= Constructs Construct COMPUTE
Constructs[2] .pre = Constructs[1l].pre;
Construct.pre = Constructs[2].post;
Constructs[1] .post = Construct.post;
END;
RULE: Constructs ::= COMPUTE
Constructs.post = Constructs.pre;
END;
RULE: Construct ::= Definition COMPUTE
Definition.pre = Construct.pre;
Construct.post = Definition.post;
END;
RULE: Construct ::= Statement COMPUTE
Statement.pre = Construct.pre;
Construct.post = Statement.post;
END;
RULE:Definition ::= 'define' Ident ';' COMPUTE
Definition.printed =
printf ("Def %d defines %s in line %d\n",
Definition.pre, StringTable (Ident), LINE);

Definition.post =
ADD (Definition.pre, 1) <- Definition.printed;
END;
RULE: Statement ::= 'use' Ident ';' COMPUTE
Statement.post = Statement.pre;
END;

RULE: Statement ::= Block COMPUTE
Block.pre = Statement.pre;
Statement.post = Block.post;

END;

P. Pfahler (upb) PLaC

Attribute Grammars and Semantic Analysis Attribute Grammars

Definitions are
enumerated and
printed from left to right.

The next befinition
number is propagated
by a pair of attributes at
each node:

pre (inherited)
post (synthesized)

The value is initialized
in the root context and

incremented in the
Definition context.

The computations for
propagation are
systematic and
redundant.

Winter 2016,/2017 26 / 53

LIGA: Dependency pattern CHAIN

CHAIN count: int;
RULE: Root ::= Block COMPUTE
CHAINSTART Block.count = 0;

END;

RULE: Definition ::= 'define' Ident ';'
COMPUTE
Definition.print =
printf ("Def %d defines %s in line %d\n",
Definition.count, /* incoming */

StringTable (Ident), LINE);

Definition.count = /* outgoing */
ADD (Definition.count, 1)
<- Definition.print;
END;

P. Pfahler (upb) PLaC

A cHAIN specifies a
left-to-right depth-first
dependency through a
subtree.

One CHAIN name;
attribute pairs are
generated where needed.

CHAINSTART initializes the
CHAIN in the root context
of the CHAIN.

Computations on the
CHAIN are strictly bound
by dependences.

Trivial computations of
the form X.pre = Y.pre in
CHAIN order can be
omitted. They are
generated where needed.

Winter 2016,/2017 27 / 53

Attribute Grammars and Semantic Analysis Attribute Grammars

LIGA: Dependency pattern INCLUDING

ATTR depth: int; The nesting depths of
Blocks are computed.

RULE: Root ::= Block COMPUTE
Block.depth = 0; An attribute at the root of
END; a subtree is accessed
from within the subtree.
RULE: Statement ::= Block COMPUTE
Block.depth = Propagation from
ADD (INCLUDING Block.depth, 1); computation to the uses
END; are generated as needed.
RULE: Definition ::= 'define' Ident COMPUTE | No explicit computations
printf ("%s defined on depth %d\n", or attributes are needed
StringTable (Ident), for the remaining rules
INCLUDING Block.depth) ; and symbols.
END;

INCLUDING Block.depth
accesses the depth attribute of the next upper node of
type Block.

P. Pfahler (upb) PLaC Winter 2016,/2017 28 / 53

Attribute Grammars and Semantic Analysis Attribute Grammars

LIGA: Dependency pattern CONSTITUENTS

A CONSTITUENTS
computation accesses
attributes from the

RULE: Root ::= Block COMPUTE
Root.DefDone =
CONSTITUENTS Definition.DefDone;

END; subtree below its context.
RULE: Definition ::= 'define' Ident ';' FWOpagavonﬁnn1
COMPUTE computation to the

CONSTITUENTS constructis

Definition.DefDone =
generated where needed.

printf ("%s defined in line %d\n",

StringTable (Ident), LINE); The shown combination

END; with INCcLUDING is a

RULE: Statement ::= 'use' Ident ';' COMPUTE COMMon dependency
printf ("%s used in line %d\n", pattern.
StringTable (Ident), LINE) All print£ calls in
< INCLUDING Root.Defbone; Definition contexts are

END; done before any in a
i Statement context.

CONSTITUENTS Definition.DefDone accesses the
DefDone attributes of all Definition nodes in the
subtree below this context

P. Pfahler (upb) PLaC Winter 2016,/2017 29 / 53

Attribute Grammars and Semantic Analysis Attribute Grammars

LIGA: Symbol Computations

Computations can be associated to symbols occurring in the tree (TREE symbols).
They are executed for every node which represents that symbol in a particular tree.

Symbols may be introduced which do not belong to the tree grammar. They are called
CLASS symbols and represent computational roles. Their computations may be inherited
by grammar symbols.

TREE symbol computations CLASS symbols and inheritance
TREE SYMBOL Expr COMPUTE CLASS SYMBOL IdOcc COMPUTE
SYNT.coercion = SYNT.Sym = TERM;

coerce(THIS.pre,THIS.post) ; END;

INH.IsValContext = true;

chkLegal (THIS.coercion) ; SYMBOL VarDef INHERITS IdOcc
END; END;

v v

The TREE and CLASS markers can be omitted. In attribute denotations the symbol names
are replaced by SYNT , INH , THIS , or TERM , TERM[1],

Symbol computations can be provided in libraries and are a powerful mechanism for reuse.

P. Pfahler (upb) PLaC Winter 2016,/2017 30 / 53

